
GI-Edition
Lecture Notes
in Informatics

Holger Meyer, Norbert Ritter, Andreas Thor,
Daniela Nicklas, Andreas Heuer,
Meike Klettke (Hrsg.)

Datenbanksysteme für
Business, Technologie und
Web (BTW 2019)
Workshopband

4.–8. März 2019
Rostock

Proceedings 290

H
o

lg
er

 M
ey

er
, N

o
rb

er
t

R
it

te
r,

A
n

d
re

as
 T

h
o

r,
D

an
ie

la
 N

ic
kl

as
,

A
n

d
re

as
 H

eu
er

, M
ei

ke
 K

le
tt

ke
 (

H
rs

g.
):

B
T

W
 2

01
9

–
W

o
rk

sh
o

p
b

an
d

hallo

Holger Meyer, Norbert Ritter,
Andreas Thor, Daniela Nicklas,

Andreas Heuer, Meike Klettke (Hrsg.)

Datenbanksysteme für
Business, Technologie und Web

(BTW 2019)

Workshopband

4.–8. März 2019
in Rostock, Deutschland

Gesellschaft für Informatik e. V. (GI)

Lecture Notes in Informatics (LNI) — Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-290

ISBN 978-3-88579-684-8
ISSN ISSN 1617-5468

Volume Editors
Holger Meyer

Universität Rostock
Lehrstuhl für Datenbank- und Informationssysteme
18055 Rostock, Germany
Email: hme@informatik.uni-rostock.de

Norbert Ritter
Universität Hamburg
Lehrstuhl für Datenbank- und Informationssysteme
20148 Hamburg, Germany
Email: ritter@informatik.uni-hamburg.de

Andreas Thor
Hochschule für Telekommunikation Leipzig
Datenbankmanagementsysteme
04277 Leipzig, Germany
Email: thor@hft-leipzig.de

Daniela Nicklas
Universität Bamberg
Lehrstuhl für Mobile Systeme
96047 Bamberg, Germany
Email: daniela.nicklas@uni-bamberg.de

Andreas Heuer
Universität Rostock
Lehrstuhl für Datenbank- und Informationssysteme
18055 Rostock, Germany
Email: ah@informatik.uni-rostock.de

Meike Klettke
Universität Rostock
Institut für Informatik
18055 Rostock, Germany
Email: meike.klettke@uni-rostock.de

hme@informatik.uni-rostock.de
ritter@informatik.uni-hamburg.de
thor@hft-leipzig.de
daniela.nicklas@uni-bamberg.de
ah@informatik.uni-rostock.de
meike.klettke@uni-rostock.de

Series Editorial Board
Heinrich C. Mayr, Alpen-Adria-Universität Klagenfurt, Austria
(Chairman, mayr@ifit.uni-klu.ac.at)
Torsten Brinda, Universität Duisburg-Essen, Germany
Dieter Fellner, Technische Universität Darmstadt, Germany
Ulrich Flegel, Infineon, Germany
Ulrich Frank, Universität Duisburg-Essen, Germany
Michael Goedicke, Universität Duisburg-Essen, Germany
Ralf Hofestädt, Universität Bielefeld, Germany
Wolfgang Karl, KIT Karlsruhe, Germany
Michael Koch, Universität der Bundeswehr München, Germany
Thomas Roth-Berghofer, University of West London, Great Britain
Peter Sanders, Karlsruher Institut für Technologie (KIT), Germany
Andreas Thor, HfT Leipzig, Germany
Ingo Timm, Universität Trier, Germany
Karin Vosseberg, Hochschule Bremerhaven, Germany
Maria Wimmer, Universität Koblenz-Landau, Germany

Dissertations
Steffen Hölldobler, Technische Universität Dresden, Germany
Thematics
Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Germany

© Gesellschaft für Informatik, Bonn 2019
printed by Köllen Druck+Verlag GmbH, Bonn

This book is licensed under a
Creative Commons Attribution-NonCommercial 3.0 License.

Vorwort

Die 18. Fachtagung “Datenbanksysteme für Business, Technologie und Web” (BTW)
des Fachbereichs “Datenbanken und Informationssysteme” (DBIS) der Gesellschaft für
Informatik (GI) findet vom 4. bis 8. März 2019 an der Universität Rostock statt. Pünktlich
zu einem Multi-Jubiläum besucht damit die deutsche Datenbanktagung zum ersten Mal in
ihrer Geschichte die Ostseeküste: Stadt und Universität Rostock feiern ein Doppeljubiläum
(800 Jahre Stadt Rostock in 2018, 600 Jahre Universität Rostock in 2019). Daneben feiert
auch die Rostocker Informatik einige Jubiläen in 2019: eine Computergrafik gibt es seit 50
Jahren an der Universität, eine Informatik seit 35 Jahren, den Lehrstuhl Datenbank- und
Informationssysteme seit 25 Jahren.

Auf der BTW trifft sich nun auch schon seit fast 35 Jahren im zweijährigen Rhythmus die
deutschsprachige Datenbankgemeinde, um neue Fragestellungen zu erörtern und aktuelle
Forschungsergebnisse zu präsentieren und zu diskutieren. Nicht nur Wissenschaftler, son-
dern auch Praktiker und Anwender finden sich hier zum Wissens- und Erfahrungsaustausch
zusammen. Die BTW 2019 bietet ein wissenschaftliches Programm, ein Industriepro-
gramm, ein Demonstrationsprogramm und ein Studierendenprogramm, dazu verschiedene
Workshops und Tutorien. Zum zweiten Mal wird auf der BTW ein Wettbewerb veranstal-
tet, die sogenannte Data Science Challenge — in diesem Jahr zum aktuellen Thema
Feinstaubbelastung in Städten.

Das Workshopprogramm umfasst diesmal folgende drei Veranstaltungen:

• “Novel Data Management Ideas on Heterogeneous (Co-)Processors (NoDMC)”

• “Digitale Lehre im Fach Datenbanken”

• “Big (and Small) Data in Science and Humanities”

Der Workshop “Novel Data Management Ideas on Heterogeneous (Co-)Processors
(NoDMC)” wird von David Broneske, Universität Magdeburg und Dirk Habich, TU
Dresden organisiert und findet zum ersten Mal statt. Das interessante Programm mit
dem Schwerpunkt der Anwendung von neuen Hardware-Konzepten im Bereich der An-
frageverarbeitung, dem Data Mining, Machine Learning oder etwa dem Graph Processing
umfasst neben einem Vorwort der Organisatoren eine Keynote von Erich Focht, NEC, einen
eingeladenen Vortrag von Carsten Binnig sowie sechs reguläre, begutachtete Beiträge.

Thomas C. Rakow und Heide Faeskorn-Woyke organisieren den Workshop “Digitale Lehre
im Fach Datenbanken”. Dieser startet mit fünf Impulsbeiträgen, um dann in einer offenen
Diskussion der ursprünglichen Idee von Workshops zu folgen. Die Teilnehmer wollen
erarbeiten, wie die Lehre aktuell im Jahre 2019 im Fach Datenbanken aussieht und welche
Erfahrungen damit gemacht wurden. Es wird auch dem Erarbeiten (gemeinsamer) Best
Practices Raum gegeben werden, die im Nachgang des Workshops an geeigneter Stelle
publiziert werden.

Der Workshop “Big (and Small) Data in Science and Humanities” findet zum wiederholten
Male statt und wird von Friederike Klan, Birgitta König-Ries, Peter Reimann, Bernhard
Seeger sowie Anika Groß organisiert. Eingeleitet wird der Workshop mit einer Keynote
von Andreas Henrich zu aktuellen Anwendungen, Methoden und Herausforderungen der
Digital Humanities. Die sechs begutachteten Beiträge reichen von temporaler Graphanalyse
bis zu anwendungsspezifischer Entity-Extraktion.

Das Studierendenprogramm wurde von Andreas Thor organisiert. Im zweiten Teil dieses
Bandes werden neun positiv begutachtete Beiträge vorgestellt. Die Themenvielfalt reicht
von Big Data und Machine Learning bis hin zu Anfrageverarbeitung auf Graphen und
Datenströmen.

Im Rahmen des Tutorienprogramms, das von Daniela Nicklas organisiert wurde, werden
drei universitäre Angebote im Mittelpunkt stehen:

• Data Analytics with Graph Algorithms — A Hands-on Tutorial with Neo4J von
Lena Wiese legt den Schwerpunkt auf Graph-Algorithmen und dem Einsatz von
Graphdatenbanken.

• StaRAI or StaRDB? A Tutorial on Statistical Relational AI wird von Tanya Braun
angeboten und fokussiert auf die Verbindung von Datenbanken mit statistisch-
relationaler KI (StaRAI).

• Das Tutorial NoSQL & Real-Time Data Management in Research & Practice von
Wolfram Wingerath und Kollegen widmet sich dem Einsatz von NoSQL in der
Echtzeitdatenhaltung und bewertet diese hinsichtlich Skalierbarkeit, Verfügbarkeit,
Konsistenz und weiterer Charakteristika, die der Anwender aus klassischen Daten-
banksystemen gewohnt ist.

Eine Kurzdarstellung dieser Tutorien findet sich im dritten Teil dieses Bandes. Zwei
Hands-on-Tutorien aus der Industrie runden das Programm der Tagung ab.

Weiterhin stellt Kai-Uwe Sattler das DFG-Schwerpunktprogramm 2037: “Scalable Data
Management for Future Hardware” vor. Auf der Tagung gibt es dazu einen Vortrag in der
Sitzung zu “Challenges in Data Processing” und eine anschließende Poster-Präsentation.

Bereits zum zweiten Mal findet auf der BTW die Data Science Challenge statt, auf der
in diesem Jahr fünf Forschergruppen aus Deutschland gegeneinander antreten. In der am
4. Februar 2019 gestarteten Endrunde müssen die Teilnehmer innerhalb eines Monats
Analysen hinsichtlich der Feinstaubbelastung unter Einbezug heterogener Datenquellen
erstellen. Die fünf Lösungsansätze aus der Vorrunde und eine kurze Beschreibung der
diesjährigen Data Science Challenge finden sich hier im Workshop-Band.

Die Informationen und Materialien zur BTW 2019 stehen über die Web-Seiten der Tagung
unter https://www.btw2019.de zur Verfügung. Die Organisation der BTW-Tagung nebst
allen angeschlossenen Veranstaltungen ist nicht ohne die Unterstützung vieler Partner

https://www.btw2019.de

möglich. Diese sind auf den folgenden Seiten aufgeführt. Zu ihnen zählen insbesondere alle
Sponsoren, als Ko-Veranstalter die Universität Rostock und als Unterstützer das Steinbeis-
Transferzentrum DBIS an der Universität Rostock. Organisiert wurde die BTW 2019 vom
Lehrstuhl Datenbank- und Informationssysteme der Universität Rostock. Insbesondere aber
gilt ein Dank der GI-Geschäftsstelle für die finanzielle Abwicklung der Tagung.

Vielen Dank an alle Beteiligten!

Rostock, im Februar 2019

Holger Meyer und Norbert Ritter, Leitung Workshopkomitee

Andreas Thor, Leitung Studierendenprogramm

Daniela Nicklas, Leitung Tutorienprogramm

Andreas Heuer und Meike Klettke, Tagungsleitung

Tagungsleitung
Andreas Heuer, Universität Rostock
Meike Klettke, Universität Rostock

Organisationskomitee
Vorsitz: Holger Meyer, Universität Rostock

Tanja Auge, Universität Rostock
Hannes Grunert, Universität Rostock
Andreas Heuer, Universität Rostock
Sigrun Hoffmann, Universität Rostock
Meike Klettke, Universität Rostock
Dennis Marten, Universität Rostock
Mark Lukas Möller, Universität Rostock
Donald Reebs, Universität Rostock

Koordination Workshops
Hoger Meyer, Universität Rostock
Norbert Ritter, Universität Hamburg

Studierendenprogramm
Vorsitz: Andreas Thor, Hochschule für Telekommunikation Leipzig

Felix Gessert, Universität Hamburg
Anika Groß, Hochschule Anhalt
Harald Kosch, Universität Passau
Thomas Rakow, Hochschule Düsseldorf
Eike Schallehn. Universität Magdeburg
Uta Störl, Hochschule Darmstadt

Tutorialprogramm
Daniela Nicklas, Universität Bamberg

Data Science Challange — Preiskomitee
Vorsitz: Holger Meyer, Universität Rostock

Stefan Goers, TÜV Nord (Umweltservices)
Daniela Nicklas, Universität Bamberg
Kai-Uwe Sattler, TU Ilmenau
Holger Schwarz, Universität Stuttgart
Tim Waizenegger, IBM Böblingen
Rajko Zschiegner, OKLab Stuttgart

Workshop on Big (and Small) Data in Science and Humanities
Vorsitz: Anika Groß, Hochschule Anhalt

Friederike Klan, DLR Institut für Datenwissenschaften
Birgitta König-Ries, Friedrich-Schiller-Universität Jena
Peter Reimann, Universität Stuttgart
Bernhard Seeger, Philipps-Universität Marburg

Alsayed Algergawy, Universität Jena
Peter Baumann, Universität Bremen
Matthias Bräger, CERN
Thomas Brinkhoff, FH Oldenburg
Michael Diepenbroek, Universität Bremen
Jana Diesner, University of Illinois at Urbana-Champaign
Johann-Christoph Freytag, Humboldt-Universität zu Berlin
Michael Gertz, Universität Heidelberg
Thomas Heinis, Imperial College London
Andreas Henrich, Universität Bamberg
Jens Kattge, Max-Planck-Institut für Biogeochemie
Alfons Kemper, TU München
Bertram Ludaescher, University of Illinois at Urbana-Champaign
Alexander Markowetz, Universität Bonn
Jens Nieschulze, Universität Göttingen
Eric Peukert, Universität Leipzig
Norbert Ritter, Universität Hamburg
Kai-Uwe Sattler, TU Ilmenau
Holger Schwarz, Universität Stuttgart
Uta Störl, Hochschule Darmstadt
Andreas Thor, HfT Leipzig

Workshop Digitale Lehre im Fach Datenbanken
Thomas C. Rakow, Hochschule Düsseldorf
Heide Faeskorn-Woyke, Technische Hochschule Köln

1st Workshop on Novel Data Management Ideas on Heterogeneous (Co-)Processors
(NoDMC)

Vorsitz: David Broneske, Universität Magdeburg
Dirk Habich, TU Dresden

Steering Committee
Wolfgang Lehner, TU Dresden
Gunter Saake, Universität Magdeburg
Kai-Uwe Sattler, TU Ilmenau

Program Committee
Carsten Binnig, TU Darmstadt
Sebastian Breß, DFKI Berlin
Matthias Böhm, IBM Almaden, Uni Graz
David Broneske, Universität Magdeburg
Dirk Habich, TU Dresden
Constantin Pohl, TU Ilmenau
Hannes Rauhe, SAP SE
Knut Stolze, IBM Germany
Jens Teubner, TU Dortmund

Inhaltsverzeichnis

1st Workshop on Novel Data Management Ideas
on Heterogeneous (Co-)Processors (NoDMC)

Preface

David Broneske, Dirk Habich
1st Workshop on Novel Data Management Ideas on Heterogeneous
(Co-)Processors (NoDMC) . 23

Invited Talk

Carsten Binnig
DPI: The Data Processing Interface for Modern Networks (Extended Abstract) 29

Workshop Papers

Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner
First Investigations of the Vector Supercomputer SX-Aurora TSUBASA as a
Co-Processor for Database Systems . 33

Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich
ReProVide: Towards Utilizing Heterogeneous Partially Reconfigurable
Architectures for Near-Memory Data Processing 51

Philipp Götze, Constantin Pohl, Kai-Uwe Sattler
Query Planning for Transactional Stream Processing on Heterogeneous
Hardware: Opportunities and Limitations 71

Tobias Ziegler, Carsten Binnig, Uwe Röhm
Skew-resilient Query Processing for Fast Networks 81

Sebastian Breß, Henning Funke, Steffen Zeuch, Tilmann Rabl, Volker
Markl
An Overview of Hawk: A Hardware-Tailored Code Generator for the
Heterogeneous Many Core Age . 87

Christopher Schmidt, Matthias Uflacker
Workload-Driven Data Placement for GPU-Accelerated Database
Management Systems . 91

Workshop Digitale Lehre im Fach Datenbanken

Thomas C. Rakow, Heide Faeskorn-Woyke
Workshop Digitale Lehre im Fach Datenbanken 97

Workshop on Big (and Small) Data in Science
and Humanities (BigDS 2019)

Preface

Friederike Klan, Birgitta König-Ries, Peter Reimann, Bernhard
Seeger, Anika Groß
Workshop on Big (and Small) Data in Science and Humanities (BigDS 2019) 103

Workshop Papers

Christopher Rost, Andreas Thor, Erhard Rahm
Temporal Graph Analysis using Gradoop 109

Marco Spieß, Peter Reimann
Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen in der
Serienfertigung von Fahrzeugen . 119

Sabine Wehnert, Wolfram Fenske, Gunter Saake
Context Selection in a Heterogeneous Legal Ontology 129

Markus Steinberg, Sirko Schindler, Friederike Klan
Software solutions for form-based, mobile data collection — A
comparative evaluation . 135

Cornelia Kiefer
Quality Indicators for Text Data . 145

Vladimir Udovenko, Alsayed Algergawy
Entity Extraction in the Ecological Domain — A practical guide 155

Studierendenprogramm

Manh Khoi Duong
Automated Architecture-Modeling for Convolutional Neural Networks . . 163

Janis Held, Anna Beer, Thomas Seidl
Chain-detection for DBSCAN . 173

Alexander Kern
Konzeption und Umsetzung einer DSL zur Informationsfusion auf verteilten
heterogenen Graphen . 185

Haralampos Gavriilidis
Computation Offloading in JVM-based Dataflow Engines 195

Melissa Gehring, Marcela Charfuelan, Volker Markl
A Comparison of Distributed Stream Processing Systems for Time Series
Analysis . 205

Alexander Baumstark
Lock-free Data Structures for Data Stream Processing 215

Sebastian Schmidl, Frederic Schneider, Thorsten Papenbrock
An Actor Database System for Akka . 225

Denis Hirn
PgCuckoo — Injecting Physical Plans into PostgreSQL 235

Sebastian Wilhelm, Armin Gerl
Policy-based Authentication and Authorization based on the Layered
Privacy Language . 245

Tutorienprogramm

Lena Wiese
Data Analytics with Graph Algorithms — A Hands-on Tutorial with Neo4J 259

Tanya Braun
StaRAI or StaRDB? — A Tutorial on Statistical Relational AI 263

Wolfram Wingerath, Felix Gessert, Norbert Ritter
NoSQL & Real-Time Data Management in Research & Practice 267

Vorstellung DFG-Schwerpunktprogramm 2037

Kai-Uwe Sattler, Alfons Kemper, Thomas Neumann, Jens Teubner
DFG Priority Program SPP 2037: Scalable Data Management for Future
Hardware . 273

Data Science Challenge 2019

Vorwort

Hannes Grunert, Holger Meyer
Die Data Science Challenge auf der BTW 2019 in Rostock 281

Teilnehmer der Challenge

Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner
Assessing the Impact of Driving Bans with Data Analysis 287

Mahdi Esmailoghli, Sergey Redyuk, Ricardo Martinez, Ziawasch
Abedjan, Tilmann Rabl, Volker Mark
Explanation of Air Pollution Using External Data Sources 297

Stefan Hagedorn, Kai-Uwe Sattler
Peaks and the Influence of Weather, Traffic, and Events on Particulate
Pollution . 301

Christian Schmitz, Dhiren Devinder Serai, Tatiane Escobar Gava
Prediction of air pollution with machine learning 303

Georges Alkhouri, Moritz Wilke
Deep Learning zur Vorhersage von Feinstaubbelastung 305

Autorenverzeichnis

1st Workshop on Novel Data
Management Ideas on

Heterogeneous (Co-)Processors
(NoDMC)

Preface

cba

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

1st Workshop on Novel Data Management Ideas on
Heterogeneous (Co-)Processors (NoDMC)

David Broneske1, Dirk Habich2

The key objective of database systems is to reliably manage data, where high query
throughput and low query latency are core requirements. To satisfy these requirements,
database system constantly adapt to novel hardware features. Following that trend, the focus
of this one-day workshop is to explore challenges and opportunities of data processing on
existing and future heterogeneous hardware architectures. In detail, today’s processors are
no longer mainly bound by the density and frequency of transistors, but by their power
and heat budgets. The so-called "power wall"forces hardware suppliers to rely more on the
design of specialized devices optimized for certain types of calculations, which results in an
increasingly heterogeneous hardware landscape. Therefore, to meet the above mentioned
requirements in our data-driven world, tomorrow’s database systems will have to exploit
and embrace this increased heterogeneity.

The purpose of this workshop is to assist in the training and growth of a community of
researchers and industry practitioners working on data (co-)processing issues on heteroge-
neous systems. To this end, we want to provide a forum to discuss challenges, progress and
directions, while creating an environment for networking with people working on related
topics and fostering future collaborations. Especially in the presence of the SPP 2037 on
Scalable Data Management for Future Hardware, we want to strengthen collaborations
beyond single SPP projects by bringing them into contact with other researchers. More-
over, the workshop is co-organized by the GI-Arbeitskreis Data Management on Modern
Hardware.

The scope of the workshop includes, but is not limited to:

• Applications of modern hardware in
– data mining

– data-intensive machine learning

– query processing

– non-traditional applications (e.g. graph processing)
1 University of Magdeburg, Germany, david.broneske@ovgu.de
2 TU Dresden, Germany, dirk.habich@tu-dresden.de

cba doi:10.18420/btw2019-ws-01

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 23

https://creativecommons.org/licenses/by-sa/4.0/
david.broneske@ovgu.de
dirk.habich@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-01

2 David Broneske, Dirk Habich

• Algorithms and data structures for efficient data processing on and across different
(co-)processors (e.g., GPUs, APUs, Accelerator cards, FPGAs)

• Exploitation of specialized ASICs

• Efficient memory management, data placement and data transfer strategies in hetero-
geneous systems

• Energy efficiency in heterogeneous (co-)processor environments

• Programming models and hardware abstraction mechanisms for writing data-intensive
algorithms on heterogeneous hardware

• Query optimization, cost estimation and operator placement strategies for heteroge-
neous hardware

• Transaction processing in heterogeneous systems

With the given scope of the workshop, we are happy to announce a great program. The
workshop starts with a keynote by Eric Focht from NEC Deutschland GmbH. He gives
an insight into their new vector engine NEC Aurora TSUBASA and how to exploit the
design for data management tasks. From the submissions, we were able to accept three
technical papers (presented in Session 2) as well as four extended abstracts (presented in
Session 3). In Session 2, the first talk by Pietrzyk et al. investigate the SX-Aurora TSUBASA
processor for data intensive operations. Furthermore, Becher et al. present a query processing
platform for a heterogeneous CPU/FPGA hardware system with a special focus on query
placement strategies in such a heterogeneous system. The third technical paper by Götze et
al. focuses on problems and possible design decisions for a transactional stream processing
system on modern heterogeneous hardware. They especially consider many-core CPUs and
non-volatile memory (NVM) and include some considerations on high bandwidth memory
(HBM) and co-processors.

In Session 3, four extended abstracts are presented. The first (invited) extended abstract is by
Carsten Binnig, who presents his CIDR 2019 paper about a new Data Processing Interface
(DPI) for easy usage of RDMA in data intensive applications. Afterwards, Ziegler et al.
present a scalable approach for query execution in distributed systems using RDMA under
skewed workloads. The key idea is a clever data partitioning between storage and compute
nodes and to enable work stealing between compute nodes. The third extended abstract is by
Breßet al. presenting their VLDB Journal article. The main focus is on compiling queries
for heterogeneous (co-)processors using processor-specific code optimizations to maximize
the performance of these queries. The workshop program closes with the presentation by
Schmidt et al. proposing an adapted data-placement algorithm for heterogeneous systems.

Last but not least, we like to thank everyone who contributed to this workshop, in particular,
the authors, the reviewers, the BTW team, and all participants.

24 David Broneske, Dirk Habich

NoDMC Workshop 3

PC Chairs
• David Broneske (University of Magdeburg)

• Dirk Habich (TU Dresden)

Steering Committee
• Wolfgang Lehner (TU Dresden)

• Gunter Saake (University of Magdeburg)

• Kai-Uwe Sattler (TU Ilmenau)

Program Committee
• Carsten Binnig (TU Darmstadt)

• Sebastian Breß (DFKI Berlin)

• Matthias Böhm (IBM Almaden, Uni Graz)

• David Broneske (University of Magdeburg)

• Dirk Habich (TU Dresden)

• Constantin Pohl (TU Ilmenau)

• Hannes Rauhe (SAP SE)

• Knut Stolze (IBM Germany)

• Jens Teubner (TU Dortmund)

1st Workshop on Novel Data Management Ideas on Heterogeneous (Co-)Processors 25

Invited Talk

cba

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

DPI: The Data Processing Interface for Modern Networks
Carsten Binnig1

Extended Abstract

The computer networks available in data centers and clusters are evolving rapidly, increasingly
providing sophisticated capabilities such as RDMA (Remote Direct Memory Access), in-
network processing, and customizable communication protocols. Once the province of
specialized, expensive networks, the new functionality is becoming available in off-the-
shelf networks as well. An example of how these advances can help with data intensive
applications is RDMA, the ability to directly read or write the memory of remote machines
without involving the remote CPU. RDMA makes data transfer more efficient, and it frees
up computing capacity, which can lead to substantial performance gains [Ka16, Dr15,
Dr14, Lo15, Za17, Ou11, Mi13, Ka14, Yo18, De05, Co17]. Unfortunately, using RDMA is
complicated because it lacks higher-level abstractions [Dr17]. Recent work on using RDMA
in relational databases has shown that the design involves many low-level, yet significant,
decisions around connection management, memory allocation, and the choice of which
RDMA operations to use [Bi16, Ba15].

This fragile dependency on low-level design aspects and lack of portability across networks
is not unique to RDMA; it affects other technologies like smart NICs (Network Interface
Cards) and programmable switches as well [Fi18]. This is concerning because modern
networks are increasingly software-defined, and there is a growing need to tailor them to
data processing, e.g., through load balancing and skew detection at the switch level, data
partitioning on the NIC, and content based routing. Although recent results [Bl18, Sa17]
have shown that smart NICs and programmable switches can improve the performance of
distributed data processing systems, the hand-tuning of low level details remains a problem.
Not only is the programming of the devices complex, it also creates resource management
problems such as deciding when to offload computation into the network.

In this talk, I present the Data Processing Interface (DPI) as a way to address these problems.
DPI’s goal is to make it easier for applications to exploit these emerging capabilities of
modern networks. Accordingly, DPI defines abstractions and interfaces suited to a broad
class of data-intensive applications, yet simple enough for practical implementation with
predictable performance and low overhead relative to “hand-tuned”, ad hoc alternatives. In
designing an interface tailored to data processing, we adopt the approach taken by other
high-level interfaces, such as MPI (Message Passing Interface) [Gr14], which have been
designed for other application domains and which, consequently, have seen only limited
adoption for data processing [Ba17]. A detailed paper about DPI has recently been presented
at the CIDR’19 conference [Al19].
1 TU Darmstadt, Data Management Lab - Informatik, Germany, carsten.binnig@cs.tu-darmstadt.de

cba doi:10.18420/btw2019-ws-02

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 29

https://creativecommons.org/licenses/by-sa/4.0/
carsten.binnig@cs.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-02

2 Carsten Binnig

References
[Al19] Alonso, Gustavo et al.: DPI: The Data Processing Interface for Modern Networks. In: CIDR

2019. 2019.
[Ba15] Barthels, Claude et al.: Rack-Scale In-Memory Join Processing using RDMA. In: ACM

SIGMOD. pp. 1463–1475, 2015.
[Ba17] Barthels, Claude et al.: Distributed Join Algorithms on Thousands of Cores. PVLDB,

10(5):517–528, 2017.
[Bi16] Binnig, Carsten et al.: The end of slow networks: It’s time for a redesign. PVLDB, 9(7):528–

539, 2016.
[Bl18] Blöcher, Marcel et al.: Boosting scalable data analytics with modern programmable networks.

In: ACM DaMoN@SIGMOD. ACM, pp. 1:1–1:3, 2018.
[Co17] Chen, Haibo; other: Fast In-Memory Transaction Processing Using RDMA and HTM. ACM

Trans. Comput. Syst., 35(1):3:1–3:37, 2017.
[De05] Devulapalli, Ananth et al.: Distributed Queue-Based Locking Using Advanced Network

Features. In: ICPP. pp. 408–415, 2005.
[Dr14] Dragojević, Aleksandar et al.: FaRM: Fast remote memory. In: NSDI. pp. 401–414, 2014.
[Dr15] Dragojević, Aleksandar et al.: No compromises: distributed transactions with consistency,

availability, and performance. In: OSDI. pp. 54–70, 2015.
[Dr17] Dragojevic, Aleksandar et al.: RDMA Reads: To Use or Not to Use? IEEE Data Eng. Bull.,

40(1):3–14, 2017.
[Fi18] Firestone, Daniel et al.: Azure Accelerated Networking: SmartNICs in the Public Cloud. In:

NSDI. pp. 51–66, 2018.
[Gr14] Gropp, William et al.: Using Advanced MPI: Modern Features of the Message-Passing

Interface. The MIT Press, 2014.
[Ka14] Kalia, Anuj et al.: Using RDMA efficiently for key-value services. In: Proc. of ACM

SIGCOMM. pp. 295–306, 2014.
[Ka16] Kalia, Anuj et al.: FaSST: fast, scalable and simple distributed transactions with two-sided

(RDMA) datagram RPCs. In: Proc. of OSDI. pp. 185–201, 2016.
[Lo15] Loesing, Simon et al.: On the Design and Scalability of Distributed Shared-Data Databases.

In: ACM SIGMOD. pp. 663–676, 2015.
[Mi13] Mitchell, Christopher et al.: Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient

Key-Value Store. In: Proc. of USENIX ATC. pp. 103–114, 2013.
[Ou11] Ousterhout, John et al.: The case for RAMCloud. Communications of the ACM, 54(7):121–

130, 2011.
[Sa17] Sapio, Amedeo et al.: DAIET: a system for data aggregation inside the network. In: SoCC.

ACM, p. 626, 2017.
[Yo18] Yoon, Dong Young et al.: Distributed Lock Management with RDMA: Decentralization

without Starvation. In: ACM SIGMOD. pp. 1571–1586, 2018.
[Za17] Zamanian, Erfan et al.: The End of a Myth: Distributed Transaction Can Scale. PVLDB,

10(6):685–696, 2017.

30 Casten Binnig

Workshop Papers

cbe

Herausgeber et al. (Hrsg.): NoDMC Workshop,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

First Investigations of the Vector Supercomputer SX-Aurora
TSUBASA as a Co-Processor for Database Systems

Johannes Pietrzyk1, Dirk Habich1, Patrick Damme1, Wolfgang Lehner1

Abstract: The hardware landscape is currently changing from homogeneous multi-core systems
towards heterogeneous systems with many different computing units, each with their own characteristics.
This trend is a great opportunity for database systems to increase the overall performance if the
heterogeneous resources can be utilized efficiently. Following that trend, NEC cooperation has
recently introduced a novel heterogeneous hardware system called SX-Aurora TSUBASA. This novel
heterogeneous system features a strong vector engine as a (co-)processor providing world’s highest
memory bandwidth of 1.2TB/s per vector processor. From a database system perspective, where
many operations are memory bound, this bandwidth is very interesting. Thus, we describe the unique
architecture and properties of this novel heterogeneous system in this paper. Moreover, we present
first database-specific evaluation results to show the benefit of this system to increase the query
performance. We conclude the paper with an outlook on our ongoing research activities in this
direction.

Keywords: Database Systems; Heterogeneous Hardware; Vector Processor

1 Introduction

In our digital world, efficient query processing is still an important aspect due to the ever-
growing amount of data. To satisfy query response times and query throughput demands,
the architecture of database systems is constantly evolving [BKM08, HZH14, KHL17,
Li16, Ou17]. For instance, the database architecture shifted from a disk-oriented to a main
memory-oriented architecture to efficiently exploit the ever-increasing capacities of main
memory [Ab13, Id12, Ki13, St05]. This in-memory database architecture is now state-of-
the-art and characterized by the fact, that all relevant data is completely stored and processed
in main memory. Additionally, relational tables are organized by column rather than by
row [Ab13, BKM08, CK85, Id12, St05] and the traditional tuple-at-a-time query processing
model was replaced by newer and adapted processing models like column-at-a-time or
vector-at-a-time [Ab13, BKM08, Id12, St05, ZvdWB12].

To further increase the performance of queries, in particular for analytical queries in these
in-memory column stores, two key aspects play an important role. On the one hand, data
1 Technische Universität Dresden, Institut for Systems Architecture, Dresden Database Systems Group, Nöthnitzer

Straße 46, 01187 Dresden, firstname.lastname@tu-dresden.de

cba doi:10.18420/btw2019-ws-03

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 33

https://creativecommons.org/licenses/by-nc/3.0/
firstname.lastname@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-03

2 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

compression is used to tackle the continuously increasing gap between computing power of
CPUs and memory bandwidth (also known as memory wall [BKM08]) [AMF06, BHF09,
Da17, Hi16, Zu06]. Aside from reducing the amount of data, compressed data offers several
advantages such as less time spent on load and store instructions, a better utilization of the
cache hierarchy, and less misses in the translation lookaside buffer. On the other hand, in-
memory column stores constantly adapt to novel hardware features like vectorization using
Single-Instruction Multiple Data (SIMD) extensions [PRR15, ZvdWB12], GPUs [HZH14,
KML15] or non-volatile main memory [Ou17].

From a hardware perspective, we currently observe a shift from homogeneous CPU
systems towards hybrid systems with different computing units mainly to overcome physical
limits of homogeneous systems [Es12, LUH18]. Following that hardware trend, NEC
cooperation recently released a novel heterogeneous hardware system called SX-Aurora
TSUBASA [Ko18]. The main advantage of this novel hardware system is its strong vector
engine which provides world’s highest memory bandwidth of up to 1.2TB/s per vector
processor [Ko18]. From that point, this novel hardware could be very interesting for database
systems. In particular, from the following aspects:

1. Vectorization is a hot-topic in database systems to improve query processing per-
formance by parallelizing computations over vector registers [PRR15, ZvdWB12].
Intel’s latest vector extension is AVX-512 with vector registers of size 512 bits. In
contrast to that, the vector engine of SX-Aurora TSUBASA features a vector length
of 216KB (16.384 bits).

2. SX-Aurora TSUBASA offers enough memory bandwidth to fill these large vectors
with data for efficient processing.

Therefore, we describe the unique architecture and properties of this novel heterogeneous
system in this paper (Section 2). Moreover, we present first database-specific evaluation
results to show the benefit of this system to increase the query performance in Section 3.
Based on that, we briefly introduce our ongoing research activities in this direction in
Section 4. We conclude the paper in Section 5 with a short summary.

2 Vector Supercomputer SX-Aurora TSUBASA

NEC Cooperation has a long tradition in vector supercomputers with a series of NEC SX
models starting 1983. The current model is NEC SX-Aurora TSUBASA. In the following
sections, we will describe the overall architecture, the vector processing and the programming
approach of this novel SX-Aurora TSUBASA model.

34 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 3

SX-Aurora TSUBASA

Vector Host
VH

(Intel Skylake)

P
C

I E
xp

re
ss

Vector Engine
VE

Vector Engine
VE

Vector Core

Scalar
Processing Unit

Vector
Processing Unit

Adress Generation and
Translation

3TB/s

Vector Engine (VE)

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Vector
Core

LLC

HBM2 HBM2 HBM2

Vector
Core

LLC

HBM2 HBM2 HBM2

1.2TB/s

Fig. 1: SX-Aurora TSUBASA Architecture.

2.1 Overall Architecture

The overall architecture of SX-Aurora TSUBASA completely differs from its predecessors
in the SX series. The new system model is a heterogeneous system consisting of a vector
host (VH) and one or more vector engines (VE). As illustrated in Figure 1, the VH is
a regular Intel Xeon Skylake CPU featuring a standard x86 Linux server that provides
standard operating systems functions. Moreover, the VH also includes a special operating
system for the VE called VEOS which runs in the user mode of the VH. VEOS controls the
VE, whereby each VE is implemented as a PCI Express (PCIe) card equipped with a newly
developed vector processor [Ko18].

As illustrated in Figure 1 on the right side, each vector processor consists of 8 vector cores,
6 banks of HBM22 high speed memory, and only one shared last-level cache (LLC) of
size 16MB between memory and the vector cores. The LLC is one both sides of the vector
cores, and it is connected to each vector core through a 2D mesh network-on-chip with a
total cache bandwidth of 3TB/s [Ko18]. Moreover, this vector processor design provides the
world highest memory bandwidth of up to 1.2TB/s per vector processor [Ko18]. Each vector
core consists of three core units: (i) a scalar processing unit (SPU), a vector processing
unit (VPU), and (iii) a memory addressing vector control and processor network unit (AVP).
The SPU has almost the same functionality as modern processors such as fetch, decode,
branch, add, and exception handling. However, the main task of the SPU is to control the
status of the vector core.
2 High Bandwidth Memory Version 2

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 35

4 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

Type Frequency DP Performance DP Performance Memory Memory
of a core of a Processor Bandwidth Capacity

VE 10A 1.6 GHz 307.2Gflop/s 2457.6Gflop/s 1228.8GB/s 48 GB
VE 10B 1.4 GHz 268.8.2Gflop/s 2150.4Gflop/s 1228.8GB/s 48 GB
VE 10C 1.4 GHz 268.8.2Gflop/s 2150.4Gflop/s 750.0GB/s 24 GB
VH Intel

Xeon Gold 6126 2.5GHz 83.2Gflops/s 998.4Gflops/s 128GB/s 96GB

Tab. 1: Specifications for SX-Aurora TSUBASA.

2.2 Vector Processing and Specific Systems

Besides the high bandwidth, the architecture of the VPU of the vector core is a further
advantage of this processor. The VPU has three vector fused multiply add units, which
can be independently executed by different vector instructions, whereby each unit has 32
vector pipelines consisting of 8 stages [Ko18]. Generally, the vector length of the VPU
is 256 elements3, each of which is 8 Byte [Ko18]. One vector instruction executes 256
arithmetic operations within eight cycles [Ko18]. The major advantage, compared to wider
SIMD functionalities e.g., in Intel processors like AVX-512, is that the operations are not
only executed spatially parallel, but also temporally parallel which better hides memory
latency [Ko18]. Each VPU has 64 vector registers and each vector register is 2Kb in size
(32 pipeline elements with 8 Byte per element). Thus, the total size of the vector registers is
128Kb per vector core, which is larger than a L1 cache in modern regular processors. To fill
these large vector registers with data, the LLC is directly connected to the vector registers
and the connection has roughly 400GB/s bandwidth per vector core [Ko18].

Generally, NEC offers three types of these VE called 10A, 10B, and 10C as shown in
Table 1, which only differs in frequency, memory bandwidth and memory capacity. In every
case, the VH is an Intel Xeon Gold 6126 with 12 cores. Table 1 also compares VE and VH
with respect to double precision (DP) performance per core and per processor as well as
memory bandwidth and memory capacity. As we can see, memory bandwidth of each VE is
many times higher than that of the VH, but maximum memory capacity of the VE is 48GB.

The SX-Aurora TSUBASA approach has a high level configuration flexibility and the series
includes three product types:

• A100 is a workstation model with one VH and one VE.

• A300 is standard rack-mount model with up to eight VE with one VH. In this case,
the maximum size of the vector main memory is 384GB.

3 In comparison, the vector length of Intel’s latest vector extension AVX-512 is limited to 8 elements with 8 Byte
per element.

36 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 5

• A500 is designed as large-scale supercomputer with up to eight A300 models
connected which results in maximum vector main memory capacity of 3.072GB.

With these memory capacities and bandwidths, this heterogeneous system approach is very
interesting for memory-intensive applications such as database management systems.

2.3 Execution Model and Programming Approach

Unlike other accelerators, SX-Aurora TSUBASA is pursuing a different execution model. In
general, the VE is entirely responsible for executing applications, while the VH provides basic
OS functionalities such as process scheduling and handling of system calls invoked by the
applications on the VE [Ko18]. Applications for the VE are written in standard programming
languages such as C, C++ or Fortran without having to use special programming models.
For this, a C library compliant with standards is ported to VE [Ko18]. Therefore, existing
(non-vectorized) applications can be ported to VE just by recompiling using the NEC
compiler.

In summary, the high bandwidth of the SX-Aurora TSUBASA VE and big vector registers
are a promising combination for improving query processing performance in database
systems.

3 Database-oriented Evaluation

Since many in-memory database operations are memory bound, we basically have focused
our evaluation on examining the specified memory throughput of the introduced hardware.
Therefore, we measured plain sequential memory access in a first step, followed by a
column-scan which can be considered as a fundamental physical query operator.

3.1 Investigated Operators

Fundamentally, memory access can be distinguished between reading from memory, writing
to memory and copying data. As a first step in our evaluation, we focused on these core
primitives. While reading from memory without any further operations can be considered
to be optimized out by the compiler, an aggregation is performed over the read memory
using the bitwise OR operator. Thus, only one cache-resident value has to be updated per
actual read. Given a relatively fast aggregation operation with regard to the memory access,
it can be assumed that the measured throughput is not distorted by computation effort.

To measure the behaviour of write intense sequential memory access, we filled a given array
with a constant value, like a memset. As a combination of both classes of memory access

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 37

6 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

(b) Horizontal Storage Layout

C3 C4

H2 0 1 1 0 0 1 0 0

C5 C6

H3 0 0 0 1 0 1 0 0

C7 C8

H4 0 1 1 0 0 1 1 0

Delimiter Bit

C1 C2

H1 0 0 0 1 0 0 1 1C1 = 1 0 0 1

C2 = 3 0 1 1

C3 = 6 1 1 0

C4 = 4 1 0 0

C5 = 1 0 0 1

C6 = 4 1 0 0

C7 = 6 1 1 0

C8 = 6 1 1 0

INT
Column Codes
(Length: 3-Bit)

Step 1:
Exclusive-OR

H1 0 0 0 1 0 0 1 1

Step 2:
Masking1

(Addition)

Given Predicate:

Ci = 3?
Initial Step: Horizontal Layout of Predicate Constant 3, Q1

Step 3:
Masking2

(Exclusive-OR)

Step 4: Sum all the

Delimiter bits

H2 0 1 1 0 0 1 0 0 H3 0 0 0 1 0 1 0 0 H4 0 1 1 0 0 1 1 0

Q1 0 0 1 1 0 0 1 1

Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1 Q1 0 0 1 1 0 0 1 1

0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1

M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1 M1 0 1 1 1 0 1 1 1

1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0

M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0 M2 1 0 0 0 1 0 0 0

0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0

0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 = 1

(a) Data (b) BitWeaving/H (c) Predicate Evaluation

Fig. 2: Illustration of BitWeaving/H (taken from [Li18]).

patterns, we measured the throughput of copying the values from a given array into another
array.

As a second step and as a more database relevant I/O bound operation, we evaluated
a column scan operation using a state-of-the-art approach called BitWeaving/H [LP13].
Fundamentally, BitWeaving assumes a fixed-length order preserving compression scheme,
so that all compressed column codes of a column have the same bit length [LP13]. Then, the
bits of the column codes are aligned in main memory in a way that enables the exploitation of
intra-cycle parallelism using ordinary processor words. An example is shown in Figure 2(a),
where eight 32-bit integer values Ci are represented using 3-bit compressed column codes.
As illustrated in Figure 2(b), the column codes are contiguously stored in processor word
Hi in BitWeaving/H, where the most significant bit of every code is used as a delimiter bit
between adjacent column codes. In our example, we use 8-bit processor words, so that two
3-bit column codes fit into one processor word including one delimiter bit per code. The
delimiter bits are used later to store the result of a predicate evaluation.

Now, the task of a column scan is to compare each column code with a constant C and to
output a bit vector indicating whether or not the corresponding code satisfies the comparison
condition. To efficiently perform such a column scan using the BitWeaving/H, Li et
al. [LP13] proposed an arithmetic framework to directly execute predicate evaluations on the
compressed column codes. There are two main advantages: (i) predicate evaluation is done
without decompression and (ii) multiple column codes are simultaneously processed within
a single processor word using full-word instructions (intra-cycle parallelism) [LP13]. The
supported predicate evaluations include equality, inequality, and range checks, whereby for
each evaluation a function consisting of arithmetical and logical operations is defined [LP13].

Figure 2(c) highlights the equality check in an exemplary way, whereby the other predicate
evaluations work in a similar way. The input from Figure 2(b) is tested against the condition
Ci = 3. Then, the predicate evaluation steps are as follows:

Initially: All given column codes and the query constant number 3 are converted into the
BitWeaving/H storage layout (H1, H2, H3, H4) and Q1, respectively.

38 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 7

Type Max. vector size Cache accessible OS Compiler
from vector reg.

16384 Bit
VE 10 B/C (256 · 64 Bit) 16 MB LLC VEOS 1.3.2 nc++ 1.6.0

32 KB L1
VH Intel 512 Bit 1 MB L2

Xeon Gold 6126 (8 · 64 Bit) 19.25 MB L3 CentOs 7.5 g++ 7.3.1

Tab. 2: Specification for hardware, operating system and compiler used for experiments.

Step 1: An Exclusive-OR operation between the words
(H1, H2, H3, H4) and Q1 is performed.

Step 2: Masking1 operation (Addition) between the intermediate results of Step 1 and the
M1 mask register (where each bit of M1 is set to one, except the delimiter bits) is
performed.

Step 3: Masking2 operation (Exclusive-OR) between the intermediate results of Step 2 and
the M2 mask register (where only delimiter bits of M2 are set to one and the rest of
all bits is set to zero) is performed.

Step 4 (optional): Add delimiter bits to achieve the total count (final result).

The output is a result bit vector, with one bit per input code that indicates if the code matches
the predicate on the column. In our example in Figure 2, only the second column code (C2)
satisfies the predicate which is visible in the resulting bit vector.

3.2 Experimental Setup

All operations were measured on two different versions of the SX-Aurora TSUBASA
co-processor. General specifications are denoted in Table 2. To compile the implemented
operators for the VH system, a gcc 7.3.1 was used with the optimization flags -O3 -flto
and disabled auto-vectorization (-fno-tree-vectorize). For the VE, the proprietary NEC
compiler nc++ 1.6.0 was used with the optimization flag -O3 -fipa and -mvector, enabling
the auto-vectorization. A distinction between single-thread performance and multi-thread
performance were made by linking the binary with and without OpenMP. To minimize the
runtime overhead through dynamic linking, all files were linked statically.

3.3 Experimental Methodology

The time measurements were performed using a c++ wall-time clock on the VH and inline
assembly for retrieving user clock cycles on the VE. While an experiment consists of a
measurement of all specified task, every experiment was repeated 10 times and and the
reported runtimes are averaged. To avoid distortion by the actual time measurement, all

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 39

8 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

(a) C++ Code for Aggregation (b) nc++ Listing after compilation

1 /∗ . . . ∗ /
2 #pragma omp p a r a l l e l
3 {
4 #pragma _NEC vreg (aRes)
5 #pragma omp f o r
6 #pragma _NEC n o o u t e r l o o p _ u n r o l l
7 f o r (; i <nBuf ; i +=256) {
8 #pragma _NEC s h o r t l o o p
9 f o r (j =0 ; j <256;++ j) {

10 aRes [j] | = aS rc [i + j] ;
11 }
12 }
13 f o r (k =0; k <256;++ k) {
14 nRes | = aRes [k] ;
15 }
16 }
17 /∗ . . . ∗ /

1 LINE DIAGNOSTIC MESSAGE
2 1 : Vec to r r eg . a s s i g n e d . : aRes
3 2 : P a r a l l e l r o u t i n e g e n e r a t e d .
4 7 : P a r a l l e l i z e d by " f o r " .
5 9 : V e c t o r i z e d loop .
6 13 : V e c t o r i z e d loop .
7 14 : Idiom d e t e c t e d . : Bi t −op
8 /∗ . . . ∗ /
9 LINE LOOP STATEMENT

10 /∗ . . . ∗ /
11 7− P−−−> f o r (; i <nBuf ; i +=256) {
12 8− | # pragma _NEC s h o r t l o o p
13 9− | V−−> f o r (j =0 ; j <256;++ j) {
14 10− | | V aRes [j] | = aS rc [i + j] ;
15 11− | V−− }
16 12− P−−− }
17 13− V−−−> f o r (k =0; k <256;++ k) {
18 14− | V nRes | = aRes [k] ;
19 15− V−−−> }
20 /∗ . . . ∗ /

Fig. 3: Excerpt of C++-Code for read intense task and corresponding diagnostic listing, produced by
nc++ while compilation with optimization indications.

tasks were repeated multiple times and the accumulated time was divided by the amount of
repetitions.

Thus the focus was on evaluating the computing performance of vectorized code alongside
the memory bandwidth, all tasks were implemented using vectorization. This was done using
intrinsics for the VH. To examine the best performance of the different SIMD extensions
offered by the VH, all tasks were implemented and tested using either SSE, AVX2 or
AVX512.

As shown in Figure 3(a), a combination of compiler specific preprocessor pragma directives,
strip mining and local buffers were used for the VE to facilitate the auto-vectorization
feature of the NEC compiler. At first, the main loop which iterates over the buffer as a whole
is fragmented into strips according to the size of a vector register (see Line 7). To prevent
the compiler from undo the so called loop strip-mining, an according pragma was used
(see Line 6). The most inner loop, containing the operator specific instructions, is marked
as a shortloop (see Line 8) giving the compiler a hint that the loop should completely be
transformed into vector code. In addition, the specific instructions work on temporal buffers
which are forcedly assigned to a vector register using #pragma _NEC vreg(arrayName)
(see Line 4). First measurements showed that this specific hint can significantly improve
the performance of the algorithm. OpenMP were introduced through parallel regions using
#pragma omp parallel (see Line 2) alongside loop parallelism using #pragma omp for

40 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 9

VE VPU VH Buffer sizes

LLC
L1 16 KB 32 KB
L2 512 KB 1 MB
L3 4 MB 8 MB 16 MB

HBM2 RAM 32 MB 128 MB 1 GB 4 GB 8 GB

Tab. 3: Measured buffer sizes.

depicted at Line 5. When compiling the annotated C++-Code using the NEC compiler, a
diagnostic listing, indicating all applied optimization’s, can be generated (see Figure 3(b)).

Within the VE, two different element sizes (32, 64 Bit) were measured. Within the VH,
different load and store modes (stream, aligned, unaligned) were measured. To evaluate a
possible influence of different memory structures on the performance, every experiment
were executed while processing different sizes of data (see Table 3).

3.4 Evaluation

The measured time needed for executing the described tasks were used to calculate the
average throughput per task. Except for the copying-task the read and write intense tasks
either read one buffer or store one buffer. The column scan reads one buffer. Thus the
processed buffer size was used for calculating the throughput. When it comes to copying,
actually every element from a source buffer is read and stored into the destination buffer.
Taken this into consideration the number of processed elements would be the sum of the
source and destination buffer sizes. However, the throughput of a copy-operation is typically
deduced directly from the size of the source buffer. Thus only this quantity was used to
calculate the throughput.

3.4.1 Single-Thread Evaluation

Figure 4 shows the throughput of plain memory access measured on the VH (a)-(c) as
well as on the VE (d)-(f). Using the VH, a maximum throughput of around 100 GB/s were
obtained when the processed data fits completely into L1. In general the performance gets
lower if the buffer sizes exceed the cache sizes. While read intense tasks can utilize L2
without significant performance penalties, write intense tasks suffer from accessing higher
levels of cache. Conversely, the throughput measured on the VE gets better with bigger
buffer size obtaining an overall maximum throughput of around 300 GB/s (processing 1MB)
for write intense tasks (see Figure 4(e)) and 250 GB/s (processing 2MB) while executing
read intense tasks (see Figure 4(f)). Accessing the HBM2 leads to a marginal decrease in
measured throughput.

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 41

10 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

Single-Thread Sequential Memory Access

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

50

100

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(a) copy

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

50

100

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(b) write

10C: VH, 64 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

50

100

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(c) agg(or)

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

100

200

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(d) copy

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

100

200

300

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(e) write

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

100

200

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(f) agg(or)

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

10

20

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(g) copy

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

5

10

15

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(h) write

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

10

20

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(i) agg(or)

Fig. 4: Measured throughput of VH and engine as well as the speedup obtained by the VE of different
IO-operations executed using one thread.

As shown in Figure 4(d), only the performance of a vectorized copy drops dramatically
when the processed data sizes exceeds the boundaries of the existing LLC. Since the tasks
were executed vectorized and a single vector register can hold up to 2 KB data, small buffers
prevent the VE of using the given vector registers in an efficient manner. In general the
experiments have shown that processing 64-bit wide elements led to significantly higher
throughputs than working on 32-bit sized data. This results from the under-utilization
of available vector registers. The vector pipeline processes its elements at a granularity
of 64 bit. If only 32 bit wide elements were processed, the remaining bits left unused.
An improvement in terms of the memory access could not be achieved on the formally
faster TSUBASA 10B neither for vectorized write-intense nor read-intense tasks. Only the
performance of the copy task could benefit from the better memory bandwidth of the 10B.

42 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 11

Single-Thread Column Scan

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

25

50

75

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(a) filter equal

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

50

100

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(b) filter less than

10C: VH, 64 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

50

100

150

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(c) filter greater than

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(d) filter equal

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(e) filter less than

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(f) filter greater than

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

10

20

30

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(g) filter equal

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

10

20

30

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(h) filter less than

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

10

20

30

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(i) filter greater than

Fig. 5: Measured throughput of VH and engine as well as the speedup obtained by the VE of different
Bitweaving-H operations executed using one thread.

As shown in Figure 4(g)-(i) both VE outperform the VH for write intense tasks up to a
factor of 15 on the 10C and 20 on the 10B respectively. A maximum speedup of around 21
were obtained for read intense tasks when the processed data exceeds the cache and has to
be loaded from DRAM (vh) or HBM2 (ve) respectively.

As mentioned in Section 3.1, the actual scan is executed using arithmetic operations. While
a filter for equality needs two bitwise operators (XOR, NOT) and an addition, a filter for less
than needs only one bitwise operator (XOR) and an addition. To scan for elements which are
greater than the predicate only one addition is executed. These characteristics can be seen in
Figure 5(a)-(c) where the discussed column scan operators achieve a maximum throughput
in the range of 80 GB/s (Figure 5(a)) up to 150 GB/s (Figure 5(c)) when the processed data

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 43

12 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

Multi-Thread Sequential Memory Access

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

100

200

300

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(a) copy

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(b) write

10C: VH, 64 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

600

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(c) agg(or)

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(d) copy

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

250

500

750

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(e) write

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

500

1000

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(f) agg(or)

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

5

10

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(g) copy

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

5

10

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(h) write

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0.0

2.5

5.0

7.5

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(i) agg(or)

Fig. 6: Measured throughput of different IO-operations executed on the VH using multiple threads.

fits entirely into L1. Running onto the VE the total amount of executed operations does
not affect the overall throughput leading to mostly similar behaviour like the write task. A
maximum throughput of around 400 GB/s were reached when the processed buffer exceeds
the boundaries of the LLC. As shown in Figure 5(g)-(i) both VE outperform the VH up to a
factor of 20 when the processed buffer is resident in the caches. When the buffer exceeds
the LLC a speedup of factor 33 could be achieved by the VE.

3.4.2 Multi-Thread Evaluation

Using multiple threads introduce additional complexity in terms of thread creation as well as
data partitioning. As shown in Figure 6 this overhead leads to significant lower throughputs

44 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 13

for both the VH and the VE when processing small buffers. Nevertheless multithreading
pays off on the VH when the processed data exceeds the L2 cache (see Figure 6(a)-(c))
obtaining a maximum throughput of around 320 GB/s for copying, 400 GB/s for writing
and 700 GB/s for aggregating respectively. Taken this into account, using multiple threads
for plain memory access can speedup the processing up to a factor of 7 compared with
single-thread execution.

The same observation holds for the VE in terms of processing small buffers up to 2 MB.
While plain memory access using a single thread reaches a maximum throughput when
processing 1MB and upwards, multiple threads reach a local maximum with around 4 MB
buffer size for copying and 8 MB buffer size for reading and writing respectively. For bigger
buffers which still fit into the LLC, the throughput decreases probably caused by effects
like cache pollution. As shown in Figure 6(d)-(f) the measured throughput of the 10C
remain stable while the throughput at around 300 GB/s for copying and 600 GB/s to 700
GB/s for write and read intense tasks respectively when the processed buffer size exceeds
the boundaries of the LLC. The TSUBASA 10B even outperforms the TSUBASA 10C
when processing HMB resident buffers through the higher maximum bandwidth resulting
in an overall maximum throughput of around 800 GB/s for writing and nearly 1 TB/s for
aggregation. Using multiple threads the VE TSUBASA 10B outperforms the VH up to a
factor of 10 for copying and aggregating, 13 for writing respectively.

Executing bitparallel column-scans using multiple threads show similar behaviour like the
reading task by exceeding the reached throughput of single thread execution by a factor of
around 2. Interestingly the bitwidth has an significant influence when running on the VE.
As shown in Figure 7(d)-(f) processing 64-bit wide elements led to higher throughputs in
general. This impact of processed word size decreases for processing big buffers using less
operations.

3.5 Summary

The conducted experiments show that the vector co-processor SX-Aurora TSUBASA can
on the one hand improve the performance of computational-bound algorithms through the
utilization of wide vector registers alongside an efficient vector processing pipeline. On
the other hand memory-bound algorithms can benefit from the integrated high bandwidth
memory in combination with the shared LLC which is accessible from the VPU directly.

Furthermore, the existing NEC compiler with its integrated automatic vectorization feature
facilitates the reuse of existing scalar C/C++-Code with only minor adjustments.

4 Future Work
As we have clearly shown in the previous section, the VE of SX-Aurora TSUBASA offers
outstanding performance characteristics from a database query processing perspective. To

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 45

14 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

Multi-Thread Column Scan

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

600

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(a) filter equal

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

600

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(b) filter less than

10C: VH, 64 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

200

400

600

th
ro

ug
hp

ut
 [G

iB
/s

]

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(c) filter greater than

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

250

500

750

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(d) filter equal

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

250

500

750

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(e) filter less than

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

250

500

750

th
ro

ug
hp

ut
 [G

iB
/s

]

LLC
16 Mi

(f) filter greater than

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

5

10

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(g) filter equal

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

5

10

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(h) filter less than

10B: VE, 64 bit 10C: VE, 64 bit 10B: VE, 32 bit 10C: VE, 32 bit

8 Ki 128 Ki 2 Mi 32 Mi 512 Mi 8 Gi
buffer size [B]

0

5

10

sp
ee

du
p

LLC
16 Mi

L1
32 Ki

L2
1 Mi

L3
19.25 Mi

(i) filter greater than

Fig. 7: Measured throughput of different Bitweaving-H operations executed on the VH using multiple
threads.

further investigate this hardware system for database systems in detail, our ongoing research
goes into two directions as described next.

4.1 Highly Vectorized Query Processing on Compressed Columnar Data

In-memory column store systems are state-of-the-art for the efficient processing of analytical
workloads. In such systems, data compression as well as vectorization are extremely relevant
aspects. On the one hand, data compression is applied to tackle the continuously increasing
gap between computing power of common CPUs and main memory bandwidth (also known
as memory wall). Therefore, all in-memory column store systems roughly pursue a similar

46 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 15

approach: (i) each column of a relational table is treated independently, (ii) values of each
column are encoded as a sequence of integers usually applying dictionary coding and (iii)
different data compression schemes are applied to each sequence of integers resulting in
a sequence of compressed data strings. For such lossless integer compression schemes, a
large variety of lightweight algorithms has been developed. On the other hand, vectorization
is used to improve the processing performance by parallelizing computations over vector
registers. This vectorization is usually performed using SIMD (Single Instruction Multiple
Data) extensions such as Intel’s SSE (Streaming SIMD Extensions) or AVX (Advanced
Vector Extensions) and has been available in modern processors for several years. Up to now,
Intel’s latest SIMD extensions supports 512-bit vector registers. From a database perspective,
this vectorization technique is not only very interesting for compression and decompression,
but also for all a set of database operator like joins, scans, as well as groupings.

In contrast to Intel’s SIMD extensions, the SX-Aurora TSUBASA supports vector registers
with size of 16,384-bit (256x64-bit) which significantly outperforms techniques offered by
other vendors today. Thus, we want to examine the effects of these large vector registers
on the query processing in the context of state-of-the-art in-memory column store systems.
Therefore, we plan to investigate two aspects: (i) lightweight data compression as well as
decompression and (ii) high-performance and highly vectorized execution of compressed
data using scans (point and range queries), joins (sort-merge as well as hash joins), and
groupings (sort as well as hash-based).

4.2 Near-Memory Data Processing on Multiple Vector Engines

Modern applications demand data management systems to provide strong analytical and
transactional power at the same time while facing a continuously increasing amount of
data that needs to be maintained and processed. To challenge those issues, modern data
management systems need scale up on today’s massively parallel hardware and need to be
capable to adapt to the current workload by changing data layout, data partitioning, and
hardware resource configurations on-the-fly without negatively affecting the running queries.
Since traditional disk-based or in-memory database systems were never designed to scale to
the degree of parallelism that is offered by modern hardware, scale-out solutions such as
Apache Spark came up to address the issue of analytical power by assuming a read-only data
access similar to batch processing setups on HPC systems. With the ERIS data management
system [Ki14, KHL18], we already invented a novel near-memory computing-optimized
database system architecture that aims at scalability, adaptivity, and a superior absolute
performance compared to systems like Spark focusing on scale-up hardware systems.

Currently, our ERIS data management system is optimized for traditional x86 based
server hardware. The main objective of this research direction is to port the current C++
implementation to entirely run on multiple VE. In particular, we will address the following
research questions:

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 47

16 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

• Is the SX-Aurora TSUBASA architecture suitable for running sophisticated data
management applications and how does this architecture perform compared to a
traditional x86-only system. To do this comparison, we plan to employ a rich set of
standard transactional and analytical benchmarks for relational and graph workloads.

• Is the database system able to take advantage of the high memory bandwidth and the
huge vector register sizes of the VE and which modifications to ERIS are necessary
to better utilize the key features offered by this hardware architecture?

• Do the integrated adaptivity features of ERIS offer any advantage on the SX-Aurora
TSUBASA architecture in case of a changing workload, for instance, by adapting the
physical data layout in case of a changing data access pattern? Are there different kinds
of adaptivity features necessary to fully unleash the performance of the hardware
architecture?

5 Conclusion

The hardware landscape is currently changing from homogeneous multi-core systems
towards heterogeneous systems with many different computing units, each with their own
characteristics. This trend is a great opportunity for database systems to increase the overall
performance if the heterogeneous resources can be utilized efficiently. Following that trend,
NEC cooperation has recently introduced a novel heterogeneous hardware system called
SX-Aurora TSUBASA. The core and unique feature of this novel hardware system is its
strong vector engine processor providing world’s highest memory bandwidth of 1.2TB/s
per vector processor. Thus, we introduced this architecture and properties in this paper.
Moreover, we presented first insight of database-specific evaluation results to show the
benefits of this hardware system to increase the query performance. We concluded the paper
with an outlook on our ongoing research activities in this direction and a short summary.

References
[Ab13] Abadi, Daniel; Boncz, Peter A.; Harizopoulos, Stavros; Idreos, Stratos; Madden, Samuel:

The Design and Implementation of Modern Column-Oriented Database Systems.
Foundations and Trends in Databases, 5(3):197–280, 2013.

[AMF06] Abadi, Daniel J.; Madden, Samuel; Ferreira, Miguel: Integrating compression and
execution in column-oriented database systems. In: SIGMOD. pp. 671–682, 2006.

[BHF09] Binnig, Carsten; Hildenbrand, Stefan; Färber, Franz: Dictionary-based order-preserving
string compression for main memory column stores. In: SIGMOD. pp. 283–296, 2009.

[BKM08] Boncz, Peter A.; Kersten, Martin L.; Manegold, Stefan: Breaking the memory wall in
MonetDB. Commun. ACM, 51(12):77–85, 2008.

48 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

SX-Aurora TSUBASA for Database Systems 17

[CK85] Copeland, George P.; Khoshafian, Setrag: A Decomposition Storage Model. In: SIGMOD.
pp. 268–279, 1985.

[Da17] Damme, Patrick; Habich, Dirk; Hildebrandt, Juliana; Lehner, Wolfgang: Lightweight
Data Compression Algorithms: An Experimental Survey (Experiments and Analyses).
In: EDBT. pp. 72–83, 2017.

[Es12] Esmaeilzadeh, Hadi; Blem, Emily R.; Amant, Renée St.; Sankaralingam, Karthikeyan;
Burger, Doug: Dark Silicon and the End of Multicore Scaling. IEEE Micro, 32(3):122–
134, 2012.

[Hi16] Hildebrandt, Juliana; Habich, Dirk; Damme, Patrick; Lehner, Wolfgang: Compression-
Aware In-Memory Query Processing: Vision, System Design and Beyond. In: ADMS.
pp. 40–56, 2016.

[HZH14] He, Jiong; Zhang, Shuhao; He, Bingsheng: In-Cache Query Co-Processing on Coupled
CPU-GPU Architectures. PVLDB, 8(4):329–340, 2014.

[Id12] Idreos, Stratos; Groffen, Fabian; Nes, Niels; Manegold, Stefan; Mullender, K. Sjoerd;
Kersten, Martin L.: MonetDB: Two Decades of Research in Column-oriented Database
Architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

[KHL17] Karnagel, Tomas; Habich, Dirk; Lehner, Wolfgang: Adaptive Work Placement for Query
Processing on Heterogeneous Computing Resources. PVLDB, 10(7):733–744, 2017.

[KHL18] Kissinger, Thomas; Habich, Dirk; Lehner, Wolfgang: Adaptive Energy-Control for
In-Memory Database Systems. In: SIGMOD. pp. 351–364, 2018.

[Ki13] Kissinger, Thomas; Schlegel, Benjamin; Habich, Dirk; Lehner, Wolfgang: QPPT: Query
Processing on Prefix Trees. In: CIDR. 2013.

[Ki14] Kissinger, Thomas; Kiefer, Tim; Schlegel, Benjamin; Habich, Dirk; Molka, Daniel;
Lehner, Wolfgang: ERIS: A NUMA-Aware In-Memory Storage Engine for Analytical
Workload. In: ADMS. pp. 74–85, 2014.

[KML15] Karnagel, Tomas; Müller, René; Lohman, Guy M.: Optimizing GPU-accelerated Group-
By and Aggregation. In: ADMS. pp. 13–24, 2015.

[Ko18] Komatsu, Kazuhiko; Momose, Shintaro; Isobe, Yoko; Watanabe, Osamu; Musa, Akihiro;
Yokokawa, Mitsuo; Aoyama, Toshikazu; Sato, Masayuki; Kobayashi, Hiroaki: Perfor-
mance evaluation of a vector supercomputer SX-aurora TSUBASA. In: Proceedings of
the International Conference for High Performance Computing, Networking, Storage,
and Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018. pp. 54:1–54:12, 2018.

[Li16] Li, Feng; Das, Sudipto; Syamala, Manoj; Narasayya, Vivek R.: Accelerating Relational
Databases by Leveraging Remote Memory and RDMA. In: SIGMOD. pp. 355–370,
2016.

[Li18] Lisa, Nusrat Jahan; Ungethüm, Annett; Habich, Dirk; Lehner, Wolfgang; Nguyen, Tuan
D. A.; Kumar, Akash: Column Scan Acceleration in Hybrid CPU-FPGA Systems. In:
International Workshop on Accelerating Analytics and Data Management Systems Using
Modern Processor and Storage Architectures, ADMS@VLDB 2018, Rio de Janeiro,
Brazil, August 27, 2018. pp. 22–33, 2018.

First Investigations of the Vector Supercomputer SX-Aurora TSUBASA 49

18 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

[LP13] Li, Yinan; Patel, Jignesh M.: BitWeaving: Fast Scans for Main Memory Data Processing.
In: Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’13, ACM, New York, NY, USA, pp. 289–300, 2013.

[LUH18] Lehner, Wolfgang; Ungethüm, Annett; Habich, Dirk: Diversity of Processing Units - An
Attempt to Classify the Plethora of Modern Processing Units. Datenbank-Spektrum,
18(1):57–62, 2018.

[Ou17] Oukid, Ismail; Booss, Daniel; Lespinasse, Adrien; Lehner, Wolfgang; Willhalm, Thomas;
Gomes, Grégoire: Memory Management Techniques for Large-Scale Persistent-Main-
Memory Systems. PVLDB, 10(11):1166–1177, 2017.

[PRR15] Polychroniou, Orestis; Raghavan, Arun; Ross, Kenneth A.: Rethinking SIMD Vectoriza-
tion for In-Memory Databases. In: SIMD. pp. 1493–1508, 2015.

[St05] Stonebraker, Michael; Abadi, Daniel J.; Batkin, Adam; Chen, Xuedong; Cherniack,
Mitch; Ferreira, Miguel; Lau, Edmond; Lin, Amerson; Madden, Samuel; O’Neil,
Elizabeth J.; O’Neil, Patrick E.; Rasin, Alex; Tran, Nga; Zdonik, Stanley B.: C-Store: A
Column-oriented DBMS. In: VLDB. pp. 553–564, 2005.

[Zu06] Zukowski, Marcin; Héman, Sándor; Nes, Niels; Boncz, Peter A.: Super-Scalar RAM-CPU
Cache Compression. In: ICDE. p. 59, 2006.

[ZvdWB12] Zukowski, Marcin; van de Wiel, Mark; Boncz, Peter A.: Vectorwise: A Vectorized
Analytical DBMS. In: ICDE. pp. 1349–1350, 2012.

50 Johannes Pietrzyk, Dirk Habich, Patrick Damme, Wolfgang Lehner

cba

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

ReProVide: Towards Utilizing Heterogeneous Partially
Reconfigurable Architectures for Near-Memory Data
Processing

Andreas Becher 1, Achim Herrmann 2, Stefan Wildermann 3, Jürgen Teich 4

Abstract: Reconfigurable hardware such as Field-programmable Gate Arrays (FPGAs) is widely
used for data processing in databases. Most of the related work focuses on accelerating one or a
small set of specific operations like sort, join, regular expression matching. A drawback of such
approaches is often the assumed static accelerator hardware architecture: Rather than adapting the
hardware to fit the query, the query plan has to be adapted to fit the hardware. Moreover, operators or
data types that are not supported by the accelerator have to be processed in software. As a remedy,
approaches for exploiting the dynamic partial reconfigurability of FPGAs have been proposed that are
able to adapt the datapath at runtime. However, on modern FPGAs, this introduces new challenges
due to the heterogeneity of the available resources. In addition, not only the execution resources may
be heterogeneous but also the memory resources. This work focuses on the architectural aspects
of database (co-)processing on heterogeneous FPGA-based PSoC (programmable System-on-Chip)
architectures including processors, specialized hardware components, multiple memory types and
dynamically partially reconfigurable areas. We present an approach to support such (co-)processing
called ReProVide. In particular, we introduce a model to formalize the challenging task of operator
placement and buffer allocation onto such heterogeneous hardware and describe the difficulties of
finding good placements. Furthermore, a detailed insight into different memory types and their
peculiarities is given in order to use the strength of heterogeneous memory architectures. Here, we
also highlight the implications of heterogeneous memories for the problem of query placement.

Keywords: FPGA; Shared Memory; Query Acceleration; Near-Memory Processing

Acknowledgement: This project is funded by the DFG priority program SPP2037.

1 Introduction

The usage of FPGAs for database operator acceleration has been of interest in the research
community for many years [MT09]. Their unique ability to configure logic resources like
flip-flops, look-up tables (LUTs), block RAMs (BRAMs), and digital signal processors
(DSPs) to implement complex hardware modules inspired a great body of literature on
1 Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany andreas.becher@fau.de
2 Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany achim.herrmann@fau.de
3 Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany stefan.wildermann@fau.de
4 Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany juergen.teich@fau.de

cba doi:10.18420/btw2019-ws-04

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 51

https://creativecommons.org/licenses/by-sa/4.0/
andreas.becher@fau.de
achim.herrmann@fau.de
stefan.wildermann@fau.de
juergen.teich@fau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-04

2 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

accelerated database operators and systems. The ever increasing amount of data produced
every day also increased the research efforts to utilize the energy efficiency of FPGA-based
implementations. Research projects as well as industrial use cases, like Microsoft’s Catapult
[Pu14] and Baidu’s FPGA-based data analysis [Ou16], have demonstrated various benefits
of using FPGA-based co-processors for data processing (see also [Be18]):

• I/O rate processing of pipelined, non-blocking operators.

• Energy efficiency and reduction of power consumption and/or . . .

• . . . speedup through parallel and specialized hardware implementations of OLAP
operators.

• Resource efficiency by taking workload from processors and providing query-specific
hardware acceleration.

However, the majority of related work focuses on accelerating one or a small set of specific
operations like sort, join or regular expression matching. A drawback of such approaches is
the assumed static hardware-accelerator architecture: It is not possible to adapt the hardware
to the query, rather the query plan has to be adapted to fit the hardware. Moreover, operators
or data types that are not supported by the accelerator can’t be accelerated. Here, dynamic
hardware reconfiguration could provide a viable means to instead adapt the hardware to
the query by reconfiguration of acceleration modules at runtime. Consequently, it would
be possible to provide query-specific acceleration which is optimized for the respective
use case while, at the same time, provide a more efficient utilization of the limited FPGA
resources. Yet, the challenge of dynamic reconfiguration is to efficiently adapt the FPGA
configuration to a query and to time-multiplex query processing under scarce resources
[Zi16]. In particular, ensuring that the reconfiguration pays off is a major challenge, as the
FPGA reconfiguration itself can take from a few milliseconds (partial reconfiguration) to
seconds (complete reconfiguration) [Be16a].

In this paper, we present a query processing platform based on heterogeneous memory
and processing resources. We formalize the problem of placing queries onto such highly
heterogeneous platforms and discuss how such placements may be optimized. To exemplify
the impact a non-optimal usage of the heterogeneous memory may have, a characterization
of the available memory is conducted and an example presented.

2 Related Work

FPGA acceleration of single data processing operations has been excessively investigated in
recent years. The important join operator has been implemented on FPGAs successful and
evaluated in various works. Here, FPGA implementations for various algorithms have been
evaluated, e. g., hash join [Ha13], sort-merge join [CO14], as well as hardware-software

52 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 3

co-designs [Be15] and reconfigurable implementations [UIO15]. In addition, as sorting
is part of many database operators (e. g. sort-merge join) different algorithms have been
implemented on FPGAs over the years, see e. g. [CO14; MTA12; Su13]. Also, FPGA
implementations for complex operations exist. E. g., István et al. [ISA16] and Becher et al.
[BWT18] propose run-time parametrizable operators for regular-expression matching on
FPGAs.

Whereas the above cases investigate the acceleration of single operators only, the following
approaches consider also the FPGA acceleration of multiple operators within a query such
as filter, sort, aggregate, join, and group by as implemented on a FPGA by Baidu [Ou16]. A
hardware/software co-design including an FPGA accelerator that consists of a feed-forward
pipeline of hardware kernels for selection, projection, and sorting is proposed by Sukhwani
et al. [Su15]. Sidler et al. [Si17] extended a CPU-based system by an FPGA implementing
complex operators. The FPGA can offer acceleration for the Skyline operator, stochastic
gradient descent, and regular expression matching.

However, even if all the approaches above are combined, only a very limited number of
queries or datasets still can be automatically processed. The major drawback of these
approaches is that they can only accelerate queries that contain the specific operations
provided by the FPGA design. As soon as a query does not contain these operations or
requires the operation on different data types (e.g., FLOAT or DATE instead of INTEGER),
no hardware acceleration is supported, leading to a poor utilization of available resources.
Particularly, implementing every possible operator (with every possible data type) would
lead to huge FPGA designs and unnecessary overheads and is therefore not applicable.
Making use of the run-time reconfigurability of FPGAs allows to circumvent the need for
huge FPGAs while supporting a wide range of operators. This provides query-specific
acceleration optimized for the respective query by loading only the operators needed.
Saved FPGA resources can therefore be used to improve the specific operators instead of
implementing unused logic circuits. Wang et al. [Wa16] show that even for a single query, it
makes sense to provide multiple accelerators and reconfigure between these accelerators
while processing a query. They propose a methodology for automatically generating multiple
execution plans for a given query. At runtime, the execution plan is chosen that has the
lowest execution time according to a cost model. While this work validates the benefit of
adapting the hardware to the query by means of reconfiguration, it has the major drawback
that each accelerator is tailored to a specific query. Synthesis of an accelerator can take
hours. Thus, it is considered infeasible to assemble accelerators for dynamically arriving
queries at run-time. In addition, the approach is based on full reconfiguration which implies
reconfiguration overheads in the range of seconds.

Contrary, Ziener et al. [Zi16] present a methodology based on partial reconfiguration for on-
the-fly data-path generation of a query-stream pipeline. Query streams can be accelerated
by composing and placing pre-synthesized modules (e. g., aggregation and restriction
operators) on the FPGA by means of partial reconfiguration. Becher et al. [Be18] propose a
reconfigurable architecture for near-data processing called Reconfigurable Data Provider

ReProVide 53

4 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

(ReProVide). ReProVide proposes a layout of reconfigurable hardware resources based on
multiple partially reconfigurable areas, into which query-/operator-specific accelerators
can be dynamically loaded. Also, this approach makes use of a library of pre-synthesized
reconfigurable hardware accelerators. The major difference between [Zi16] and [Be18]
is that the former makes use of slot-style partial reconfiguration (which is not supported
by standard FPGA tools) whereas the latter exploits island-style partial reconfiguration
(which is supported by standard FPGA tools), see [KBT09]. In addition, the latter approach
also exploits the coupling and co-processing of queries on FPGA-based PSoCs using the
available on-chip processor system. These works introduce the design of reconfigurable
accelerator modules for different operations and the design of the partially reconfigurable
architecture. In addition, [Zi16] introduces cost models for assessing the performance of
query processing based on these accelerator modules. Both works, however, do not provide
solutions of the problem of automatically mapping a query onto a respective architecture.

3 Heterogeneous Partially Reconfigurable Architectures for Near-
Memory Processing

We consider heterogeneous partially reconfigurable architectures for near-memory process-
ing based on the following concepts. The data is stored in non-volatile memory such as
SSDs or in volatile memory like DDR-SDRAM directly attached to the platform. It, thus,
does not restrict whatsoever the datastructures used on the storage media and the low-level
data management. Data access and modification is therefore only permitted by commands to
the platform. A heterogeneous processing architecture consisting of CPUs and specialized
hardware is assumed in order to combine the flexibility and ease of software implementations
with the energy efficiency and performance of specialized hardware implementations. The
programmable logic of the FPGA-based SoC platform is divided into a static part, which
contains all components like hardware controllers and interfaces that stay fixed, and one or
multiple partially reconfigurable regions, into which reconfigurable hardware accelerators
can be loaded. The proposed architecture of a ReProVide platform is an example of such a
heterogeneous partially reconfigurable architecture for near-memory processing. The target
is to pull the (sparsely stored) data of interest out of one or more high-volume data sources.
Only transmitting this information-rich subset of data to the host system has the potential of
significantly reducing the dominant factor of power consumption in data-center networks:
data transport. This means the reduction of data without an increase of execution time is
of utmost importance. The platform, therefore, has to utilize the individual strengths of
heterogeneous resources in order to accomplish the needed reduction.

3.1 ReProVide Architecture

The design of a ReProVide platform is based on top of existing FPGA technology like Xilinx
Zynq All Programmable SoCs that contain programmable (FPGA) logic, multi-core CPUs,

54 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 5

cba

Main
Memory

Memory
Bus

Memory
Bus

Network
Controller

HW-MEM 0

HW-MEM 1
Scan Controller

PR0: Accelerator 0

PR1: Empty

CPU-Cache
CPU 0

CPU 1

FLASH
ARRAY

Network
IF

Master Slave

PL

PS

PSoC

Fig. 1: Architecture of a ReProVide platform. Next to statically implemented IPs such as the Network
Controller, Scan Controller, and heterogeneous (on- and off-chip volatile and non-volatile) memory
resources, also partially reconfigurable areas are shown (PR0, PR1). These areas are reconfigured
during runtime, loading presynthesized hardware modules. Additionally, a Processing System (PS)
containing a dual core ARM-based processor is contained on the SoC.

and peripherals. This FPGA-based SoC makes use of hardware reconfiguration to adapt
datapaths and accelerators for being able to process different online analytical processing
(OLAP) and data mining operators on data from its attached heterogeneous volatile and
non-volatile data sources.

Fig. 1 depicts the architecture of a proposed ReProVide platform containing a tightly-
coupled processor system (PS) and programmable logic (PL). While the table management
is executed on one core of the processing system, handling of the data is mostly dealt with
within the programmable logic. To accelerate typical OLAP query operations, multiple
partially reconfigurable regions (PRs) within the programmable logic allow offloading of
operators. Requests are received via a high-speed network interface and forwarded to the
management software for further processing. We will go into details in Section 3.2. To relief
the processing system from the task of result transmission, a specialized Network Controller
implemented in the static system allows sending the resulting data to the requesting host
with minimum intervention from the management software. It utilizes a circuit for data
reordering which we will introduce in Section 3.1.1.

A host may request data using a specified schema (row-store or column-store layout) while
the management might use another schema to store the data on the attached memories. In
addition, hardware accelerators are either specialized for a specific schema or are able to
cope with different schemes. The first option would, however, increase the development
time of the accelerator library and reduce the chances an already configured accelerator

ReProVide 55

6 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

can be reused. For the second option, to evade using additional logic in the accelerator
itself or executing software to detangle the various schemes, we introduce a dedicated and
parameterizable hardware component called Scan Controller to do the job of data loading
and schema-on-fly transformations. Therefore, this controller also has direct access to the
attached FLASH storage.

3.1.1 Scan Controller

The main task of the Scan Controller is to translate the schema which is used to store
the data in the available memories and strip not needed attributes. A programmable data
reordering engine called ReOrder unit [Be16b] together with scatter-gather DMA-engines
are utilized to achieve this task. When combined, the Scan Controller can be programmed
to gather data from multiple locations (particularly the case in column-oriented table store)
to provide compacted tuples for further processing. In the case of row-oriented stored tables,
not needed attributes are striped off to relief the interconnect from transferring unnecessary
information and various memories from reserving space for this.

This functionality allows to define a single and common schema on which all operators
work and may therefore disconnect the operator implementation (e.g., hardware accelerator)
from the storage format.

Additional assistance for hardware accelerators is given by the insertion of so-called
placeholders (intermediate/temporary attributes) into the tuple stream. These placeholders
can be used to store intermediate results within the tuple, e.g., from arithmetic operations
like additions, without the need to dynamically change the size of the tuple or the overhead
of an additional result stream.

Fig. 2 depicts a simple query from (a) a row-based table and (b) a column-based table.

cba

a b c

c a tmp0

c a a+c

scan a,c

a+c

row store

tuple after
scan controller

tuple after
sum operator

(a)

cba

a b c

c a tmp0

c a a+c

scan a,c

a+c

column store

tuple after
scan controller

tuple after
sum operator

(b)
Fig. 2: A tuple (a, b, c) being processed according to the query SELECT c,a,(a+c); using a row-
oriented storage (a) and a column-oriented storage (b). First, the scan controller produces a new tuple
with placeholders and the requested order of attributes. In the next step, the sum function is applied to
this tuple and the result is written to the previously created placeholder field (tmp0).

56 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 7

Note that the sum operator sees the same input tuple in both cases and can therefore
use the same accelerator. As can be seen, the Scan Controller can perform simple table
transformations transparently to abstract from the storage layout of the tables. Not only
does this simplify the operator implementations and increase the overall execution speed as
less partial reconfigurations are necessary, it enables optimizations going beyond classical
row-/column-oriented storages, e. g. partitioning a table onto different memory types or by
related attributes.

A subset of this transformation capabilities is also implemented in the Network Controller
to remove no longer needed attributes and placeholders before transmitting results to the
requesting host.

3.2 Query Management

Once a query is received from a requesting host, a local query management is required to
actually execute the query on the ReProVide platform. The query manager will be executed
on the CPU. It involves three basic steps as illustrated in Figure 3.

The first step is query placement of the query execution plan (QEP) onto the available
resources on the ReProVide platform. This is a hardware/software partitioning problem
according to [Te12], and consists of the following three steps: (a) allocation of resources, (b)
binding of tasks onto resources, and (c) scheduling of tasks on shared resources. For query
placement on reconfigurable architectures, this hardware/software partitioning problem has
to be adapted as detailed in Section 4.

The task of query compilation is then to configure the platform and particularly the selected
accelerators with the runtime parameters according to the operator parameters in the query
execution plan. This step is operator-specific and beyond the scope of this paper. It is e. g.
illustrated in [BWT18] for accelerators for regular expression matching.

cba

QEP from DBMS

Query
Placement

Query
Compilation

Query
Execution

Query Management

Fig. 3: Overview of runtime management. The lines indicate the flow of how a QEP is processed
when obtaining it from a requesting host.

ReProVide 57

8 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

Finally, query execution is responsible for orchestrating the query processing according to the
schedule generated in the first step. This particularly involves scheduling the reconfiguration
of accelerators on shared partial regions, the memory allocation, as well as exception
handling which particularly occurs for under- or overflowing buffers.

4 Query Placement Problem

A query execution plan (QEP) describes the order in which operations have to be applied
on the data to execute a given query. In order to utilize the full potential, a given query
execution plan has to be mapped onto the available resources of a ReProVide platform.
Such a mapping can be optimized for query execution time, resource consumption, and
energy efficiency or a combination of these objectives. In this subsection, we introduce the
formal model of the placement problem for QEPs onto a ReProvide platform.

4.1 Generating the Query-Specific Architecture Configuration

One part of the query placement problem is to decide how to configure the reconfigurable
areas to process a given query. Here, the QEP is represented as a directed graph GQ = (O, D)
containing the set of operators O (vertices) and their dependencies on other operators
D ⊆ O ×O (directed edges), see Fig. 4(a), left for an example.

Problem graph. We assume a set H of pre-synthesized hardware modules as well as a set
S of software functions for accelerating operators on a ReProVide platform is given. The
set of available acceleration functions being available in an accelerator library are denoted
by L = H ∪ S. Each function l ∈ L covers the acceleration of one or multiple operators.
Now, for generating the query-specific configuration, first a set of accelerators A has to be
allocated (instantiated) from this library. Then, each operator node o ∈ O of the query plan
has to be mapped onto an accelerator that supports the respective operator. This operator
mapping is given by

βO : O → A. (1)

Furthermore, a set of buffers B has to be allocated for storing the data that is exchanged
between the accelerators. Each data dependency d ∈ D of the QEP has to be assigned to
one allocated buffer:

βD : D → B. (2)

Fig. 4(a) illustrates a mapping of operators onto accelerators and of data dependencies
onto buffers. Based on the set T = A ∪ B of allocated accelerators and buffers as well as

58 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 9

cba

scan
sales

[a,b,c,k]

arithmetic

b,c

[+]

f ilter
b+c

> [min_price]

GroupBy
k

aggregate
a

[sum]

User User
Interface

Buffer[1]

sum_func

Buffer[2]

Acc2

Acc1

Buffer[3]

Acc0

Buffer[4]

Scan
Controller

(a) Example QEP and a query-specific allocation of acceler-
ators and buffers. Operators are mapped onto accelerators,
and data dependencies are mapped onto buffers according to
the dashed edges. The width of each buffer (i. e. tuple size) is
given in brackets and omitted if zero.

cba

Buffer[4]

Buffer[3]

Buffer[2]

Buffer[1]

Acc0

Acc1

Acc2

sum_func

Scan
Controller

User
Interface

(b) Problem graph generated from the
QEP resource allocation (a). Again,
the width of each buffer is given in
brackets and omitted if zero.

Fig. 4: Problem graph generation from QEP.

the mapping of operators and data dependencies, the query-specific configuration can be
represented as a query-specific problem graph GP = (T, F), where edges F connect the
buffers with the accelerators accessing them. Buffers b connected to an accelerator a by an
edge (b, a) ∈ F or (a, b) ∈ F are called input buffers or output buffers of a, respectively.
Fig. 4(b) represents the problem graph of the example. Note that the flow of data as shown
in a problem graph is opposite to the direction of edges of the QEP.

Buffer allocation. The proper dimensioning of buffer capacities is a major optimization
control knob. As we will discuss below, it may have a huge influence on achievable
performance numbers like throughput. However, on the other hand, it has to adhere to several
constraints. The Scan Controller (described in Section 3.1.1) supports to load attributes
from various data sources with different layouts. Its purpose is to load all attributes required
by the subsequent operators. Moreover, the output buffer of each accelerator has to provide

ReProVide 59

10 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

space for storing all those attributes that are still required by subsequently executed operators.
This means that the accelerator (a) copies the respective attributes from its input buffer(s) to
its output buffer together with (b) writing the results calculated by the accelerator itself.

Fig. 4(a) illustrates this for an example. The scan operator has to load attributes [a, b, c, k].
Operator arithmetic has to write attributes [a, b + c, k]. The filter has to write attributes
[a, k], and so on.

Consequently, the width of a buffer is fixed for one problem graph and given by the size of
one tuple of the respective attributes. However, the depth of a buffer b ∈ B (i.e., the amount
of tuples that can be stored in the buffer) is an optimization control knob, which we denote
by nb ∈ N≥0.

Let width(b) be the statistically5 derivable size of one tuple in buffer b.

Then, the capacity of each allocated buffer b ∈ B is denoted by

capacity(b, nb) = width(b) · nb . (3)

In Section 5, we empirically study the influence of this optimization variable on throughput.
Several operators support stream processing of tuples (e.g., most arithmetics and filters),
and thus support arbitrary nb ≥ 1. However, so-called blocking operators (e.g., sort, unique
and join) depend on several or even all tuples from the preceding operators. We therefore
include nmin : O → N≥0 which gives the minimum amount of tuples the operator needs to
access for calculation. Note that this may rise to the size of a whole table if operators such as
joins need random access on the intermediate result. Therefore, the minimum buffer depth
depends on the operators executed on the accelerators accessing the buffer, and is obtained as:

∀o ∈ O, b ∈ B : (b, βO (o)) ∈ F : nb ≥ nmin(o) (4)

The problem graph generation may already apply domain knowledge to create optimized
buffer allocations. One such optimization is the instantiation of multiple buffers to support
streaming execution of QEP operations. Another is to reduce the over-provisioning of buffers:
Without accurate statistics, some buffer might be highly over-dimensioned if designed to
hold the whole table to guarantee no information is lost.

4.2 Determining a Configuration of the Reconfigurable Architecture

From the problem graph specification, we still have to determine a query-specific configura-
tion (QSC) of the platform. The actual reconfigurable architecture (as presented in Section 3)

5 The size can be determined accurately if a tuple consists of fixed length columns only. If variable length columns
are present, a meaningful average is statistically obtained. Query execution has to handle occurring exceptions
when buffers are too small to hold a single tuple due to the length of the variable length fields.

60 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 11

provides static resources that have to be programmed (or re-configured) according to such a
configuration. Notably, this is also a mapping problem which we formalize in the following.

Architecture Graph. In order to embed a problem graph generated from a QEP onto a
concrete ReProVide platform, also a graph representation can be used. A heterogeneous
architecture is described by a directed architecture graph GA = (R, L). This architecture
graph models the available resources, i. e., CPU cores, memories, co-processors, and
partially reconfigurable areas, as well as the connections between these resources. Fig. 5
(right) visualizes an architecture graph of the ReProVide platform shown in Fig. 1. The
vertices represent these resources R = RP ∪ RM ∪ RC , being processing RP , memory RM ,
and communication resources RC . Memory resources are characterized by a maximum
storage capacity capacity(m), ∀m ∈ RM .

Directed links l ∈ L connect resources which can communicate with each other: L ⊂ R × R.
Note that the direction of an edge describes which node is the initiator (or Master) of a
data transfer (outgoing edges) and therefore does not describe the direction of the flow of
data itself. This is consistent with the Master Slave principle that is also illustrated by Fig. 1,
and allows to express separated memory domains (e.g., the network controller can only
access the main memory in Fig. 5). Let CGA (v) with v ∈ R define the set of all resources
connected to v in GA. A pair of resources (a, b) : a, b ∈ R is connected if a directed path
from a to b or b to a exists. For simplicity, we assume all links to allow for bidirectional
(duplex) data transfers.

Mapping the Problem Graph. The problem of determining a query-specific configuration
(QSC) on the reconfigurable target platform can thus be formalized as mapping the problem
graph GP = (A ∪ B, F) onto the architecture graph. This involves binding each accelerator
a ∈ A of the problem graph to one processing resource r ∈ RP of the architecture graph,
given by

βA : A→ RP . (5)

Here, obviously, hardware accelerators can only be bound to partially reconfigurable regions,
and software accelerators to software processing resources. Furthermore, each buffer b ∈ B
has to be bound onto one memory resource r ∈ RM :

βB : B → RM . (6)

The bindings have to adhere to the following mapping constraints.

Routing contraints: Each accelerator a can access the memories containing its input and
output buffers from the processing resource βA(a) on which it is executed, or formally with

ReProVide 61

12 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

cba

Router
0

Router
1

Router
2

Router
3

Router
4

Router
5

Router
6

Router
7

HW-mem
0

HW-mem
1

Scan
Controller

Main
Memory

Cache

Partial
Region

0

Partial
Region

1

Network
Controller

CPU
0

CPU
1

SRAM

BUS
0Flash

Buffer[4]

Buffer[3]

Buffer[2]

Buffer[1]

Acc0

Acc1

Acc2

sum_func

Scan
Controller

User
Interface

Fig. 5: Problem graph (left) and its binding to the architecture graph of a heterogeneous architecture
such as the ReProVide platform depicted in Fig. 1. The communication resource BUS0 models the
half duplex connection between the Flash-Memory and the Scan Controller.

CGA representing the set of reachable resources:

∀a ∈ A, b ∈ B, (b, a), (a, b) ∈ F : βB (b) ∈ CGA (βA(a)) (7)

Memory contraints: We assume that the buffers are statically allocated and then used
throughout the execution of the query. As discussed before, the size of buffers depends
on decision variables which are subject to the constraint in Eq. (4). When binding buffers
to memory resources, it has to be ensured that the memory resources provide sufficient
capacities to hold the assigned buffers, i.e.,

∀r ∈ RM :
∑

b∈B:
βB (b)=r

capacity(b, nb) ≤ capacity(r) (8)

Fig. 5 illustrates a valid binding of the exemplary GP onto the architecture graph GA

of a ReProVide. As illustrated for Acc0 and Acc1, accelerators may be bound to the

62 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 13

same processing resource, in this case partially reconfigurable region PR1. In such cases,
it is necessary to provide scheduling strategies to resolve possible conflicts. In case of
data-dependent accelerators as in this example (Acc1 requires the results from Acc0), the
scheduling priority is given according to the dependencies. In case of accelerators without
dependencies, i.e., accelerators of two different QEP branches before a join operation, all
accelerators on the branch that is prioritized by the join operator will be scheduled before
the accelerators on the other branch.

While we used a single query as a driving example, please note that multiple concurrent
queries can be placed. The same constraints apply for the allocation and binding. The
scheduler, however, might be adapted to apply prioritization if resources are shared.

4.3 Optimal Query Placement

So far, the steps and constraints for determining a feasible query-specific configuration
(QSC) were discussed. However, in general, an optimal placement is desired which optimizes
performance numbers like throughput or latency. Multiple factors influence the performance
numbers such as the set of allocated accelerators, the mapping of operators onto these
accelerators, and the mapping of accelerators onto the available resources. The big advantage
of hardware accelerators is their determinism. Particularly, the performance of streaming
operations can be predicted. So, quite accurate cost models exist for such accelerators.
Particularly, Ziener et al. [Zi16] propose cost models that allow to estimate latency and
throughput of a pipeline of such accelerators. The accelerators in the library of ReProVide are
pre-synthesized. This means that optimizing a single accelerator for latency and throughput
are offline tasks and thus not part of the query placement problem.

However, reconfiguration between accelerators during processing of a query introduces
additional offsets which are not considered in [Zi16]. ReProVide make use of island-style
reconfiguration, which means that, when a module is loaded into a reconfigurable area,
the complete area is reconfigured. Therefore, the reconfiguration time depends not on
the accelerator but on the size of the reconfigurable area. For reasonably sized areas,
reconfiguration time can stay within few milliseconds, see [Be16a]. However, determining
the size of the reconfigurable areas is an offline task and thus not part of the query placement
problem.

For ReProVide platforms, we assume a self-triggered execution, i. e. each accelerator starts
working when it receives a ready signal from its succeeding accelerators and the directly
preceding accelerator signals that it has filled the input buffer. When an accelerator starts
execution, it consumes the tuples from its input buffer and produces the output in its output
buffer. Subsequently, it sends a ready signal to its preceding accelerator and triggers the
execution of the succeeding accelerator. With this execution scheme, the dimensioning of the
allocated buffers and their mapping onto the available memory resources can significantly
influence performance numbers as latency and throughput. Particularly, a buffer depth of

ReProVide 63

14 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

nb = 1 does not necessarily lead to the best pipelined schedule, even when all accelerators
should have the same latency. In order to motivate the huge impact, we take a look into the
characteristics of different memory types in the next subsection.

The optimal query placement depends on the allocation of accelerators and buffers, as well
as their binding onto the architecture. The problem formalization of this paper is an extension
of the system-level synthesis problem, which is proven to be NP-hard [BTT98]6. Thus,
finding an, at least, optimized placement is a complex task which can only be efficiently
tackled by heuristics. Particularly, for query processing, an optimized placement should be
available within a few milliseconds. While processing, additional queries may arrive and
a new placement has to be found covering all running queries. This means the placement
might change every time a new query arrives or completes, making it even more important
to be adapted quickly. Whereas the main contribution of this paper is on understanding and
formalizing this problem, the investigation of efficient heuristics is future work.

5 Heterogeneous memory system

ReProVide platforms allow to use three different types of memories: (I) local memory like
FPGA BlockRAM or CPU caches, (II) DDR-SDRAM and (III) Flash memory. In order to
optimize the mapping of the buffers of a problem graph to physical memory, one must know
how these different memories behave in terms of throughput, latency, capacity and costs.
This section classifies the memories according to these properties. The values used in this
section are mostly taken from literature and therefore inaccurate, but this is still sufficient
for the purpose of characterization. Additionally, the characteristic values for an example of
a concrete ReProVide platform will be exemplified.

5.1 Memory Characterization

Capacity As ReProVide’s purpose is the processing and filtering of big amounts of data,
it is necessary to have enough capacity to store the intermediate data. The capacity depends
on the particular hardware in use. Typical ranges for the different memories are depicted in
Fig. 6(a). Local memory usually has capacities from a few bytes up to a few megabytes,
DDR-SDRAM can have a few gigabytes and Flash memory goes up to many terabytes.

Cost Of course, it would be possible to have, for example, a terabyte of DDR-SDRAM,
but compared to flash memory, this would be much more expensive in terms of both cost
and energy. According to Xilinx Vivado, one Byte of BRAM has a power consumption in
the scale of µW. DDR-SDRAM is more efficient with nW per Byte [LC03]. Flash memory

6 This means that also the query placement problem is NP-hard, as the system-level synthesis problem can trivially
be reduced onto it.

64 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 15

has the lowest power consumption per Byte: as it is non-volatile, just holding data requires
no energy at all. When in use, its power consumption is in the magnitude of pW/B [LMP09].
Also, the price of 0.2 $/GB for flash memory is much lower than for DDR-SDRAM, which
costs about 6 $/GB [Ha17].

cba

BRAM DDR Flash
1Byte

1KiB

1MiB

1GiB

1TiB

Memory Type

range
ReProVide

(a) Capacity

cba

BRAM DDR Flash

101

102

103

104

105

Memory Type

La
te

nc
y[

ns
]

read
write
ReProVide

(b) Latency
Fig. 6: Typical capacity and latency of different memory types and the Xilinx zc706-based ReProVide
prototype.

Latency But capacity often comes at the cost of latency. Here, latency is defined as the
time it takes from request on until the first byte has been processed, i. e. read or written. It
is desirable to keep the latency low as this will improve the data processing performance,
especially for a small amount of data. Fig. 6(b) depicts typical latencies for different memory
types in nanoseconds: The small BRAMs are usually placed tightly to the processing
unit, leading to very low latency down to one cycle. The bigger DDR-SDRAMs require
controllers to manage memory banks, increasing the latency to a few dozen of clock cycles.
Flash memories often additionally use internal buffering and a serial interface. Both may
increase the latency further into mid microseconds range [Gr09].

Throughput Throughput is the main characteristic when it comes to transferring big
blocks of data. The throughput of a memory depends on different factors. The most obvious
ones are bus-width and frequency. These factors impact the throughput linearly, means
when doubling one of them, also the throughput doubles. They are both determined by the
hardware implementation, so the query placement has no influence on them. A factor which
can be influenced by query placement is the blocksize (i. e. the capacity acc. to Eq. (3)), and
thus, how many data is transferred within one request. When transferring only small blocks,
latency is the biggest component of the transfer time. With the blocksize high enough, the
latency becomes negligible as it can be compensated through pipelining, and the overall
throughput rises. Fig. 7 depicts the normalized optimum read and write throughput of the
memory types, depending on the transferred blocksize. As it has the lowest latency, BRAM

ReProVide 65

16 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

generally has the highest throughput independent of the blocksize. Flash memory on the
other side requires huge blocks to reach an acceptable throughput. Note that also the access
pattern has a high impact on the throughput: sequential access is faster than random access.

For example, a ReProVide platform based on a Xilinx zc706 can access the DDR-SDRAM
either over the Zynq’s high performance ports (HP) or over the Accelerator Coherency Port
(ACP). Sadri [Sa13] found out that the ACP has equal performance of up to 1,7 GB/s
as the HP port, as long as the transfer size does not exceed the cache size of 512 KByte.
Afterwards, the throughput drops to 600 MB/s due to invalidating the caches. The ACP
performance is also effected by background applications running on the CPU, since they
also use the caches. So are the high performance ports effected by each other, since they
have to share the internal interconnect.

The examplary ReProVide platform uses a raid of SATA-3 SSDs as flash memory. The
SATA-3 protocol has a theoretical throughput of 600 MB/s. However, the access pattern
has huge impact on the actual throughput. Sequential-like throughput is only achieved with
blocksizes greater than 32 KByte. Furthermore, there are effects like garbage collection
and defragmentation running inside the SSD firmware to consider which may reduce the
achievable throughput dramatically [Se18]. However, these effects are highly specific to the
use case and the manufacturer.

In summary, there is a tradeoff between fast but small and expensive memories and slow
but big and inexpensive memories. If one needs fast random access with small blocksizes,
BRAMs offer the best performance if the amount of available storage is sufficient. DDR-
SDRAM can be used if a higher capacity is needed or in case the blocksizes to access the
memory are bigger. Lastly, flash memory is the best choice for storing huge amounts of
data which is mostly read using sequential access or huge datablocks. Therefore, the buffer

cba

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
0

0.2

0.4

0.6

0.8

1

blocksize

no
rm

al
iz

ed
th

ro
ug

hp
ut

BRAM read DDR-SDRAM read Flash read
BRAM write DDR-SDRAM write Flash write

Fig. 7: Random access throughput of different memory types in relation to the size of each transfer
(blocksize). The throughput is normalized to the maximum sequential throughput of each memory
type.

66 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 17

cba

102 106 101010−2

10−1

100

101

table size [Bytes]

tim
e
[s
]

256 KiB 512 KiB
1 MiB

(a) BRAM

cba

102 106 1010

table size [Bytes]

1 MiB 16 MiB
256 MiB

(b) DDR-SDRAM

cba

102 106 1010

table size [Bytes]

1 GiB 16 GiB
256 GiB

(c) Flash
Fig. 8: Execution time for two accelerator scheduled on the same partial reconfigurable area to
process tables of different sizes. A buffer is allocated for exchanging data between both accelerators.
Reconfiguration between accelerators is performed as soon as all tuples are produced in/consumed
from the buffer. Per memory type, the execution time for different sizes allocated for this buffer is
depicted.

allocation as part of query placement as presented in Section 4.1 has direct impact on the
execution time of the query to process.

5.2 Exemplary Impact of Buffer Allocation and Binding on Query Execution Time

In order to give an example of the impact of different buffer allocations, we consider two
accelerators mapped onto one partial region and exchanging tuples via a shared buffer,
comparable to operators Acc0 and Acc1 in Fig. 57. Each time accelerator Acc0 has filled
its output buffer, a partial reconfiguration is triggered so that accelerator Acc1 consumes
the data.

Fig. 8 depicts the execution time (y-axis) of these two accelerators processing tables of
different sizes (x-axis). The execution time is depicted for all three memory types and for
different sizes of the buffer used for exchanging data between the accelerators. We have
chosen buffer sizes which are reasonable for the memory type with respect to its specific
capacity ranges (see Fig. 6(a)). As one can see, the buffer size has a direct impact on the
execution time. Increasing buffer size reduces the overall execution time as accelerators can
process more tuples with less reconfiguration overhead.

Furthermore, the binding of buffers to the memory type has a direct impact on execution
time. BRAM is the fastest if the table size is low (Fig. 8(a)). However, the throughput

7 However, we ignore the scheduling of preceding and succeeding accelerators in the following example.

ReProVide 67

18 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

advantage is lost when table sizes grow: As the capacity of BRAM is limited, only small
buffer sizes can be chosen (kilobytes to ∼one megabyte). This means that for greater table
sizes the reconfiguration has to be performed more frequently, and thus, reconfiguration
overhead becomes dominant. Due to their higher capacities, the DDR-SDRAM and the
Flash memories support bigger buffer sizes and are thus able to decrease the number of
required reconfigurations. Particularly, Flash memories allow to choose buffer sizes in the
range of gigabytes and thus to reduce the reconfiguration overhead even further. However,
DDR-SDRAM has a higher throughput than Flash. Therefore, when choosing a sufficiently
high buffer size (over 16 MiB in our example), the DDR-SDRAM is able to compensate
the additional reconfigurations. This leads to DDR-SDRAM providing the lowest overall
execution time (Fig. 8(b)), even compared to Flash (Fig. 8(c)). For a given table size, a
simple heuristic can be derived to obtain a good buffer size.

Please note that, in this example, we assumed that the memories are exclusively accessed by
the accelerators such that no congestion occurs. However, during operation of a ReProVide
platform, concurrently executed accelerators of the same or even other parallel queries may
access the interconnect and memories. This would reduce the actually achievable throughput.
As such, also the congestion on interconnect and memories should be considered when
solving the query placement optimization problem.

6 Conclusion and Future Work

While heterogeneity promises benefits in terms of reduced execution time, energy efficiency
and costs for database processing, it is a burden too. Utilization of such heterogeneous
architectures to gain benefits can be challenging. We presented a model to describe
heterogeneous architectures such as a ReProVide platform and formalized the task of
automatically generating a configuration from a given query execution plan while satisfying
a number of physical constraints on computing, communication and memory resources. To
allow for the optimization of this process, various factors have to be considered. Therefore,
the available memory resources have been characterized and the effects of buffer allocation
have been illustrated. With the presented model and characterization, we will investigate
algorithms to find good solutions for the placement problem in the future.

References

[Be15] Becher, A.; Ziener, D.; Meyer-Wegener, K.; Teich, J.: A co-design approach for accelerated
SQL query processing via FPGA-based data filtering. In: FPT. Pp. 192–195, Dec. 2015.

[Be16a] Becher, A.; Pirkl, J.; Herrmann, A.; Teich, J.; Wildermann, S.: Hybrid energy-aware
reconfiguration management on Xilinx Zynq SoCs. In: ReConFig. Pp. 1–7, 2016.

[Be16b] Becher, A.; Wildermann, S.; Mühlenthaler, M.; Teich, J.: ReOrder: Runtime datapath
generation for high-throughput multi-stream processing. In: ReConFig. Pp. 1–8, 2016.

68 Andreas Becher et al.

Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Data Processing 19

[Be18] Becher, A.; B.G., L.; Broneske, D.; Drewes, T.; Gurumurthy, B.; Meyer-Wegener, K.;
Pionteck, T.; Saake, G.; Teich, J.; Wildermann, S.: Integration of FPGAs in Database
Management Systems: Challenges and Opportunities. Datenbank-Spektrum 18/3, pp. 145–
156, Nov. 2018.

[BTT98] Blickle, T.; Teich, J.; Thiele, L.: System-Level Synthesis Using Evolutionary Algorithms.
Design Automation for Embedded Systems 3/1, pp. 23–58, Jan. 1998, issn: 1572-8080.

[BWT18] Becher, A.; Wildermann, S.; Teich, J.: Optimistic regular expression matching on FPGAs
for near-data processing. In: DaMoN. 4:1–4:3, June 2018.

[CO14] Casper, J.; Olukotun, K.: Hardware acceleration of database operations. In: FPGA.
Pp. 151–160, 2014.

[Gr09] Grupp, L. M.; Caulfield, A. M.; Coburn, J.; Swanson, S.; Yaakobi, E.; Siegel, P. H.;
Wolf, J. K.: Characterizing flash memory: Anomalies, observations, and applications. In:
MICRO. Pp. 24–33, Dec. 2009.

[Ha13] Halstead, R. J.; Sukhwani, B.; Min, H.; Thoennes, M.; Dube, P.; Asaad, S. W.; Iyer, B.:
Accelerating Join Operation for Relational Databases with FPGAs. In: FCCM. Pp. 17–20,
2013.

[Ha17] Havard: Historical Cost of Computer Memory and Storage, Accessed: November 20,
2018, Dec. 2017, url: https://hblok.net/blog/storage/.

[ISA16] István, Z.; Sidler, D.; Alonso, G.: Runtime Parameterizable Regular Expression Operators
for Databases. In: FCCM. Pp. 204–211, 2016.

[KBT09] Koch, D.; Beckhoff, C.; Teich, J.: Minimizing Internal Fragmentation by Fine-Grained
Two-Dimensional Module Placement for Runtime Reconfiguralble Systems. In: FCCM.
Pp. 251–254, Apr. 2009.

[LC03] Lee, H. G.; Chang, N.: Energy-aware Memory Allocation in Heterogeneous Non-volatile
Memory Systems. In: ISLPED. Pp. 420–423, 2003, isbn: 1-58113-682-X, url: http:
//doi.acm.org/10.1145/871506.871609.

[LMP09] Lee, S.-W.; Moon, B.; Park, C.: Advances in Flash Memory SSD Technology for Enterprise
Database Applications. In: SIGMOD. Pp. 863–870, 2009, isbn: 978-1-60558-551-2,
url: http://doi.acm.org/10.1145/1559845.1559937.

[MT09] Müller, R.; Teubner, J.: FPGA: What’s in it for a database? In: SIGMOD. Pp. 999–1004,
2009.

[MTA12] Müller, R.; Teubner, J.; Alonso, G.: Sorting networks on FPGAs. VLDB J. 21/1, pp. 1–23,
2012.

[Ou16] Ouyang, J.; Qi, W.; Wang, Y.; YichenTu; Wang, J.; Jia, B.: SDA: Software-Defined
Accelerator for general-purpose big data analysis system. In: HCS. Pp. 1–23, Aug. 2016.

[Pu14] Putnam, A.; Caulfield, A.; Chung, E.; Chiou, D.; Constantinides, K.; Demme, J.;
Esmaeilzadeh, H.; Fowers, J.; Gray, J.; Haselman, M.; Hauck, S.; Heil, S.; Hormati, A.;
Kim, J.-Y.; Lanka, S.; Peterson, E.; Smith, A.; Thong, J.; Xiao, P. Y.; Burger, D.; Larus, J.;
Gopal, G. P.; Pope, S.: A Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services. In: ISCA. Pp. 13–24, 2014.

[Sa13] Sadri, M.; Weis, C.; Wehn, N.; Benini, L.: Energy and Performance Exploration of
Accelerator Coherency Port Using Xilinx ZYNQ. In: FPGAworld. 5:1–5:8, 2013, isbn:
978-1-4503-2496-0, url: http://doi.acm.org/10.1145/2513683.2513688.

[Se18] Seagate Technology, L.: Lies, Damn Lies And SSD Benchmark Test Result, Accessed:
November 20, 2018, 2018, url: https://www.seagate.com/de/de/tech-insights/
lies-damn-lies-and-ssd-benchmark-master-ti/.

ReProVide 69

https://hblok.net/blog/storage/
http://doi.acm.org/10.1145/871506.871609
http://doi.acm.org/10.1145/871506.871609
http://doi.acm.org/10.1145/1559845.1559937
http://doi.acm.org/10.1145/2513683.2513688
https://www.seagate.com/de/de/tech-insights/lies-damn-lies-and-ssd-benchmark-master-ti/
https://www.seagate.com/de/de/tech-insights/lies-damn-lies-and-ssd-benchmark-master-ti/

20 Andreas Becher, Achim Herrmann, Stefan Wildermann, Jürgen Teich

[Si17] Sidler, D.; István, Z.; Owaida, M.; Alonso, G.: Accelerating Pattern Matching Queries in
Hybrid CPU-FPGA Architectures. In: SIGMOD. Pp. 403–415, 2017.

[Su13] Sukhwani, B.; Thoennes, M.; Min, H.; Dube, P.; Brezzo, B.; Asaad, S. W.; Dillenberger, D.:
Large Payload Streaming Database Sort and Projection on FPGAs. In: SBAC-PAD. Pp. 25–
32, 2013.

[Su15] Sukhwani, B.; Thoennes, M.; Min, H.; Dube, P.; Brezzo, B.; Asaad, S. W.; Dillen-
berger, D.: A Hardware/Software Approach for Database Query Acceleration with
FPGAs. International Journal of Parallel Programming 43/6, pp. 1129–1159, 2015.

[Te12] Teich, J.: Hardware/Software Codesign: The Past, the Present, and Predicting the Future.
Proceedings of the IEEE 100/Special Centennial Issue, pp. 1411–1430, May 2012, issn:
0018-9219.

[UIO15] Ueda, T.; Ito, M.; Ohara, M.: A dynamically reconfigurable equi-joiner on FPGA, IBM
Technical Report RT0969, 2015.

[Wa16] Wang, Z.; Paul, J.; Cheah, H. Y.; He, B.; Zhang, W.: Relational query processing on
OpenCL-based FPGAs. In: FPL. Pp. 1–10, 2016.

[Zi16] Ziener, D.; Bauer, F.; Becher, A.; Dennl, C.; Meyer-Wegener, K.; Schürfeld, U.; Teich, J.;
Vogt, J.; Weber, H.: FPGA-Based Dynamically Reconfigurable SQL Query Processing.
TRETS 9/4, 25:1–25:24, 2016.

70 Andreas Becher et al.

cbe

Editor et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Query Planning for Transactional Stream Processing on
Heterogeneous Hardware: Opportunities and Limitations

– Novel Ideas & Experience Reports –

Philipp Götze1, Constantin Pohl1, Kai-Uwe Sattler1

Abstract: In a heterogeneous hardware landscape consisting of various processing units and memory
types, it is crucial to decide which device should be used when running a query. There is already a
lot of research done for placement decisions on CPUs, coprocessors, GPUs, or FPGAs. However,
those decisions can be further extended for the various types of memory within the same layer
of the memory hierarchy. For storage, a division between SSDs, HDDs or even NVM is possible,
whereas for main memory types like DDR4 and HBM exist. In this paper, we focus on query
planning for the transactional stream processing model. We give an overview of several techniques
and necessary parameters when optimizing a stateful query for various memory types, outlined with
chosen experimental measurements to support our claims.

Keywords: Stream Processing, Transactions, Cost Model, Xeon Phi, NVM, Non-Volatile Memory

1 Introduction

Technological advance has lead to a high degree of specialization in terms of hardware.
Instead of a single processing device being capable of dealing with any requirements and
applications, specialized variants improve performance more than a general approach would.
GPUs and many-core CPUs come with an intense computational power through parallelism,
FPGAs allow reconfigurations of functionality, NVM technology could provide persistence
on main memory speed, HBM greatly increases available bandwidth for memory-bounded
applications, etc. This heterogeneous landscape of hardware increases the possible search
space to come to an optimal query plan, though. Therefore, it is important to reduce the
complexity by isolating the factors that mostly influence query performance.
In this paper, we look at the possibilities of query planning for the transactional stream
processing model, highlighting opportunities but also limitations of different approaches.
In addition to the actual execution plan, the physical representation of states must also be
considered in this model. Thus, the following aspects must be taken into account when
selecting queries: 1 the state representations (the underlying data structures), 2 the data
placement (on which medium the data is stored), and 3 the algorithms (i.e. the appropriate
1 TU Ilmenau, Databases & Information Systems Group, Ilmenau, Germany, first.last@tu-ilmenau.de

cba doi:10.18420/btw2019-ws-05

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 71

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-05

2 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

implementation of the operators). All three points play closely together and can hardly
be considered separately. The questions that arise from this are, on the one hand, which
parameters are necessary for a suitable selection and, on the other hand, which of them
are actually accessible. Since stream queries usually run on a long-term basis, data rates
and characteristics (e.g., skew) may also change over time. This raises the further question
whether plans should, therefore, be repeatedly adjusted or rather a plan should be as robust
as possible right from the start.

2 Related Work

Query Planning. Cost models and query execution planning is a widely studied topic
in the DBMS world. Therefore, we will only discuss the most profound and relevant work
for us in the following. The work of Manegold [Ma02] was one of the first proposing
a hardware-based cost model for modern CPUs considering sophisticated features like
cache hierarchies. It investigated the typical memory access pattern of database operations
and distinguished between logical, algorithmic, and physical costs. Sixteen years later,
Zeuch [Ze18] has been working extensively on query planning for today’s generation of
CPUs that employ even more utilization techniques. A counter-based approach was proposed
that progressively optimizes the queries at runtime. Krämer [Kr07] have dealt intensively
with continuous queries and a corresponding cost-based resource management especially
for sliding windows. Here, an adaptive approach was chosen too, where the window size
is dynamically adjusted to the available resources within predefined bounds. Karnagel
et al. [Ka17] discuss another adaptive approach to optimally utilize query execution on
heterogeneous hardware. Their focus is on the optimal placement of work on compute units,
particularly for OpenCL-based DBMSs.
It was found that little work has been done on a cost model for data stream processing. At
the same time, the question arises which concepts of DBMSs are applicable to transactional
stream processing. More details to these and further approaches are discussed in Sect. 4.

Transactional Stream Processing. The STREAM [Mo03] project was one of the first
to deal with the combination of relational databases and stream processing. They have
considered continuous queries, possibly with a synopsis (≡ state), and provide a way to
share subplans and states. The plan selection is based on stream constraints with the sole
goal of minimizing the use of resources. Although constraints can be modeled with the help
of punctuations, there is no actual transaction management. Instead, a global scheduler
coordinates the successive execution of the individual operators by assigning time slots.
A more recent system that supports transactions in data stream processing is S-Store [Me15],
which is implemented on top of the main memory OLTP system H-Store [Ka08]. It can
guarantee the ACID properties by reapplying the existing transaction concepts of H-Store
for time-varying relations on, e.g., windows and streams. Queries over streams are expressed
as dataflow graphs, where each node represents a stored procedure and the edges define the

72 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

Query Planning for Transactional Stream Processing 3

execution order. Each execution of a stored procedure combined with an input batch forms
a transaction. Although it is not addressed directly, it can be assumed that query planning
was also inherited from H-Store.
Botan et. al. [Bo12] have defined a unified transactional model to combine traditional
transaction and data stream processing. This is realized by transforming continuous queries
into a sequence of one-time queries and, thus, treating streams and relations uniformly.
They implemented this model on top of an existing storage manager and extended it by a
transaction management component dealing with concurrency and failures. Continuous
query planning, however, was not really addressed here either.

3 Background

3.1 Transactional Stream Processing

The transactional stream processing model considered in this context distinguishes between
two types of data occurrence: tables to represent states and streams for data flowing through
the queries. Similar to the relational model, tables are a finite collection of data divided into
rows and columns. Streams, on the other hand, can be potentially infinite and are typically
defined as a sequence of tuples. While streams are volatile, tables also require a physical
representation.
Additionally, operators are needed to link these two concepts. We divide them into three
classes: TO_TABLE which updates tuples from a stream in a table, TO_STREAM producing
a stream of tuples based on either events in a table or the whole table, and FROM to attach
to a stream or to read data from a table. These operators are illustrated in Fig. 1.

TO_TABLE TO_STREAM

FROM (Table)

FROM (Stream)

Fig. 1: Overview of the transactional semantics for data stream processing.

Manipulations of states and streams is performed within a transactional context to ensure
atomicity and durability during writing. In order to guarantee atomicity, transaction
boundaries are required, which could be, for instance, automatically defined per stream
element or propagated alongside the actual data via punctuations. FROM and TO_STREAM
operators, on the other hand, provide different isolation levels where the latter requires an
additional trigger policy.

Query Planning for Transactional Stream Processing on Heterogeneous Hardware 73

4 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

3.2 Hardware Considerations

Today’s hardware landscape is becoming increasingly heterogeneous and there is a devel-
opment from general-purpose processors to special hardware for specific applications or
operators. This means that the corresponding application scenarios must first be identified
in our model. Since GPUs can process massively independent data in parallel, but have
comparatively high shipping costs, it is questionable whether they are suitable for stream
processing at all or whether SIMD registers are sufficient. Possible scenarios could be ad-hoc
queries on very large states or linear algebra operators for matrix calculations. FPGAs, on
the other hand, can already be soldered on CPU sockets and, thus, would not have too
high shipping costs. These could, e.g., be programmed for special operators or operator
pipelines which are highly CPU bound [Mü09]. Another aspect of heterogeneous hardware
are modern high-speed networks and technologies such as Infiniband, RoCE, and RDMA
respectively, which can be advantageous for distributed data management systems [Bi18].
Here, however, we focus on local stateful operations, which are more likely to be memory or
storage bound. Therefore, we aim our attention regarding modern hardware at Non-Volatile
Memory (NVM) and many-core processors, which we will describe briefly in the following.

Many-Core Architecture. Since there are physical limits to the clock rate in the devel-
opment of CPUs, nowadays the number of integrated cores is increased to enable high
parallelism. In contrast to multi-core CPUs, the many-core architecture offers even more
features for parallelization, such as more cores, each with hyperthreading, and wider SIMD
registers. However, the high number of densely packed cores creates a strong heat, which
is counteracted by simpler cores and a lower clock speed which in turn leads to poorer
singlethreaded performance. The Intel® Xeon Phi™ KNL, for instance, has up to 72 cores
(@ 1.5 GHz). In addition, the KNL features multi-channel DRAM (MCDRAM) which is a
variant of high-bandwidth memory (HBM), to increase the bandwidth up to 400 GB/s. For
query planning, the degree of parallelization and the partitioning of states is of particular
interest. It is also important to consider whether it is worth using HBM and in which mode.

Non-Volatile Memory. So that states in our model can survive power loss or system
failures, the data must be stored non-volatile. Whereas in the traditional way of persisting
data, I/O has accounted for the majority of the cost, this could change significantly with
the advent of NVM. This technology promises to combine the byte-addressability and low
latency of DRAM with the persistence and density of block-based storage media. However,
NVM suffers from a limited cell endurance and read-write asymmetry regarding the latency.
These characteristics mean for an optimizer that storage accesses are no longer clearly dom-
inating the costs. Furthermore, when selecting an execution plan and the data representation
of the states, the properties of the device must be considered. For NVM, writes should be
exchanged for multiple reads if possible to counteract the lower endurance and read-write
asymmetry. In addition, byte-addressability can be exploited with regard to atomicity.

74 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

Query Planning for Transactional Stream Processing 5

4 Continuous Query Planning

As stated earlier, when optimizing continuous queries not only the execution plan but also
the physical schema design must be determined. This applies in particular to queries with
stateful operators. Depending on the application, there can be various optimization goals,
such as low latency, high throughput or resource efficiency. Achieving these goals depends
on various factors. The objective is to identify the most influential of them. Therefore, we
first look at important parameters for query planning for stateful operators. We then discuss
various approaches how an optimizer can get and use these to construct suitable plans.

4.1 Stateful Processing

There are basically three scenarios when a state needs to be accessed with ACID guarantees:
(a) persisting modifications to a state, (b) querying a shared state, and (c) recovering a state
after a failure. Depending on the ratio and frequency with which these scenarios occur,
combined with their access profile, several types of states are sometimes more suitable than
others. State representations could be, e.g., a durable log, hash-based structures, tree-based
structures, sorted arrays/lists, graphs, or even various combinations of these. In addition,
there are available hardware and resource factors with appropriately optimized algorithms
and data placement. This basically results in a huge decision space. The task of the optimizer
is to select a suitable combination of state representation, data placement, and access
algorithms. For this, it receives the requirement profile and the available resources as input
and matches them with the state types and algorithms implemented in the system. Next, we
will go into more detail about the some possible parameters.

Data-driven Parameters. Regarding the access profile, a distinction can be made
primarily between dominant kinds of access (persisting, querying, recovery) and their ratio
and frequency as described above. In a transactional system, there are additional very
influential factors that affect the guarantee of ACID properties. For a shared state it is
important to know the number of concurrent accesses as well as the approximate degree of
contention. Based on this, an appropriate concurrency control protocol would have to be
selected. The question with data stream processing is where to get this information when
creating a query if no data has been seen yet. One possibility would be to rely on statistics
and heuristics based on previous queries. A modified form of sampling, if feasible, would
also be conceivable. Since a state is always part of an operator, it may be possible to derive
typical access patterns from it. It becomes more complicated if the state is defined via a
general purpose table. In this case, user annotations would be helpful. In order not to burden
the users with the task, a dynamic adaptation based on the actual workload might be a better
approach. However, this can lead to a situation in which another data representation or
placement is suddenly classified as much more efficient. Therefore, a potentially expensive
state conversion or migration may be worthwile. This would throttle the performance for

Query Planning for Transactional Stream Processing on Heterogeneous Hardware 75

6 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

a certain time, especially during a high demand for the affected state. This is why robust
query plans are often used that can withstand a wide range of scenarios.

Hardware-based Parameters. In addition to data-related parameters, there are also
hardware-based factors that can be indispensable for determining the optimal state repre-
sentation, data placement, and access algorithms. The first relevant factor is the general
availability of specific processing units (e.g., FPGA, GPU, many-core CPU) or, regarding
our focus, memory and storage variants (e.g., HBM, NVM, SSD, HDD). Moreover, the
available numbers of capacity, latency, and bandwidth are interesting with regard to storage
media. For example, due to limited space or performance reasons, a data structure could be
stored across multiple memory layers, as it is the case with the LSM-tree or hybrid structures
such as the FPTree [Ou16]. Sticking with LSM-trees, a different buffering strategy could
be chosen depending on the memory type [Le17]. Furthermore, depending on the access
granularity of the devices, the basic organization (blocks, pages, tuples, etc.) of the data must
be taken into account. For PUs, on the other hand, the degree of parallelizability and the
clock frequency are important. So it is possible to use different partitioning approaches here
to leverage the heterogeneous units. But the transport and merge times of a co-processor must
also be included in order to determine the profitability (cf. [Po17]). In practice, it becomes
even more complicated, especially with modern processors since sophisticated techniques
like caching, prefetching, branch prediction, reordering, etc. are involved (cf. [Ze18]). Below,
we outline how different approaches could acquire and use these parameters.

4.2 Optimizing Strategies

Existing Models. In the following, we discuss three classes of optimizing approaches,
which we categorize as hardware-oblivious, hardware-conscious, and learning models. Cost
models without hardware-related parameters (being hardware-oblivious) were relatively
common in the early database systems. Such models are usually application-based [LN96],
which means that a DBMS is manually tuned to the underlying hardware by identifying and
re-implementing major performance bottlenecks [WK90]. This allows to reduce the number
of parameters and, thus, the search space of cost models. However, a disadvantage of this
approach is that a change of hardware or software requires manual adjustments again.
A cost model that depends on hardware parameters like memory access latencies or cache
sizes is more robust against changes in general (being hardware-conscious). The usual way
to get this hardware information is by running a calibration tool [Ma02] whenever hardware
changes. The difficulty of such an approach is mainly to correlate those parameters correctly
since they can influence each other. To point an example, a higher clock frequency also
leads to a reduced latency of main memory accesses.
Recent research focuses on the combination of database models and machine learning. By
feeding parameters into well-trained machine learning models, manual tuning and cost
model adaptations are unnecessary. In [Or18], they applied deep reinforcement learning to

76 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

Query Planning for Transactional Stream Processing 7

incrementally find the optimal query execution plan through subqueries. However, learned
query optimization models can become difficult to configure correctly and also represent a
black box, which makes it difficult to interpret how a certain result is achieved.

Strategy for Transactional Stream Processing. For the transactional stream processing
model, an overall solution could be that the state type is determined by the access pattern
(e.g., using operator characteristics) and the optimizations regarding data placement and
algorithms are set by the hardware factors. Whether this is determined by a learning or a
concrete cost model still has to be shown. As we have seen, there is a plethora of parameters,
and only the most influential factors should be considered to avoid making the model too
complex. Moreover, not all information is available at all times, which means that certain
procedures may be excluded in advance. Therefore, we think an adaptive or progressive
optimization might be quite reasonable.
As a concrete proposal, we extend our cost formula for stateful operations from [Po17].
Calibrated hardware parameters are assumed. Since we include NVM in the consideration,
we separate read and write accesses. We further differentiate between state (f<s>) and
operator (f<op>) dependent cost factors. The former contains the average state-specific and
additional synchronisation (ACID) costs per access and the latter the logical operator-specific
read or write accesses. The first factor must also be determined depending on the underlying
hardware. This can be done either by another cost formula based on, e.g., the devices latency
or by using performance counters (cf. [Ze18]). Using these factors, we provide a formula
for every kind of state access (persisting, querying, and recovery) in Eqs. (1) to (3).

c<op> = f<op>r · f<s>r + f<op>w · f<s>w (1)
c<s>_q = σ · <s>size · f<s>r (2)

c<s>_rec = ∆ · <s>size · (f<s>r + f<s>w) (3)

Whereas the first depends on the operator, the other two cost formulas are rather state
dependent (<s>). The persistence costs consist of the read and write costs for the operator-
typical access and depend on the underlying state and hardware. State querying is similar to
typical cost models and, thus, cardinality and selection (σ) based. For recovery, we can
differentiate between three state dependent cases. The first case is when no recovery is
necessary for the state (only atomically visible changes), then ∆ and the total cost is zero.
As typical in DBMS, however, certain checkpoints could also be set, whereby only changes
up to the last checkpoint need to be considered. This distance (∆) could, for instance, be
given as a percentage of the total size. In the worst case (∆ = 1), if there are no checkpoints,
the entire state may have to be read and parts rewritten or removed. The precision of this
model in practice still has to be examined in future work.

Query Planning for Transactional Stream Processing on Heterogeneous Hardware 77

8 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

5 Experiments

The question we want to address in this section is whether it is possible to predict performance
behavior by a cost model on the memory layer. For reasons of space, we pick two comparisons:
DDR4-HBM and HDD-SSD, examining the performance of a sliding window operation
and an LSM-Tree. We expect a higher bandwidth to result in improved sliding window
performance if the rest of a query has few computations or the degree of inter-query
parallelism is high (hence more bandwidth is used). For the LSM-Tree, its structure as well
as modern prefetching and caching techniques should mask disk characteristics, almost
eliminating performance differences.
The experiments run on the Intel® Xeon Phi™ Knights Landing 7210 with 64 cores
à 4 threads @ 1.5 GHz (max), 96 GB DDR4, Linux kernel 3.10, and GCC 7.3. We
compare different performance metrics regarding memory (DRAM vs. HBM) and storage
technologies (HDD vs. SSD). Since we can only emulate NVM (using DRAM) so far, we
have omitted this technology from the experiments for now. The tests run with our data
stream processing framework PipeFabric2 with prototypical transaction support.

5.1 Sliding Window

A sliding window is a common operator for data stream processing. It keeps track of
incoming tuples, invalidating older ones to keep only the newest tuples available. The sliding
effect allows to continuously update the window tuple by tuple by sliding over the input
stream. In PipeFabric, a sliding window is a list of tuples where new entries are added at the
end of the list. Older tuples are removed by a count- or time-based check afterwards. If the
list is small enough to fit in one of the caches, fast access can be guaranteed. In addition,
higher memory bandwidth can be useful for pushing down recent changes of the list from
cache to main memory (inclusive caching). Furthermore, throughput of a window depends
on additional operators that a thread has to run. The more computations per tuple must
be done, the less bandwidth can be utilized. Fig. 2 shows the performance of inserts and
deletes of a sliding window operator with (a) varying thread numbers (each thread running
an own sliding window operator) and (b) varying the window size.
When inter-query parallelism gets higher (with more than 20 threads), the HBM can sustain
a higher throughput on average for each sliding window, as expected. Increasing the window
state size to keep track of more tuples leads to performance degradation, since the state
cannot be kept in the CPU caches (inserts at the end, deletes at the front). The number of
TLB and page misses also increases when more than 100k tuples per window are stored.
While throughput behavior can be predicted for varying window sizes, it is hard to anticipate
the query workload in real systems due to the interference of heterogeneous queries. Memory
access can differ fundamentally between operators, not to mention UDFs with unpredictable
behavior before execution. We therefore suggest a calibration approach for the available
stream operators like in our previous work [Po17] as a possible approximation.

2 PipeFabric: https://github.com/dbis-ilm/pipefabric

78 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

https://github.com/dbis-ilm/pipefabric

Query Planning for Transactional Stream Processing 9

0 32 64 128 192 256
#Threads

10

50

100

150

T
h
ro

u
g
h
p
u
t

[M
 t

p
/s

]

DDR4 only

Tuple Pointer in HBM

(a) Throughput with varying
thread count (10k window
size).

1 10 100 1k 10k 100k 1m
Sliding window size [tp]

10

50

100

150

T
h
ro

u
g
h
p
u
t

[M
 t

p
/s

]

DDR4 only

Tuple Pointer in HBM

(b) Throughput with varying
window size (64 threads).

0.1 0.3 0.5 0.7 0.9 1.1 1.3
Contention level ()

50

100

150

200

Th
ro

ug
hp

ut
 [K

 tp
/s

]

dev(qry)
HDD(63)
HDD(31)
HDD(15)
HDD(7)
SSD(63)
SSD(31)
SSD(15)
SSD(7)

(c) LSM-tree with varying devices
(dev) and ad-hoc queries (qry).

Fig. 2: Transactional Stream Processing experiments.

5.2 LSM-Tree as State Representation

This experiment aims to show that hardware and data structures are interdependent and that
it is essential which and where the hardware parameters are added to the model. Therefore,
we run the tests in our transactional stream processing framework having one continuous
and multiple ad-hoc queries accessing the same states. As state representation we used an
LSM-tree (RocksDB3) and varied the number of ad-hoc queries and the contention level.
Due to the nature of LSM-trees where write costs are amortized over time, we expect little
difference in throughput when storing it on an HDD and an SSD respectively. Theoretically,
the SSD is 10 times faster than the HDD. The results are shown in Fig. 2c.
As expected the performance for HDD and SSD is nearly the same. Instead, the concurrency
control protocol and the contention have more influence for such a data structure. This also
raises the question whether the use of NVM is worthwhile in this case. However, with other
data structures or queries that are, e.g., more bandwidth dependent, the selected device
could have a severe impact. Thus, there is an interdependence between hardware and data
structures which needs to be determined in the state-specific factor (f<s>).

6 Conclusion

There have already been a number of studies on query planning in the DBMS and DSMS
world. For transactional stream processing, the task is to unify them into one model that
processes both streams and tables. Since there is hardly any apriori knowledge about the
data in streams, a progressive approach seems to be useful. However, as constant changes
can be very expensive, we think that a combination of adaptive and robust query planning
is necessary. In this paper, we have briefly discussed which data- and hardware-based
parameters can be chosen for this and how they can be used. In doing so, we drew attention
to the opportunities and limitations of existing approaches and have underpinned these with
first experiments. A fully functional model is part of future work.

3 RocksDB (version 5.15.10): https://github.com/facebook/rocksdb

Query Planning for Transactional Stream Processing on Heterogeneous Hardware 79

https://github.com/facebook/rocksdb

10 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

Acknowledgments

This work was partially funded by the German Research Foundation (DFG) within the
SPP2037 under grant no. SA 782/28.

References

[Bi18] Binnig, C.: Scalable Data Management on Modern Networks. Datenbank-Spektrum 18/3,
pp. 203–209, 2018.

[Bo12] Botan, I. et al.: Transactional Stream Processing. In: EDBT. Pp. 204–215, 2012.
[Ka08] Kallman, R. et al.: H-Store: A High-Performance, Distributed Main Memory Transaction

Processing System. PVLDB 1/2, pp. 1496–1499, 2008.
[Ka17] Karnagel, T. et al.: Adaptive Work Placement for Query Processing on Heterogeneous

Computing Resources. PVLDB 10/7, pp. 733–744, 2017.
[Kr07] Krämer, J.: Continuous Queries over Data Stream - Semantics and Implementation, PhD

thesis, University of Marburg, Germany, 2007.
[Le17] Lersch, L. et al.: An analysis of LSM caching in NVRAM. In: DaMoN@SIGMOD. 9:1–9:5,

2017.
[LN96] Listgarten, S.; Neimat, M.: Modelling Costs for a MM-DBMS. In: RTDB. Pp. 72–78,

1996.
[Ma02] Manegold, S.: Understanding, Modeling, and Improving Main-Memory Database Perfor-

mance, PhD thesis, 2002.
[Me15] Meehan, J. et al.: S-Store: Streaming Meets Transaction Processing. PVLDB 8/13, pp. 2134–

2145, 2015.
[Mo03] Motwani, R. et al.: Query Processing, Approximation, and Resource Management in a

Data Stream Management System. In: CIDR. 2003.
[Mü09] Müller, R. et al.: Data Processing on FPGAs. PVLDB 2/1, pp. 910–921, 2009.
[Or18] Ortiz, J. et al.: Learning State Representations for Query Optimization with Deep Rein-

forcement Learning. In: DEEM@SIGMOD. 4:1–4:4, 2018.
[Ou16] Oukid, I. et al.: FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for

Storage Class Memory. In: SIGMOD. Pp. 371–386, 2016.
[Po17] Pohl, C. et al.: A Cost Model for Data Stream Processing on Modern Hardware. In:

ADMS@VLDB. 2017.
[WK90] Whang, K.; Krishnamurthy, R.: Query Optimization in a Memory-Resident Domain

Relational Calculus Database System. TODS 15/1, pp. 67–95, 1990.
[Ze18] Zeuch, S.: Query Execution on Modern CPUs, PhD thesis, 2018.

80 Philipp Götze, Constantin Pohl, Kai-Uwe Sattler

cba

(Hrsg.): ,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

Skew-resilient Query Processing for Fast Networks

(Extended Abstract)

Tobias Ziegler1, Carsten Binnig1, Uwe Röhm2

1 Introduction

Motivation: Scalable distributed in-memory databases are at the core of data-intensive
computation. Although scaling-out solutions help to handle large amounts of data, more
nodes do not necessarily lead to improved query performance. In fact, recent papers have
shown that performance can even degrade when scaling out due to higher communication
overhead (e.g., shuffling data across nodes) and limited bandwidth [Rö15]. Thus, current
distributed database systems are built with the assumption that the network is the major
bottleneck [BH13] and should be avoided at all costs.

In recent years, high-speed networks (e.g., InfiniBand (IB)) with a bandwidth close to the
local memory bus [Bi16] have become economically viable. These network technologies
provide Remote Direct Memory Access (RDMA) to allow direct memory access to a remote
host and also reduce the latency of data transfer through bypassing the remote’s CPU
[In17, Gr10]. Therefore, the assumption that the network is the bottleneck no longer holds.

Consequently, recent research has focused on integrating RDMA-enabled high-speed
networks into existing database systems designed along a Shared-Nothing Architecture
(SN) [Rö16, LYB17]. This architecture co-locates computation and data to reduce the
communication overhead in a cluster. Although combining a SN with IB’s higher network
bandwidth enables scalability to a certain extent, this approach fails if the data or workload
is skewed and cannot be evenly partitioned. The root cause is that classical query execution
schemes assume that each partition is processed by one node. Since nodes with larger
partitions must process more data, they may become a bottleneck and hinder the overall
scalability. In consequence, only utilizing the higher bandwidth without adapting the database
architecture and query execution, does not automatically lead to improved scalability [Bi16].

Contributions: In this paper, we present a new approach to execute distributed queries
on fast networks with RDMA. Our main contribution is a novel execution strategy, which
enables collaborative query processing by remote work stealing to mitigate skew, as this
is a common issues that hinders scalable query execution [WDJ91, Ly88]. Moreover, we
implement this execution strategy in our prototype engine I-Store and show that it introduces
almost no overhead to handle skew.
1 TU Darmstadt, Data Management Lab - Informatik, Germany, firstname.lastname@cs.tu-darmstadt.de
2 University of Sydney, School of Computer Science, Australia, uwe.roehm@sydney.edu.au

cba doi:10.18420/btw2019-ws-06

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 81

https://creativecommons.org/licenses/by-sa/4.0/
firstname.lastname@cs.tu-darmstadt.de
uwe.roehm@sydney.edu.au
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-06

2 Tobias Ziegler, Carsten Binnig, Uwe Röhm

2 System Overview

Compute Node Compute Node

Storage Node Storage Node

 RDMA

RAM RAM
Work

Queue
Work

Queue

Fig. 1: The NAM Architecture

I-Store builds upon an architecture specifically de-
signed along fast networks — called the network-
attached-memory (NAM) architecture [Bi16, Sa17].
The NAM architecture logically decouples compute
nodes from storage nodes and uses RDMA for com-
munication between all nodes as shown in Figure 1.
The idea is that storage nodes provide a shared dis-
tributed memory pool that holds all the data and
auxiliary data structures, which can be accessed via
one-sided RDMA from all compute servers. In contrast to the traditional SN database
architecture which physically co-locates the query execution with the storage location, the
NAM architecture separates them. Due to the separation of compute and storage servers,
computation can be executed independently of its storage location. Thus the computation
is less sensitive to workload skew, since in case of a straggling compute server any other
compute server can help. Therefore, in the NAM architecture data locality is not a hard
requirement but only a tuning parameter that can be added to speed-up workloads.

Our skew-resilient execution engine I-Store relies on fine-grained work elements that are
stored inside work queues as depicted in Figure 1. A query execution is broken down into
multiple work elements, similar to the morsel-driven execution on single node database
systems as proposed in [Le14]. The queue-based execution, in combination with the
possibility to access every data item via RDMA, allows load balancing by work stealing.
However, not every data access between a compute and a storage node needs to be via
RDMA. If we allow the (logical) compute and storage nodes to be co-located on the same
(physical) cluster node, I-Store can use local memory access instead of RDMA for all local
available data.

3 Remote Work Stealing
Queue-based Query Execution: I-Store implements a queue-based query execution strategy
that allows fined-grained execution by organizing work in smaller chunks, namely work
elements. A work element encodes the operation (e.g., an operator) and on which part of the
data the operation is executed. The work elements are then stored in work queues, which are
placed on the storage nodes as shown in Figure 1. Each work queue manages work elements
which belong to the same partition as indicated in Figure 2. In order to process a query, a
compute node is initially assigned to one work queue, i.e., to one partition. A compute node
pops the work elements sequentially from its respective queue. Based on the information in
the work element, a compute node processes the specified data pages. Once the assigned
queue of a compute node is empty (i.e., if all work elements have been processed), this node
starts stealing work elements remotely from other straggling compute nodes (i.e., from their
work queues).

82 Tobias Ziegler, Carsten Binnig, Uwe Röhm

Skew-resilient Query Processing for Fast Networks 3

Compute Node 1 Compute Node 2

Storage Node 1 Storage Node 2

Work

Queue
Work

Queue

P1

P2

Fig. 2: The NAM-Partitioning

NAM-Partitioning: A problem of remote work
stealing is that multiple compute nodes may try
to steal data from the same straggling compute
node, which would cause the available bandwidth
of the storage node to be shared among them. To
achieve a more balanced network usage, I-Store
implements a novel partitioning scheme, called
NAM partitioning, which distributes data equally
among all storage nodes independent of the data
distribution. In NAM partitioning, a partition is split into many small pages. These pages
are then distributed evenly in a round-robin fashion to all storage nodes. To maintain a
logical partition, the pages are linked together via a remote pointer to form a distributed
linked list of pages, as indicated in Figure 2. To avoid pointer chasing, I-Store implements a
prefetching mechanism: Using the remote pointer from an already fetched data page, I-Store
can overlay computation with data retrieval by exploiting the RDMA-network card as a
co-processor to prefetch the next page.

4 Experimental Evaluation
In the following, we present the results of a small experimental performance evaluation
of I-Store to validate the performance benefits of work stealing and NAM-partitioning.
The evaluation was conducted on a four-node cluster connected via a single InfiniBand
FDR 4X switch using one Mellanox Connect-IB card3. Each server had two Intel Xeon
E5-2660 v2 processors (20 cores in total) and ran on Ubuntu 14.01 Server Edition (kernel
3.13.0-54-generic). I-Store was compiled using gcc 4.8.5.

To be able to assess workload skew, we generated two synthetical datasets consisting of four
relations (A, B, C, D), one where the partition key is following a uniform distribution (i.e.,
all partitions have the same size), while the second dataset followed a Zipf distribution with
z = 1.25 (i.e., one partition dominates the others in size). Each record in the dataset consisted
of three attributes (PK, payload, FK) similar to [Rö16], with a tuple width of 24 Bytes. In
total, each table contained 420M records, which yields a total size of about 10 GB per table.
The query workload consisted of SQL queries that execute three joins (i.e., A./B./C./D)
with an additional selection on each inner relation (A./ σX(B)./ σY (C)./ σZ (D)). We
mainly concentrated on joins since these operations are widely used in many analytical SQL
workloads and we thus can show the effects of or work stealing algorithms for a wide class
of analytical SQL queries.

We assess the runtime of this workload on two system architectures: The baseline is the
shared-nothing architecture with co-partitioned (A,B) tables to minimize network transfers,
while I-Store implements a NAM architecture. We used the same cluster with four physical
nodes for this experiment. We configured I-Store to co-locate one compute and one storage

3 Theoretical bandwidth of 6.8 GB/s per incoming and outgoing link

Skew-resilient Query Processing for Fast Networks 83

4 Tobias Ziegler, Carsten Binnig, Uwe Röhm

node on each single physical node. We measured I-Store in four different configurations:
Plain I-Store without further optimizations, with work-stealing (WS), with NAM-partitioning
(NAM-Part), and with local-access optimization (LocOpt) enabled (i.e., data accesses do
not use RDMA but local memory accesses). For this paper, work stealing was done on the
granularity of the selection operators (scan and pre-filtering of data pages).

Uniform Zipf (1.25)
Workload Distribution

0

500

1000

1500

2000

2500

Ru
nt

im
e

(m
s)

Runtime Comparison
Shared-Nothing
I-Store
I-Store WS
I-Store WS+NAM-Part.
I-Store WS+NAM+LocOpt

Fig. 3: Performance of Different Execution Strate-
gies on Uniform and Skewed Data

As expected, the uniform dataset is the ideal
case for shared-nothing, however I-Store
with all optimizations shows a similar perfor-
mance (1220 ms vs 1251 ms). Interestingly,
work stealing can improve query execution
even for homogeneous clusters: I-Store WS
was 5% faster than plain I-Store. This shows
that even if the dataset follows a uniform dis-
tribution, it can happen that individual nodes
become slower than others due to external
factors, for example in a shared experiment
cluster like ours. NAM-partitioning (I-Store
WS+NAM-Part) further decreases the run-
time by another 5% since it balances network
access among storage nodes and avoids de-
lays due to network congestion. The last
optimization leverages local-access (I-Store with LocOpt) and performs similarly as the
baseline.

For the skewed distribution, the runtime of shared-nothing (1917 ms) was dominated by the
slowest node which needed to process 4.1 GB per partition. I-Store without any optimizations
takes the longest to finish (2699 ms), but if work-stealing is enabled the runtime is close
to our baseline. With NAM-Partitioning enabled, I-Store outperforms shared-nothing and
shows the effect of network congestion. The runtime with NAM-partitioning compared to
the vanilla work stealing approach is reduced by a 35%. In both distributions I-Store with
all optimizations performs best. Additionally, the overhead induced by the skewed workload
is only around 60 ms compared to the uniform execution.

5 Conclusion

This paper explored techniques to better align query execution with direct memory access
over high-speed networks. We presented I-Store, a novel queue-based query execution
engine that efficiently supports load balancing via NAM-aware data partitioning and work
stealing. In a short evaluation we showed that I-Store can handle skew with almost no
overhead. As an avenue of future work, we plan to implement different work stealing
strategies and show that our work stealing approach is applicable to a variety of operators.

84 Tobias Ziegler, Carsten Binnig, Uwe Röhm

Skew-resilient Query Processing for Fast Networks 5

References
[BH13] Babu, Shivnath; Herodotou, Herodotos: Massively Parallel Databases and MapReduce

Systems. Found. Trends databases, 5(1):1–104, November 2013.
[Bi16] Binnig, Carsten; Crotty, Andrew; Galakatos, Alex; Kraska, Tim; Zamanian, Erfan: The End

of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow., 9(7):528–539, March
2016.

[Gr10] Grun, Paul: Introduction to infiniband for end users. White paper, InfiniBand® Trade
Association (IBTA), 2010.

[In17] InfiniBand® Trade Association (IBTA): , Infiniband Roadmap. http://www.infinibandta.
org/content/pages.php?pg=technology_overview, 2017. Accessed: 2017-10-19.

[Le14] Leis, Viktor et al.: Morsel-driven parallelism: a NUMA-aware query evaluation framework
in the many-core age. In: ACM SIGMOD. 2014.

[Ly88] Lynch, Clifford A.: Selectivity Estimation and Query Optimization in Large Databases with
Highly Skewed Distribution of Column Values. In: Proceedings of the 14th VLDB. VLDB
’88, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 240–251, 1988.

[LYB17] Liu, Feilong; Yin, Lingyan; Blanas, Spyros: Design and Evaluation of an RDMA-aware
Data Shuffling Operator for Parallel Database Systems. Proceedings of the Twelfth European
Conference on Computer Systems - EuroSys ’17, pp. 48–63, 2017.

[Rö15] Rödiger, Wolf; Mühlbauer, Tobias; Kemper, Alfons; Neumann, Thomas: High-speed Query
Processing over High-speed Networks. Proc. VLDB Endow., 9(4):228–239, dec 2015.

[Rö16] Rödiger, Wolf; Idicula, Sam; Kemper, Alfons; Neumann, Thomas: Flow-Join: Adaptive
skew handling for distributed joins over high-speed networks. 2016 IEEE 32nd International
Conference on Data Engineering, ICDE 2016, pp. 1194–1205, 2016.

[Sa17] Salama, Abdallah; Binnig, Carsten; Kraska, Tim; Scherp, Ansgar; Ziegler, Tobias: Re-
thinking Distributed Query Execution on High-Speed Networks. IEEE Data Eng. Bull.,
40(1):27–37, 2017.

[WDJ91] Walton, Christopher B.; Dale, Alfred G.; Jenevein, Roy M.: A Taxonomy and Performance
Model of Data Skew Effects in Parallel Joins. In: Proceedings of the 17th VLD. VLDB
’91, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 537–548, 1991.

Skew-resilient Query Processing for Fast Networks 85

http://www.infinibandta.org/content/pages.php?pg=technology_overview
http://www.infinibandta.org/content/pages.php?pg=technology_overview

cbe

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

An Overview of Hawk: A Hardware-Tailored Code
Generator for the Heterogeneous Many Core Age

Sebastian Breß1, Henning Funke2, Steffen Zeuch1, Tilmann Rabl1, Volker Markl1

Abstract: Processor manufacturers build increasingly specialized processors to mitigate the effects
of the power wall in order to deliver improved performance. Currently, database engines have to be
manually optimized for each processor which is a costly and error prone process. In this paper, we
provide a summary of our recent VLDB Journal publication, where we propose concepts to adapt
to performance enhancements of modern processors and to exploit their capabilities automatically.
Our key idea is to create processor-specific code variants and to learn a well-performing code variant
for each processor. These code variants leverage various parallelization strategies and apply both
generic and processor-specific code transformations. We observe that performance of code variants
may diverge up to two orders of magnitude. Thus, we need to generate custom code for each processor
for peak performance. Hawk automatically finds efficient code variants for CPUs, GPUs, and MICs.

1 Introduction

Over the last decade, the main memory capacity has reached the terabyte scale. Main
memory databases exploit this trend in order to satisfy the ever-increasing performance
demands. As a result, they store data primarily in main-memory to eliminate disk I/O as
the main bottleneck. As a result, memory access and data processing have become the new
performance bottlenecks for in-memory data management [Ma00].

Current designs of main-memory database systems assume that processors are homogeneous,
i.e., with multiple identical processing cores. However, todays hardware vendors break
with this paradigm in order to circumvent the fixed energy budget per chip [BC11]. This
so-called power wall forces vendors to explore new processor designs to overcome the
energy limitations [Es11]. Hardware vendors integrate heterogeneous processor cores on the
same chip, e.g., combining CPU and GPU cores as in AMD’s Accelerated Processing Units
(APUs). Another trend is specialization: processors are optimized for certain tasks, which
already have become commodity in the form of Graphics Processing Units (GPUs), Multiple
Integrated Cores (MICs), or Field-Programmable Gate Arrays (FPGAs). These accelerators
promise large performance improvements because of their additional computational power
and memory bandwidth. Thus, from a processor design perspective, the homogeneous many
1 TU Berlin and DFKI GmbH, Berlin {sebastian.bress,steffen.zeuch,tilmann.rabl,volker.markl}@dfki.de
2 TU Dortmund, Dortmund, henning.funke@tu-dortmund.de

cba doi:10.18420/btw2019-ws-07

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 87

https://creativecommons.org/licenses/by-nc/3.0/
sebastian.bress,steffen.zeuch,tilmann.rabl,volker.markl
@dfki.de
henning.funke@tu-dortmund.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-07

2 Sebastian Breß, Henning Funke, Steffen Zeuch, Tilmann Rabl, Volker Markl

core age ends [BC11]. The upcoming heterogeneous many core age provides an opportunity
for database systems to embrace processor heterogeneity for peak performance.

Our goal is to empower database systems to automatically generate efficient code for any
processor without any a priori hardware knowledge, thus making database systems fit for
the heterogeneous many-core age. To achieve this goal, we proposed Hawk [Br18], a novel
hardware-tailored code generator, which produces variants of generated code. By executing
code variants of a compiled query, Hawk adapts to a wide range of different processors
without any manual tuning. Hawk achieves low compilation times and executes queries on a
wide range of processors. In this paper, we provide a summary of our recent publication in
the VLDB Journal [Br18]. Hawk’s code is available as open source.3

2 Overview of Hawk

To provide an architectural overview, we describe Hawk’s role in the process of executing
an SQL query. The SQL parser translates queries into relational query plans. After that,
the query optimizer rewrites the query plan by applying common optimizations to obtain
a query execution plan. On the next layer, Hawk provides a code generation back-end to
perform query compilation for efficient query execution. To this end, Hawk compiles query
execution plans just-in-time into machine code of a target processor.

Hawk’s key feature is the generation of efficient code for processors of different architectures.
Our approach follows the principles of query compilation [Ne11] as opposed to vector-at-a-
time processing [Bo05], because query compilation has the largest potential of applying
processor-specific optimizations. Hawk uses a three-step compilation process: 1) query
segmentation, 2) variant optimization, and 3) code generation (see Figure 1). In general,
Hawk receives a query plan as input and outputs optimized code for the underlying
processors. This process centers around pipelines, i.e., non-blocking data flows. In particular,
all operations in a pipeline are fused into one operator. The individual steps are as follows.

Query Segmentation. Hawk first segments query execution plans into pipelines using the
produce/consume model [Ne11] (Step 1 in Figure 1). During this step, Hawk creates
a pipeline program for each pipeline as the intermediate representation for a pipeline. A
pipeline program consists of simple operations such as loop, filter, and hash probe and
establishes the start point for optimization and target code generation.

Variant Optimizer. The initial pipeline program represents a hardware-oblivious blueprint
as a starting point for processor-specific optimizations. Based on that, Hawk produces
hardware-tailored code by applying modifications to the pipeline programs. A modifica-
tion is a change to a pipeline program, which preserves its semantic but changes the
3 https://github.com/TU-Berlin-DIMA/Hawk-VLDBJ

88 Sebastian Breß et al.

https://github.com/TU-Berlin-DIMA/Hawk-VLDBJ

An Overview of Hawk: A Hardware-Tailored Code Generator for the Heterogeneous Many Core Age
3

Pipeline
Program

Hawk

Code
Generator

Code Variant

Variant
Optimizer

Query
Plan

Intermediate representation
for pipelines

Select Processor-Optimized
Variant Configuration

Generate code for
pipeline program

Code variant optimized
for target processor

Optimized Pipeline
Program

Query
Segmentation

Segment query plan
in pipeline programs

Pipeline program optimized
for target processor

1

2

3

Fig. 1: Hawk’s compilation process.

generated code (e.g., memory access pattern).
A variant configuration captures all modifica-
tions of a pipeline program and thus provides a
value for each supported modification. The set of
all modifications defines the code generated by
Hawk. The variant optimizer selects an efficient
variant configuration for each pipeline program
on a target processor (Step 2 in Figure 1). Note
that Hawk automatically determines a variant
configuration for each target processor without
the need for manual tuning. In sum, Hawk ap-
plies the modifications specified in the variant
configuration to the input pipeline program and
returns an optimized pipeline program.

Code Generator. The code generator takes the
optimized pipeline program as an input and
produces the target code (Step 3). We refer
to the compilation result as code variant.

3 End-To-End Compilation Example

We exemplify the translation process of Hawk with the query illustrated in Figure 2. We also
show the pipeline programs that are created during the translation. The query contains two

Build
Pipelines

Probe
Pipeline

select x, sum(q)
from T1, T2, T3

where T1.x=5
 and T2.y>1
 and T3.z<3
 and T1.a=T3.b
 and T2.c=T3.d
group by x;

Example
Query

σy>1 σz<3

σx=5

 Γx,
sum(q)

T1

T2 T3

⋈c=d

⋈a=b

Build Pipeline 1 Build Pipeline 2 Probe Pipeline
LOOP(T1, ..) LOOP(T2, ..) LOOP(T3, ..)
FILTER(x=5, ..) FILTER(y>1, ..) FILTER(z<3, ..)
HASH_PUT(a, ..) HASH_PUT(b, ..) HASH_PROBE(a=c, ..)
PROJECT(a, x, ..) PROJECT(b, ..) HASH_PROBE(b=d, ..)

HASH_AGGREGATE(x,
sum(q), ..)

Fig. 2: Segmentation of example query into pipeline
programs.

hash joins, leading to a query plan with
three pipeline programs. The pipeline pro-
grams describe three pipelines. The two
build pipelines iterate over their input ta-
bles (T1 and T2), apply their filters, insert
the matching keys into a hash table, and
materialize their result. The probe pipeline
program iterates over table T3, applies it’s
filter, probes the hash tables, and performs
the aggregation. Next, the variant optimizer
selects a variant configuration, which de-
scribes the customized features for the trans-
lation. Then, the variant optimizer annotates
each pipeline program according to the vari-
ant configuration. Hawk determines variant
configurations by an offline-training work-

load of test queries using a structured experiment [Br18]. For simplicity and space restrictions,
we continue our example for Build Pipeline 1 only.

An Overview of Hawk 89

4 Sebastian Breß, Henning Funke, Steffen Zeuch, Tilmann Rabl, Volker Markl

Build Pipeline 1
number_of_threads=#CPU cores
LOOP(T1, sequential_memory_access)
FILTER(x=5, no_predication)
HASH_PUT(a, linear_probing)
PROJECT(a, x, single_pass_parallelization)

int thread_id = get_thread_id();
start=start_idx(thread_id, num_rows);
end=end_idx(thread_id, num_rows);
for(tid=start;tid<end;tid+=1){
 if(T1_x[id] == 5){
 INSERT_LP_HT(T1_a[tid], T1_x[tid]);
 }
 }

Fig. 3: Compiling an optimized pipeline
program to target code.

Hawk supports several code modifications such as
the memory access pattern (LOOP), branched pred-
icate evaluation or software predication (FILTER),
different hashing schemes (HASH_PUT), and par-
allelization strategies (PROJECT). We show a CPU-
optimized pipeline program in Figure 3. It uses one
thread per core, a sequential memory access pattern, a
linear probing hash table, and single-pass paralleliza-
tion. We illustrate the code generated by Hawk in
Figure 3. On GPUs, we use a different parallelization
approach called multi-pass to avoid high synchro-
nization overhead between threads [Br18]. Finally,
Hawk passes the code to the OpenCL compiler and
executes the final kernel program.

4 Summary of Key Insights
In this paper, we provided an overview of Hawk, a hardware-tailored code generator that
customizes code for a wide range of heterogeneous processors. Through hardware-tailored
implementations, Hawk produces fast code without manual tuning for a specific processor.
Our abstraction of pipeline programs allows us to flexibly produce code variants while
keeping a clean interface and a maintainable code base. Code variants optimized for a
particular processor can result in performance differences of up to two orders of magnitude
on the same processor. Thus, it is crucial to optimize the database system for each processor.
Acknowledgments. This work was funded by EU project E2Data (780245), DFG Priority Program “Scalable Data
Management for Future Hardware” (MA4662-5) and Collaborative Research Center SFB 876, project A2, and the
German Ministry for Education and Research as BBDC I (01IS14013A) and BBDC II (01IS18025A).

References
[BC11] Borkar, Shekhar; Chien, Andrew: The future of microprocessors. Communications of the

ACM, 54(5):67–77, 2011.

[Bo05] Boncz, Peter et al.: MonetDB/X100: Hyper-Pipelining Query Execution. In: CIDR. pp.
225–237, 2005.

[Br18] Breß, Sebastian et al.: Generating Custom Code for Efficient Query Execution on Heteroge-
neous Processors. The VLDB Journal, Jul 2018.

[Es11] Esmaeilzadeh et al.: Dark Silicon and the End of Multicore Scaling. In: ISCA. ACM, pp.
365–376, 2011.

[Ma00] Manegold, Stefan et al.: Optimizing Database Architecture for the new Bottleneck: Memory
Access. The VLDB Journal, 9(3):231–246, 2000.

[Ne11] Neumann, Thomas: Efficiently Compiling Efficient Query Plans for Modern Hardware.
PVLDB, 4(9):539–550, 2011.

90 Sebastian Breß et al.

cbe

A. Heuer et al. (Hrsg.): BTW 2019 - Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Workload-Driven Data Placement for GPU-Accelerated
Database Management Systems

Christopher Schmidt1, Matthias Uflacker1

Abstract: An increase in the memory capacity of current Graphics Processing Unit (GPU) generations
and advances in multi-GPU systems enables a large unified GPU memory space to be utilized by modern
coprocessor-accelerated Database Management System (DBMS). We take this as an opportunity to
revisit the idea of using GPU memory as a hot cache for the DBMS. In particular, we focus on the
data placement for the hot cache. Based on previous approaches and their shortcomings, we present a
new workload-driven data placement for a GPU-accelerated DBMS. Lastly, we outline how we aim to
implement and evaluate our proposed approach by comparing it to existing data placement approaches
in future work.

Keywords: GPU-Acceleration, Coprocessor-Accelerated Databases, Data Placement

1 Introduction

Advances in hardware lead to an increased specialization of processors. For optimal
performance a DBMS is advised to utilize all available hardware resources. GPUs raised an
interest as a coprocessor for DBMSs, particularly for main memory column stores, due to
their high memory bandwidth and parallel compute capabilities for query processing [Br14;
Mo13; YLZ13]. Yet, their memory capacity is limited and data transfer, via PCIe, between
on-device and host memory remains a bottleneck [GH11]. Note that with NVLink a faster
interconnect is introduced, but it still lacks support by major CPU vendors, which rely on
PCIe. Considering these challenges, query processing in coprocessor environments follows
one of two major execution models.

The first execution model streams data into the device memory, enabling the execution of
one or multiple operators, before results are transferred back into host memory. Despite
of recent improvements by Funke et al. [Fu18], where the bandwidth transfer bottleneck
is pushed from the interconnect to the GPU memory, initial data transfer accounts for a
significant portion of the total execution time.

The second execution model limits query processing to data that is already resident in GPU
memory to avoid data movement, in case it is harmful to query execution time [BFT16].
1 Hasso Plattner Institute, Enterprise Platform and Integration Concepts, August-Bebel-Str. 88, 14482, Potsdam,

vorname.nachname@hpi.de

cba doi:10.18420/btw2019-ws-08

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 91

https://creativecommons.org/licenses/by-nc/3.0/
vorname.nachname@hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-08

2 Christopher Schmidt, Matthias Uflacker

Using the GPU memory as a hot cache requires a periodic data placement, which ensures to
provide relevant data for query processing in the hot cache. This approach is limited by the
device memory.

Recent GPU generations have seen an increase in memory capacity. Furthermore, combining
multiple GPUs in a single system enables an even larger unified GPU memory space. Due
to this relaxation of the on-device memory limitations, we see potential to revisit the idea of
using GPU memory as a hot cache. Based on limitations in previous data-driven approaches,
we propose a novel strategy for the data placement in GPU-accelerated DBMS with the
goal to reduce the overall execution time for a given workload.

2 Related Work

GPU-accelerated DBMSs are an active area of research, aiming to fully utilize the hardware
capabilities by implementing operators specifically for the GPU [He08] and by tackling
challenges when integrating the coprocessor as an additional execution unit into the DBMS,
i.e., operator placement [Br14; KHL17] or data placement [BFT16; Mo13].

In CoGaDB [BFT16], data placement is implemented as a background job migrating data
into GPU memory. In order to decide for the data to be transferred they implement the
strategies least-frequently used (LFU) and least-recently used (LRU). They state that both
strategies perform similar in their evaluation. In MapD [Mo13], a strategy based on LFU
using the GPU memory as a fast buffer pool is implemented. In contrast to CoGaDB, they
partition columns into chunks, allowing a fine-granular data placement. Furthermore, a
database administrator (DBA) is able to influence the data placement by pinning chunks
into a layer of the memory hierarchy. In this context, we see potential for improvement with
both LRU and LFU. While LRU lacks the capability to account for frequently accessed data
partitions, LFU tends to keep certain data partitions longer than needed in GPU memory. We
believe that even the expertise of a DBA is insufficient to fully eliminate the shortcomings.
Additionally both strategies do not account for performance difference of migrated data.

3 Workload-Driven Data Placement

Using the GPU memory as a hot cache for the DBMS, i.e., with a data-driven execution
model [BFT16], requires to place columns into GPU memory. Since the placement happens
independent of query execution, a separate data placement job is executed. In order to
account for changes in a given workload, this job has to occur in periodic intervals or has to
be triggered by events, such as a violation of a service level agreement (SLA). The data
placement aims to transfer columns following a defined optimization goal, i.e., the reduction
of the overall execution time for a given workload. Deciding on the columns to fill the hot
cache requires a strategy, i.e., LRU or LFU. In contrast to these, we propose to derive the

92 Christopher Schmidt, Matthias Uflacker

Workload-Driven Data Placement for GPU-Accelerated Database Management Systems 3

decision for data placement from a cost metric based on the profit of placing a particular
column in GPU memory. In particular, we describe how this profit is updated during query
execution by reusing runtime estimates acquired during operator placement.

In general, we define the profit of placing a column in GPU memory over all previously
executed queries, by the sum of the profits of each individual query. The profit for a single
query is determined by the difference in runtime of executing the query on the GPU to
the runtime of executing the query on the CPU. The runtime for the GPU-based execution
includes result data transfer only, as the input data resides in GPU memory. Furthermore, in
case of a faster runtime on CPU, we assume a profit of zero. This constraint is based on the
assumption that columns in GPU memory present a mirrored subset of all columns present
in a higher memory hierarchy, as implemented in MapD [Mo13]. Hence, queries can run on
the CPU even if columns required to answer the query are present in GPU memory.

Executing each query on both execution devices in order to obtain the accurate runtimes for
the calculation of the proposed cost metric is infeasible in a productive DBMS. Therefore, we
utilize estimates of the runtime, which are commonly used in query optimization or operator
placement. Since query processing in heterogeneous execution environments requires an
operator placement, which is based on runtime estimates for given operators [Ka14], these
estimates can be reused for the calculation of the cost metric. The operator placement is either
integrated into the query optimizer or executed by a dedicated placement optimizer [KHL17].
Therefore, we extend the according component to update the cost metric for each column
during the placement decision. Note, letting the placement component update the cost
metric allows to take a more fine-granular unit for calculating the profit into account. Thus,
the profit per query is replaced by the profit per operator or sub-operator according to the
unit for operator placement.

The data placement job evaluates the above defined cost metric for each column and transfers
columns into GPU memory in periodic intervals. At first, a list containing a pointer to
the column, its accumulated profit and its memory footprint is created. Next, the list is
ordered starting with the column providing the highest profit per memory. Afterwards, the
candidates for the hot cache, the GPU memory, are drawn from the list starting at the top
until the amount of GPU memory reserved is exhausted. In case the current candidate does
not fit into the remaining GPU memory the next fitting one is chosen, until no more columns
fit within the given memory budget. Thus, we employ a greedy approach. This could be
replaced for example by using linear programming to find an optimal solution. Note, parts
of the GPU memory are reserved for intermediate and final results of operators. At last the
hot cache is updated according to the list of candidates. This involves checking and evicting
the columns resident in GPU memory, as well as, transferring new columns into it.

For the proposed workload-driven data placement it remains open to decide for an appropriate
interval to update the data placement or for appropriate events that trigger the data placement.
Furthermore, it needs to be evaluated whether the cost metric has to incorporate a temporal
factor to account for changes in workloads faster.

Workload-Driven Data Placement for GPU-Accelerated Database Management Systems 93

4 Christopher Schmidt, Matthias Uflacker

4 Next Steps

In our work we propose a novel data placement strategy using a cost metric for a GPU-
accelerated DBMS, which uses the GPU memory as a hot cache. In a next step, the
workload-driven data placement is implemented in an existing open source GPU-accelerated
DBMS. Currently, we investigate CoGaDB [Br14] and MapD [Mo13] for this purpose. Once
integrated, our strategy is evaluated against existing approaches based on LFU and LRU.
For the measurements we will use workloads, based on the star schema benchmark and a
modified TPC-H benchmark, which have been used in [BFT16] to allow for comparability.
Furthermore, we aim to focus the evaluation on worst case scenarios for LFU, LRU and our
workload-driven data placement in order to investigate the limits of each strategy.

References

[BFT16] Breß, S.; Funke, H.; Teubner, J.: Robust Query Processing in Co-Processor-accelerated
Databases. In: Proceedings of the 2016 International Conference on Management of Data.
SIGMOD ’16, ACM, San Francisco, California, USA, pp. 1891–1906, 2016.

[Br14] Breß, S.: The Design and Implementation of CoGaDB: A Column-oriented GPU-
accelerated DBMS. Datenbank-Spektrum 14/3, pp. 199–209, Nov. 2014.

[Fu18] Funke, H.; Breß, S.; Noll, S.; Markl, V.; Teubner, J.: Pipelined Query Processing in
Coprocessor Environments. In: Proceedings of the 2018 International Conference on
Management of Data. SIGMOD ’18, ACM, Houston, TX, USA, pp. 1603–1618, 2018.

[GH11] Gregg, C.; Hazelwood, K.: Where is the data? Why you cannot debate CPU vs. GPU
performance without the answer. In: ISPASS IEEE. Pp. 134–144, 2011.

[He08] He, B.; Yang, K.; Fang, R.; Lu, M.; Govindaraju, N.; Luo, Q.; Sander, P.: Relational
Joins on Graphics Processors. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’08, ACM, Vancouver, Canada, pp. 511–
524, 2008.

[Ka14] Karnagel, T.; Habich, D.; Schlegel, B.; Lehner, W.: Heterogeneity-Aware Operator
Placement in Column-Store DBMS. Datenbank-Spektrum 14/3, pp. 211–221, Nov. 2014.

[KHL17] Karnagel, T.; Habich, D.; Lehner, W.: Adaptive Work Placement for Query Processing
on Heterogeneous Computing Resources. Proc. VLDB Endow. 10/7, pp. 733–744, Mar.
2017.

[Mo13] Mostak, T.: An Overview of MapD (Massively Parallel Database), 2013, url: www.
smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf.

[YLZ13] Yuan, Y.; Lee, R.; Zhang, X.: The Yin and Yang of Processing Data Warehousing Queries
on GPU Devices. Proc. VLDB Endow. 6/10, pp. 817–828, Aug. 2013.

94 Christopher Schmidt, Matthias Uflacker

www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf
www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf

Workshop Digitale Lehre im Fach
Datenbanken

cba

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Digitale Lehre im Fach Datenbanken

Thomas C. Rakow1, Heide Faeskorn-Woyke2

Auf dem Herbsttreffen 2008 in Düsseldorf beschäftigte sich die GI-Fachgruppe Datenbanken
mit dem Thema "Quo Vadis: Formen der Datenbankausbildung und -weiterbildung", im
Datenbank-Spektrum wurde anschließend eine Ausgabe diesem Thema gewidmet [Rak09].
Jährlich werden auf der Konferenzreihe E-Learning-Fachtagung Informatik (DeLFI) fach-
übergreifend ïnternet-, medien- und rechnergestützte Lehr- und Lernformen"vorgestellt
[Del18]. Letztes Jahr wurde unter dem Motto "Digitalisierungs-(wahn)sinn? - Wege der
Bildungstransformation"die Problematik digitaler Lehre aufgegriffen. In dem Workshop
werden die Teilnehmer erarbeiten, wie die Lehre aktuell im Jahre 2019 im Fach Datenbanken
aussieht und welche Erfahrungen damit gemacht wurden. Themen des Workshops sind:

• Implementierung und Anwendung von Tools für die Entwicklung von Datenbanken

• Erstellung und Nutzung von Lernumgebungen für Datenbanken

• Erstellung von E-Learnings, Animationen und Videos für Datenbanksysteme

• Datenbanken und Dashboards zur Nutzungsanalyse und -befragung

• Digitale Prüfungen im Gebiet Datenbanken

Der Workshop ist als Erfahrungsaustausch Lehrender zu sehen, aber auch Studierende
sollen ihre Erfahrungen vorstellen. Hauptsächlich zielt der Workshop auf das kooperative
Vorstellen von eigenen gesammelten Erfahrungen ab. In fünf Impulsdarstellungen werden
Teilnehmer ihre Erfahrungen austauschen. Dabei werden sowohl die Vorgehensweisen zum
Lehren im Fach Datenbanksysteme - digitale Kommunikation, Portale, Blended Learning -
präsentiert als auch der Umgang aus der Lernerperspektive erfahrbar gemacht, wie mit einem
Tool für die relationale Algebra sowie E-Learnings und Lernvideos. Auch die Beziehung zu
ingenieurwissenschaftlichen Anforderungen der Softwaretechnik werden thematisiert. Das
Erarbeiten (gemeinsamer) Best-Practices wird sich an die Darstellungen anschließen.

Die folgenden Beiträge werden im Workshop vorgestellt:
1 Hochschule Düsseldorf, Fachbereich Medien, emailadresse@author1
2 Technische Hochschule Köln, Fakultät für Informatik und Ingenieurwissenschaften, emailadresse@author2

cba doi:10.18420/btw2019-ws-09

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 97

https://creativecommons.org/licenses/by-sa/4.0/
emailadresse@author1
emailadresse@author2
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-09

2 Thomas C. Rakow, Heide Faeskorn-Woyke

Name Hochschule Titel
Heide Faeskorn-Woyke Technische Das eLearning Datenbank Portal

Hochschule Köln edb2.0 in neuer Auflage
Sebastian Preetz Universität Lernen am System am Beispiel

Potsdam Datenbanksysteme
Thomas Rakow, Hochschule Lehr- und Lernmaterialien digital
Jens Lambert, Düsseldorf kommunizieren und evaluieren
Björn Salgert
Günther Specht Universität Innsbruck RelaX – ein webbasiertes Tool für

die relationale Algebra in der Lehre
Andreas Thor Hochschule für Ein Blended-Learning-Kurs für das

Telekommunikation Fach Datenbanksysteme
Leipzig

Literaturverzeichnis
[Rak09] Rakow, T.C., Faeskorn-Woyke, H., Schiefer, B., Vossen, G., Wäsch, J.: Tools für die Lehre

im Fach Datenbanken. Datenbank-Spektrum 9(29): 5-13 (Themenschwerpunkt: Lehre in
Datenbanken und Information Retrieval). D-Punkt Verlag, Heidelberg, Mai 2009. ISSN
1618-2162.

[Del18] E-Learning-Fachtagung Informatik 2018 (DeLFI), https://www.delfi2018.de/ (Zugriff:
09.02.2019)

98 Thomas C. Rakow, Heide Faeskorn-Woyke

https://www.delfi2018.de/

Workshop on Big (and Small) Data
in Science and Humanities (BigDS

2019)

Preface

cba

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Workshop Big (and Small) Data in Science and Humanities
(BigDS 2019)

Friederike Klan1, Birgitta König-Ries2, Peter Reimann3, Bernhard Seeger4, Anika Groß5

Over the last decade, we have witnessed a still ongoing digital transformation of science,
society and economy. Advances in data acquisition and the expansion of the internet to an
ubiquitous medium led to the era of Big Data, which is characterized by the availability
of a huge and ever increasing volume of complex, interlinked and heterogeneous data.
Remote and ground-based sensors in earth observation for example produce petabytes of
data with increasing spectral, temporal and spatial resolution. Social media users generate
content at a high rate. Information and knowledge encoded in those data have an enormous
value potential, that if revealed, could help to better understand the mechanisms underlying
complex systems such as the human society or our earth, to generate innovations and to
make well-founded decisions.

Thus, the importance of data has dramatically increased not just in economy but also in
almost all scientific disciplines, e.g. in meteorology, genomics, complex physics simulations,
biological and environmental research, and recently also in humanities. The unprecedented
availability of data stimulates a rethinking in scientific disciplines on how to extract useful
information and on how to foster research. At the same time researchers face severe
challenges in leveraging data, since appropriate data management, integration, analysis and
visualization tools have not been available so far. Recent advances in the development of big
data technologies and the progress in machine learning, semantic technologies and other
areas seem to be not only useful in business, but also offer great opportunities in science
and humanities. Scientific workflows need to be realized as flexible end-to-end analytic
solutions to allow for complex data processing, integration, analysis and visualization of
Big Data in various application domains.

The need to discuss real-world problems in data science as well as recent advances in big
data technology with database researchers and scientists from various disciplines led to the
first and second edition of the workshop on Big (and Small) Data in Science and Humanities
1 DLR Institut für Datenwissenschaften
2 Friedrich-Schiller-Universität Jena
3 Universität Stuttgart
4 Philipps-Universität Marburg
5 Hochschule Anhalt

cba doi:10.18420/btw2019-ws-10

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 103

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-10

2 Friederike Klan et al.

(BigDS) at BTW 20156 and 20177. This years third edition of the BigDS workshop8
co-located with the 18th symposium of “Database systems for Business, Technology and
Web” accommodates the still growing interest in methods to efficiently and effectively
manage and analyze Big Data. With workshop contributions from various disciplines we
hope to promote the dialog between domain experts and data scientists.

The workshop program included a keynote talk on digital humanities by Andreas Henrich,
where he discussed current approaches, challenges and applications in the context of
data integration, data federation and data analysis for humanities. We further selected six
contributions that address different challenges in the context of data-driven analytics. The
papers contribute to the management and analysis of data from various domains, such as
mobile data, automobile data, textual data like legal texts and bibliographic data as well as
ecological data. The proposed approaches are related to the analysis and use of complex
graphs and ontologies, item set mining and entity extraction as well as evaluation and quality
criteria.

Two papers focus on methods and models in the context of data analytics. Rost et al. present an
extension of the graph data management tool Gradoop to support temporal graph analytics.
They added time properties to vertices, edges and graphs and used them within graph
operators, e.g. to analyze temporal citation patterns as presented in a bibliographic usage
scenario. Spieß and Reimann analyzed the regulation and control of vehicle components
in automotive series production. They developed an adapted item set mining approach
in order to successfully perform association analysis for the domain-specific problem of
automatically identifying vehicles with high risk of failure.

Three papers deal with the analysis and extraction of information from textual data. Cornelia
Kiefer presents and discusses quality indicators for textual data. Beside the quality of texts
themselves, her aim is to predict the quality of text analysis results and to decide whether
default text mining modules are likely to deal with the textual data or not. In her evaluation
she investigates texts, e.g. from production, news and tweets using the proposed quality
indicators. The goal of Wehnert et al. is to provide a decision support system for legal
regulations, e.g. to inform companies about relevant regulatory changes that need to be
considered. In this work, they use linked laws from their ontology of legal textbooks and
developed a context selection mechanism to help users navigating in their legal knowledge
base, e.g. to find all applications of a law. Udovenko et al. present a hybrid approach
to extract entities from scientific publications in the ecological domain. They propose a
framework including the use of domain-related ontologies for entity annotation, and run an
initial evaluation for entity extraction from publications on biodiversity.

Finally, Steinberg et al. present a comparative evaluation for different software solutions
that support the form-based collection of mobile data. Nowadays, mobile devices heavily

6 http://www.btw-2015.de/?dms

7 http://btw2017.informatik.uni-stuttgart.de/?pageId=BigDS

8 https://btw.informatik.uni-rostock.de/index.php/de/call-for-workshops/bigds

104 Friederike Klan et al.

http://www.btw-2015.de/?dms
http://btw2017.informatik.uni-stuttgart.de/?pageId=BigDS
https://btw.informatik.uni-rostock.de/index.php/de/call-for-workshops/bigds

Workshop Big (and Small) Data in Science and Humanities 3

support the data collection process, and users often build on existing infrastructure and
software to collect and submit data. The paper reports on experiences with respect to the
whole data collection workflow and compares eight existing tools in terms of their features
and characteristics.

All contributions of this year’s BigDS workshop give new domain-relevant insights and
promote the use of generic as well as domain-specific methods for scientific data management
and analytics. We would like to thank everyone who contributed to the workshop, in particular,
the authors, the keynote speaker Andreas Henrich, the BigDS program committee, the BTW
team, as well as all participants.

Workshop Organizers

Anika Groß (Hochschule Anhalt, DE)
Friederike Klan (DLR-Institut für Datenwissenschaften, DE)
Birgitta König-Ries (Friedrich-Schiller-Universität Jena, DE)
Peter Reimann (Universität Stuttgart, DE)
Bernhard Seeger (Philipps-Universität Marburg, DE)

Program Committee

Alsayed Algergawy (Friedrich-Schiller-Universität Jena, DE)
Peter Baumann (Universität Bremen, DE)
Matthias Bräger (CERN, CH)
Thomas Brinkhoff (Jade Hochschule, DE)
Jana Diesner (University of Illinois at Urbana-Champaign, US)
Johann-Christoph Freytag (Humboldt-Universität zu Berlin, DE)
Michael Gertz (Universität Heidelberg, DE)
Thomas Heinis (Imperial College London, UK)
Andreas Henrich (Otto-Friedrich-Universität Bamberg, DE)
Alfons Kemper (Technische Universität München, DE)
Jens Nieschulze (Georg-August-Universität Göttingen, DE)
Eric Peukert (Universität Leipzig, DE)
Norbert Ritter (Universität Hamburg, DE)
Kai-Uwe Sattler (Technische Universität Ilmenau, DE)
Holger Schwarz (Universität Stuttgart, DE)
Uta Störl (Hochschule Darmstadt, DE)
Andreas Thor (Hochschule für Telekommunikation Leipzig, DE)

Workshop on Big (and Small) Data in Science and Humanities 105

Workshop Papers

cba

Herausgeber et al. (Hrsg.): XXX,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Temporal Graph Analysis using Gradoop

Christopher Rost1, Andreas Thor2, Erhard Rahm3

Abstract: The temporal analysis of evolving graphs is an important requirement in many domains but
hardly supported in current graph database and graph processing systems. We therefore have started
with extending Gradoop for temporal graph analysis by adding time properties to vertices, edges and
graphs and using them within graph operators. We outline these extensions and show their use in a
bibliographic scenario to analyze temporal citation patterns.

Keywords: Temporal Graph; Temporal Graph Data Model; Graph Analysis

1 Introduction

The flexible analysis of graph data has gained significant interest in the last decade and is
supported by graph database systems (e.g., Neo4j) and a growing number of distributed graph
processing systems [Ju17]. While graphs typically evolve continuously, graph processing
systems mostly focus on the analysis of static graphs representing the state (or snapshot) of
a graph at a specific point in time. Changes like the addition of vertices and edges can occur
comparatively slowly (e.g., in bibliographic networks) or at high frequency (e.g., as a stream
of posts in a social network). An important requirement in many domains is to analyze the
temporal dimension of graphs, e.g., to analyze the evolution of certain relationships like
the citation patterns of publications or the development of co-authorships in bibliographic
networks. For streaming-like changes there are specific analysis requirements, in particular
to support fast, real-time reaction to certain changes such as the spread of hate messages in
social networks.

In this short paper, we report on work in progress on temporal graph analysis using
Gradoop [Ju16, Ju18], a distributed, open source framework for graph analytics. It
supports extended property graphs as well as many declarative operators, e.g., for pattern
matching and structural grouping, that can be used to realize complex workflows for graph
analysis. Inspired by the temporal extensions in SQL:2011 [KM12] we extend the Gradoop
graph data model by time properties for valid and transactional time. We also show how
these temporal properties can be used within the operators for temporal graph analysis.
Furthermore, we sketch the use of these operators for a bibliographic use case to find certain
1 University of Leipzig, rost@informatik.uni-leipzig.de
2 Leipzig University of Telecommunications, thor@hft-leipzig.de
3 University of Leipzig, rahm@informatik.uni-leipzig.de

cba doi:10.18420/btw2019-ws-11

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 109

https://creativecommons.org/licenses/by-sa/4.0/
rost@informatik.uni-leipzig.de
thor@hft-leipzig.de
rahm@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-11

2 Christopher Rost, Andreas Thor, Erhard Rahm

temporal citation patterns. After a discussion of related work we introduce the temporal
extensions of Gradoop’s property graphs (Sect. 3) and operators (Sect. 4). We then show
the use of the operators in building blocks for common tasks in temporal graph analytics
(Sect. 5) and outline the bibliographic use case in Section 6.

2 Related Work

Date et al. [DDL02] define three classes of time aspects for temporal relational databases
that can be applied one-to-one to temporal graphs: transaction time, valid time, and their
combination bitemporal data. Transaction time is defined as the time interval in which a fact
is considered true in the database (graph). In most cases, the transaction time is maintained
by the processing system itself and can be used for versioning so that graph states can
be reconstructed for any point in the past. The valid time is defined as a time interval in
which a fact is valid as defined by the context of the data [DDL02]. Valid time intervals can
also be expressed by time-stamps if the duration can be neglected. Such graphs are also
known as transient [KD13] or contact sequences [HS12] since their time-stamps reflect a
chronological order of interactions (e.g., edge additions). Figure 1 shows an example of
a temporal graph with valid times: The temporal affiliations of authors to institutions is
represented as time intervals whereas the valid time of publications is the time-stamp when
the publication was published.

There are only few graph processing systems that natively support the storage, analysis and
querying of temporal graphs. Immortalgraph [Mi15] (earlier known as Chronos) provides a
storage and execution engine designed for temporal graphs. It includes locality optimizations
and an in-memory iterative graph computation based on series of graph snapshots. Snapshots
are divided into groups to provide temporal graph mining approaches. Kineograph [Ch12]
is a distributed platform for incoming stream data to construct a continuously changing
graph. It is also based on in-memory graph snapshots which are evaluated by conventional
mining approaches of static graphs (e.g., community detection). The snapshot approach is
used to distribute the graph on different systems. GraphStream [Pi08] is an open-source
Java library focusing on the dynamics aspects of a graph. It provides a flexible way to build
user-defined analyses upon a dynamic graph structure based on a stream of graph events.
None of these systems is based on a property graph model to hold detailed contextual
information of vertices and edges besides the structural information. Then et al. [Th17]
developed an automatic algorithm transformation to avoid multiple executions of graph
analytics algorithms on snapshots of a temporal graph to reduce their runtimes.

A fairly new temporal graph analytics library is Tink [Li18] that focuses on several temporal
path problems and offers the calculation of measures like temporal betweenness and
closeness. Similar to Gradoop, Tink is build on Apache Flink and employs the Property
Graph Model. Temporal information is represented by time intervals at the edges. In contrast
to Tink, Gradoop supports not only graphs but also logical graphs and graph collections.

110 Christopher Rost, Andreas Thor, Erhard Rahm

Temporal Graph Analysis using Gradoop 3

Fig. 1: TPGM example of a bibliographic graph (left) and the resulting annotated graph of the
Difference operator of Sect. 4 (right). Vertices and edges are specified by label, valid-time (with
format [val-from,val-to]) and properties.

Furthermore, our extension of the property graph model allows the definition of both
time-stamps and intervals on both vertices and edges.

3 Temporal Property Graph Model in Gradoop

We introduce the Temporal Property Graph Model (TPGM) as a simple but powerful
extension of the Extended Property Graph Model (EPGM) [Ju16] to support combinable
analytical operators on directed graphs that evolve over time in Gradoop. In the EPGM, a
single property graph is referred to as logical graph, which in turn can be part of a graph
collection. Vertices and edges refer to one or more logical graphs and are accordingly part
of them. Logical graphs, vertices, and edges consist of a unique identifier, a type label (e.g.,
User or worksAt), and a (possibly empty) set of properties represented as key-value pairs.

TPGM extends EPGM by adding four additional time attributes as obligatory to the schema
of vertices, edges, and logical graphs: tx-from, tx-to and val-from and val-to. The first two
represent the transaction time (prefix tx), the last two define the valid time (prefix val) by
holding the beginning and end of the elements validity. This approach offers a flexible
representation of temporal graphs with bitemporal time semantics where the valid time
can be empty, a time-stamp or a time interval by setting either none, only the val-from or
both val-from and val-to attributes. Since time attributes can be empty, also edge-centric
scenarios where a graph only has time information at its edges can be modeled. Empty
time attributes are interpreted as NULL values (e.g., in predicate functions) analogous
to SQL. Fig. 1 (left) shows a temporal graph from the bibliographic domain modeled in
TPGM. The graph represents the relationship between authors, affiliations and publications.

Temporal Graph Analysis using Gradoop 111

4 Christopher Rost, Andreas Thor, Erhard Rahm

There are vertices and edges without a temporal specification (e.g., Affiliation), with a
time-stamp (e.g., Publication) and a time interval (member) as valid-time. TPGM does not
specify the data type of the time attributes and leaves it up to the implementation (e.g., Unix
time-stamp or formatted date/time string). By holding a whole graph with both rollback and
historical information, this model offers a flexible retrieval of arbitrary graph snapshots and
dissociates itself from widespread snapshot approaches.

Valid times are typically embedded within the context of the data before they enter Gradoop.
The respective timestamps can be extracted while loading the elements as graph or collection
into the system. The transaction times are maintained by the Gradoop system automatically.
Vertices and edges can be added to (or deleted from) a logical graph as well as a whole
logical graph can be added to (or deleted from) a graph collection. For newly added graph
elements the value of tx-from is set to the current system time (i.e., import time) and tx-to to
infinity. If a graph element is deleted, the value of tx-to is set to the current system time. The
deletion of a vertex automatically triggers the deletion of all corresponding edges, since
they are not valid without the vertex. At the moment, the model does not support subsequent
changes (updated) of an element’s label, valid times or properties.

Another advantage of TPGM is its backward compatibility to the original EPGM since
every EPGM operator can be applied to a TPGM graph by disregarding the temporal
information of the graph elements. However, we will define appropriate operator extension
for TPGM that allows the definition of temporal graph analytical workflows in the next
section. Although TPGM offers bitemporal support, we limit ourselves exclusively to the
valid-times for simplicity in the following sections.

4 Operators

The EPGM allows for combining multiple operators to graph analytical workflows using the
domain specific language GrALa (Graph Analytical Language). It already provides operator
implementations for graph pattern matching, subgraph extraction, graph transformation,
set operations on multiple graphs as well as property-based aggregation and selection.
Some operators can be applied on logical graphs and others on graph collections [Ju16].
For simplicity we use the terms graph and logical graph, collection and graph collection
interchangeably. In this work we will focus on the six graph operators that are listed in Tab. 1.
They support the access and modification of the available temporal information in different
ways. The following sections provide short definitions of these temporal operators with some
examples. Pre-defined predicate functions that can be used by these operators are defined
in Tab. 2. Furthermore, helper functions that return parts of a date or time information (e.g.,
year or day of week) are available. The implementation of the operators and their integration
into Gradoop is currently work in progress. Since we focus on valid-times in this section,
each notation of from and to refers to the attributes val-from and val-to defined in TPGM.

112 Christopher Rost, Andreas Thor, Erhard Rahm

Temporal Graph Analysis using Gradoop 5

Operator Signature Output
Transformation* Graph.transform(graphFunction, vertexFunction, edgeFunction) Graph

Subgraph* Graph.subgraph(vertexPredicateFunction, edgePredicateFunction) Graph

Snapshot Graph.snapshot(temporalPredicateFunction) Graph

Difference Graph.diff(temporalPredicateFunction, temporalPredicateFunction) Graph

Grouping* Graph.groupBy(vertexGroupingKeys, vertexAggregateFunction, Graph,
edgeGroupingKeys, edgeAggregateFunction) Collection

Pattern Matching* Graph.query(patternGraph [,constructionPattern]) Collection

Tab. 1: Overview of TPGM unary operators and their signature. Operators marked with * already
exist in EPGM and were extended by temporal support.

Transformation. The transform operator defines a structure-preserving modification of
graph, vertex and edge data. User-defined transformation functions can be applied to an
input graph G, which results in an output graph G′ [Ju16]. Within TPGM it is possible to
(1) modify the temporal attributes, (2) define the time attributes from information stored
in properties or (3) create properties resulting from the temporal information of the time
attributes. For example, if the temporal attributes are not yet set or calculated during a
workflow, this operator offers the possibility to define the valid times from and to at runtime.

Subgraph. The subgraph operator is used to extract a subgraph from a graph by applying
predefined or user-defined predicate functions [Ju16]. Often, such a function is used to filter
vertices and edges by label or the existence or value of a property (e.g., vertices with label
User and property age greater than 30). Within TPGM, the temporal information of graph
elements can be used inside the predicate functions. The operator is also suitable to declare
vertex-induced or edge-induced subgraphs by providing either a vertex or edge predicate
function. Considering the graph in Fig. 1 (left), a subgraph with all author-affiliation
memberships that last longer that 3 years can be extracted with the edge-induced operator
call graph.subgraph(null, e -> e.label = ’member’ AND YEAR(e.to)-YEAR(e.from)

> 3).

Snapshot. The snapshot operator allows one to retrieve a valid snapshot of the whole
temporal graph either at a specific point in time or a subgraph that is valid during a
given time range by providing a temporal predicate function. Besides the operator itself,
several predefined predicate functions (see Tab. 2) are available. They are adopted from
SQL:2011 [KM12] that supports temporal databases. In the example of Fig. 1 (left),
graph.snapshot(asOf(2010)) would remove the author named Rost and the last three
publications together with their edges. Furthermore, three member edges (Rahm-Microsoft,
Thor-Uni Leipzig, and Thor-HfTL) are removed.

Difference. The evolution of graphs over time can be represented by the difference of
two graph snapshots, i.e., by a difference graph that is the union of both snapshots where
each graph element is annotated as an added, deleted, or persistent element. To this
end, Gradoop’s structural diff operator consumes two graph snapshots defined by
temporal predicate functions and calculates the difference graph. For example, the usage
of graph.diff(asOf(2010),asOf(2018)) at the graph in Fig. 1 (left) would result in the

Temporal Graph Analysis using Gradoop 113

6 Christopher Rost, Andreas Thor, Erhard Rahm

Function Predicate
Time-Stamp (only from defined) Time-Interval (from and to defined)

asOf(x) f rom ≤ x f rom ≤ x ∧ to ≥ x

fromTo(x, y) - f rom < y ∧ to > x

between(x, y) - f rom ≤ y ∧ to > x

precedes(c) f rom ≤ c. f rom to ≤ c. f rom
succeeds(c) f rom ≥ c. f rom f rom ≥ c.to
overlaps(c) - max(f rom, c. f rom) < min(to, c.to)

Tab. 2: Predefined TPGM predicate functions that can be used by the operators. Variables x and y
are timestamps, whereas c is a graph element. The predicates differ according to the definition of a
time-stamp or a time-interval.

annotated graph at Fig. 1 (right). The symbols +, - and = represent added, removed and
persisting elements, respectively.

Grouping. A structural grouping of vertices and edges is an important task in temporal
graph analytics. Since temporal graphs can become very large, a condensation can facilitate
deeper insights about structures and patterns hidden in the graph. In the current EPGM
implementation of the groupBy operator, a grouping is based on vertex and edge grouping
keys (e.g., the type label or property keys) as well as vertex and edge aggregation functions
[JPR17]. For temporal grouping, TPGM provides three additional features: First, time-
specific value transformation functions (e.g., year or day of week) can be applied to compute
time values on the desired granularity for grouping. Second, the groupBy operator supports
GROUP BY CUBE and GROUP BY ROLLUP similar to SQL. Third, aggregation on the temporal
properties from and to of the vertices and edges can not only be specified by user-defined
functions but by one of the predefined time-specific aggregation functions (e.g., MinFrom
or MaxFrom). For example, the AvgDuration aggregate function can be used to determine
the average duration of all membership edges at the graph in Fig. 1 (left).

Pattern Matching. Retrieving subgraphs matching a user-defined pattern graph is an impor-
tant task within the graph analytics domain. In the EPGM a pattern matching operator query
is already implemented [Ju16] using basic concepts of Neo4j Cypher4 to define patterns, e.g.,
(a)-[b]->(c). Predicate functions can be embedded in a pattern inside a WHERE clause by us-
ing variables defined in the pattern. The resulting embeddings can be modified by providing a
construction pattern. In TPGM, we extend this functionality by using the temporal attributes
from and to inside predicate definitions, i.e., by pre-defined (see Tab. 2) and user-defined
predicate functions. For example, the pattern (a:Author)-[m:member]->(f:Affiliation

country : USA) WHERE m.asOf(2017) describes an author being a member of an affiliation
from the United States as of 2017.
4 https://neo4j.com/developer/cypher-query-language/

114 Christopher Rost, Andreas Thor, Erhard Rahm

https://neo4j.com/developer/cypher-query-language/

Temporal Graph Analysis using Gradoop 7

Affiliation

[]

Name: Microsoft

country: USA

collaborate
[2005,-]

Affiliation

[]

Name: Uni Leipzig

country: GER

Affiliation

[]

Name: Microsoft

country: USA

collaborate
[2005,-]

Affiliation

[]

Name: Uni Leipzig

country: GER

Affiliation

[]

Name: UMD

country: USA

collaborate
[2011,-]

Affiliation

[]

Name: Uni Leipzig

country: GER

. . .

Grouping

Affiliation

[]

country: USA

count: 2

Affiliation

[]

country: GER

count: 2

Affiliation

[]

country: USA

count: 2

Affiliation

[]

country: GER

count: 2

collaborate
[]

count: 1

collaborate
[]

count: 3

collaborate
[]

count: 5

collaborate
[2000,2009]

count: 2

collaborate
[2010,2019]

count: 3

collaborate
[2000,2009]

count: 2

collaborate
[2000,2009]

count: 1

collaborate
[2010,2019]

count: 1

Roll-up

Fig. 2: Part of a graph collection containing embeddings of a temporal pattern (left) and the result of a
time-specific grouping and aggregation (right) applied on these matches.

5 Temporal Graph Analytics Workflows

In this section we discuss exemplary workflows for temporal graph analytics. We illustrate
how they can be supported by Gradoop and its extension to TPGM.

Snapshot generation and graph evolution: Graph systems or algorithms might focus on
the analysis of static graphs representing the state (or snapshot) of a graph at a specific
point in time. Gradoop therefore supports the retrieval of snapshots using the snapshot

operator in combination with time-based predicates. To identify the difference and thus the
changes between two graph snapshots, the diff operator can be used.

Temporal pattern matching: Searching for graph patterns using time-constraints is impor-
tant for temporal analysis. In the example of Fig. 1 (left), a query to obtain simultaneous collab-
orations between affiliations from different countries must take the valid times of the member
edges into account: (f1:Affiliation)<-[m1:member]-(a1:Author)-[:write]->(p:Pub)
(p)<-[:write]-(a2:Author)-[m2:member]->(f2:Affiliation) WHERE a1 != a2 AND

m1.overlap(p) AND m2.overlap(p). By applying this query together with the construction
pattern (f1)-[c:collaborate{from=p.from}]->(f2) to Gradoop’s query operator, a
collection of matching graph embeddings is generated which is exemplified in Fig. 2 (left).
A special case of such patterns are time-respecting paths, i.e., sequences of edges with
non-decreasing times that connect vertices. Time-respecting paths not only identify
all vertices that can be reached from others within some observation window [HS12]
(reachability) but might also define shortest paths in terms of the overall duration time of
the edges.

Time-specific grouping and aggregation: The time dimension automatically introduces a
hierarchy, i.e., graphs can be grouped (summarized) at multiple levels of time-granularity.
For example, the graph in the bottom-right corner of Fig. 2 summarizes the collaboration
between countries per decade based on co-authored publications, i.e., the Affiliation vertices

Temporal Graph Analysis using Gradoop 115

8 Christopher Rost, Andreas Thor, Erhard Rahm

Fig. 3: Example of a citation graph (left) and its graph summary (right) for three publications A, B,
and C that were all published in 2011. For simplicity, only citations to the three publications A, B, and
C are illustrated, i.e., citations between the citing publications are omitted. In the graph summary,
citing publications are grouped by publication year (indicated by color) and the number of citations
corresponds to the line widths of the super edges. The small charts illustrate the citation dynamics: A
follows a common life cycle, B is a constant performer, and C is a sleeping beauty.

are grouped by their country property and the collaborate edges are aggregated at the level
of decades to reflect the temporal changes in the collaboration over time. However, this
summarization can be rolled-up on the time hierarchy to have a global aggregation. To this
end, Gradoop’s groupBy operator groups all collaborate edges by year with GROUP BY

ROLLUP so that the resulting graph collection contains both graphs of Fig. 2 (right).

Efficient maintenance and re-use of queries and analysis results: Repeated execution of
Gradoop workflows, e.g., at certain times (e.g., once a month) or at certain events (e.g.,
when adding a new publication into a bibliographic network) requires an efficient update of
graph transformations and graph summaries both in their structure and aggregated property
values. In the above mentioned GROUP BY ROLLUP example, newly added publication vertices
might only update the collaborate edges where the publication valid time falls into the valid
time of the collaborate edge.

6 Use Case: Citation Analysis

The influence of past literature on current research is manifested by references cited in
publications. Bibliographic networks therefore consist of publications (vertices) and their
citations (directed edges) between them. Edges are time-stamped with the publication date
of the citing publication to indicate when the citation happened. Fig. 3 shows an example
with three publications A, B, and C (all published in 2011) that have been cited by 63 other
publications. Besides the question of identifying exceptionally highly-cited publications
("top publications") it is also of interest to identify the citation dynamic of cited publications
that usually follow a common life cycle: starting with low citations in the first or two years
of publication, growing up to a maximum of citations a few years later, followed by a
continuous decrease of citations several years after publication. However, other dynamics
are also possible: a more or less long period of non-recognition with low citations is followed
by a period with high citations after a sudden peak. Such publications are often referred to
as sleeping beauties [vR04], i.e., they remained undetected over many years before their

116 Christopher Rost, Andreas Thor, Erhard Rahm

Temporal Graph Analysis using Gradoop 9

results, methods, ideas etc. become important for current research. In contrast, constant
performers are characterized by citation rates which are constantly at least on the average
level compared to the other publications.

In the example of Fig. 3 the citation dynamics becomes visible after grouping the citing
publications by the year of publication, i.e., the summary contains six super vertices
(2012-2017) where each super vertex represents all vertices (i.e., citing publications) of the
corresponding year. Super edges between the super vertices and the three original nodes
(A, B, and C) store the number of elements they represent, i.e., the number of citations.
For example, the super edge 2017→ C represents eight edges, i.e., C has been cited by
eight publications in 2017. In Fig. 3 (right) the number of citations corresponds to the line
widths of the super edges. The graph summary reveals the citation dynamics of the cited
publications. For example, publication C did not get any citations in 2012 and 2013, few
citations in 2014 and 2015 and many in 2016 and 2017. It can therefore be classified as a
sleeping beauty. The described use case can be expressed in GrALa as follows:

// subgraph including edges of last six years
sub = in.subgraph(TRUE, e => YEAR(CURRENT)-YEAR(e.from) BETWEEN 1 AND 6)
// group citation edges by year; count number of citations
group = sub.groupBy(

[’citingpub’, (citingpub.from, t => YEAR(t))],
(superVertex, vertices => superVertex[’year’] = vertices.min(YEAR(from)),
[:label, (from, t => YEAR(t))],
(superEdge, edges => superEdge[’count’] = edges.count()))

// call external function ’classifier’ (UDF) to specify citation dynamics
group.transform(
(gIn, gOut => gIn),
(vIn, vOut => IF (vIn.label==’citedpub’) vOut[’dynamic’] = classifier(vIn)),
(eIn, eOut => eIn))

7 Conclusion

We reported our work in progress on temporal graph analysis by integrating our flexible
temporal property graph model TPGM that supports bitemporal time semantics into the
distributed graph analytic system Gradoop. By extending the available operators, we show
how the evolving nature of temporal graphs can be used to answer time-respecting analytical
questions. We illustrated the use of these operators within common building blocks of
analysis workflow and provided a real-world use case from the bibliographic domain to find
temporal citation patterns.

Temporal graphs and their analysis is an important and promising field of research. In
future work we will further extend Gradoop by temporal features such as operators and
algorithms to make Gradoop a powerful and flexible system for temporal graph analysis.

Temporal Graph Analysis using Gradoop 117

10 Christopher Rost, Andreas Thor, Erhard Rahm

Acknowledgements. This work is partially funded by Sächsische Aufbau Bank (SAB) and
the European Regional Development (EFRE) under grant No. 100302179.

References
[Ch12] Cheng, R., et al.: Kineograph: taking the pulse of a fast-changing and connected world. In:

Proc. EuroSys. pp. 85–98, 2012.

[DDL02] Date, C. J.; Darwen, H.; Lorentzos, N.: Temporal data & the relational model. Elsevier,
2002.

[HS12] Holme, P.; Saramäki, J.: Temporal networks. Physics Reports, 519(3):97 – 125, 2012.
Temporal Networks.

[JPR17] Junghanns, M.; Petermann, A.; Rahm, E.: Distributed grouping of property graphs with
GRADOOP. Proc. BTW 2017), 2017.

[Ju16] Junghanns, M.; Petermann, A.; Teichmann, N.; Gómez, K.; Rahm, E.: Analyzing extended
property graphs with Apache Flink. In: Proc. SIGMOD Workshop on Network Data
Analytics. 2016.

[Ju17] Junghanns, M.; Petermann, A.; Neumann, M.; Rahm, E.: Management and analysis of big
graph data: current systems and open challenges. In: Handbook of Big Data Technologies,
pp. 457–505. Springer, 2017.

[Ju18] Junghanns, M.; Kießling, M.; Teichmann, N.; Gómez, K.; Petermann, A.; Rahm, E.:
Declarative and distributed graph analytics with GRADOOP. PVLDB, 11(12), 2018.

[KD13] Khurana, U.; Deshpande, A.: Efficient snapshot retrieval over historical graph data. In:
Proc. ICDE. pp. 997–1008, 2013.

[KM12] Kulkarni, K.; Michels, J.: Temporal features in SQL: 2011. ACM Sigmod Record,
41(3):34–43, 2012.

[Li18] Ligtenberg, W.; Y.Pei; Fletcher, G.H.L.; Pechenizkiy, M.: Tink: A Temporal Graph Analytics
Library for Apache Flink. In: WWW (Companion Volume). ACM, pp. 71–72, 2018.

[Mi15] Miao, Y., et. al.: Immortalgraph: A system for storage and analysis of temporal graphs.
ACM Transactions on Storage, 11(3):14, 2015.

[Pi08] Pigné, Y.; Dutot, A.; Guinand, F.; Olivier, D.: GraphStream: A Tool for bridging the gap
between Complex Systems and Dynamic Graphs. CoRR, abs/0803.2093, 2008.

[Th17] Then, M.; Kersten, T.; Günnemann, S.; Kemper, A.; Neumann, T.: Automatic Algorithm
Transformation for Efficient Multi-Snapshot Analytics on Temporal Graphs. PVLDB,
10(8):877–888, 2017.

[vR04] van Raan, Anthony F. J.: Sleeping Beauties in science. Scientometrics, 59(3):467–472,
Mar 2004.

118 Christopher Rost, Andreas Thor, Erhard Rahm

cbe

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Angepasstes Item Set Mining zur gezielten Steuerung von
Bauteilen in der Serienfertigung von Fahrzeugen

Marco Spieß1 und Peter Reimann2

Abstract: Qualitätsprobleme im Bereich Fahrzeugbau können nicht nur zum Imageverlust des
Unternehmens führen, sondern auch mit entsprechend hohen Kosten einhergehen. Wird ein Bauteil
als Verursacher eines Qualitätsproblems identifiziert, muss dessen Verbau gestoppt werden. Mit einer
Datenanalyse kann herausgefunden werden, welche Fahrzeugkonfigurationen Probleme mit diesem
fehlerverursachenden Bauteil haben. Im Rahmen der domänenspezifischen Problemstellung wird in
diesem Beitrag die Anwendbarkeit von Standardalgorithmen aus dem Bereich Data-Mining untersucht.
Da die Analyseergebnisse auf Standardausstattungen hinweisen, sind diese nicht zielführend. Für dieses
Businessproblem von Fahrzeugherstellern haben wir einen Data-Mining Algorithmus entwickelt, der
das Vorgehen des Item Set Mining der Assoziationsanalyse an das domänenspezifische Problem anpasst.
Er unterscheidet sich zum klassischen Apriori-Algorithmus in der Beschneidung des Ergebnisraumes
sowie in der nachfolgenden Aufbereitung und Verwendungsweise der Item Sets. Der Algorithmus
ist allgemeingültig für alle Fahrzeughersteller anwendbar. Die Ergebnisse sind anhand eines realen
Anwendungsfalls evaluiert worden, bei dem durch die Anwendung unseres Algorithmus 87% der
Feldausfälle verhindert werden können.

Keywords: Big Data Analytics, Data-Mining, Item Set Mining.

1 Einführung

Garantiekosten im Rahmen der Produktgewährleistungspflicht können das Betriebsergeb-
nis eines produzierenden Unternehmens negativ beeinflussen [Ve00]. Im Geschäftsjahr
2017 ist von den Automobilherstellern weltweit eine Summe von 53,37 Mrd. USD an
Gewährleistungskosten gezahlt worden [Wo18]. Demnach nehmen das Qualitätsmanage-
ment sowie die Kundenbetreuung in der Produktnutzungsphase einen hohen Stellenwert
im Unternehmen ein, um Qualitätsprobleme möglichst frühzeitig zu identifizieren und zu
beheben [Ve00, BW16].

Dem in diesem Beitrag behandelten Anwendungsfall liegt ein Qualitätsproblem im Bereich
Getriebe von Fahrzeugen zugrunde. Dabei wurde die Kupplung durch verschiedene Mes-
sungen als Fehlerursache identifiziert, weshalb diese daraufhin konstruktiv angepasst wurde.
1 Universität Stuttgart, Graduate School of Excellence advanced Manufacturing Engineering (GSaME), Nobelstr.
12, 70569 Stuttgart, Marco.Spiess@gsame.uni-stuttgart.de

2 Universität Stuttgart, Graduate School of Excellence advanced Manufacturing Engineering (GSaME), Nobelstr.
12, 70569 Stuttgart, Peter.Reimann@gsame.uni-stuttgart.de

cba doi:10.18420/btw2019-ws-12

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 119

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-12

2 Marco Spieß und Peter Reimann

Diese angepasste Kupplung soll nun bereits in der Produktion in die Fahrzeuge eingebaut
werden, um zukünftige Feldausfälle zu verhindern. Durch vereinbarte Liefermengen kann
die neue Kupplungsversion aber nur in jedes zweite Fahrzeug eingebaut werden. Die
restlichen Fahrzeuge werden mit einer anderen Kupplung ausgestattet, welche zum Zeit-
punkt der Datenanalyse als OK eingestuft wurde. Das Ziel der durchzuführenden Analyse
ist die Identifizierung von Fahrzeugen, bei denen die neue angepasste Kupplungsversion
eingebaut werden soll, da die andere Kupplung bei diesen Fahrzeugen sonst weiter Probleme
verursachen könnte. Demnach soll mittels der Analyseergebnisse eine Steuerung von geeig-
neten Bauteilen in die individuellen Fahrzeugkonfigurationen erfolgen. Da Fahrzeuge, die
zunächst auf der Montagelinie montiert werden, keine Daten über die tatsächliche Nutzung
im Kundenumfeld enthalten, reduziert sich die Auswahl der relevanten Datenquellen für
die Analyse auf die Konfigurationsdaten von bereits produzierten und sich in Nutzung
befindlichen Fahrzeugen. Durch diese Daten wird ein zu produzierendes Fahrzeug in seiner
Zusammenstellung beschrieben, z.B. welcher Motor, Getriebe etc. verbaut sind oder ob
das Fahrzeug eine Sonderausstattung hat. Die ausfallgefährdeten Fahrzeuge werden durch
Kombinationen der ermittelten Konfigurationsmerkmale erkannt und mit der angepassten
Kupplung ausgestattet.

Folgende Einzelbeiträge werden in diesem Beitrag geleistet:

1. Es werden Untersuchungen mit alternativen Data-Mining Techniken auf deren
Eignung für die Problemstellung durchgeführt und bewertet. Dabei stellt sich heraus,
dass die Anwendung von Klassifikation sowie Clusteranalyse keinen Mehrwert
generieren, da sie Standardausstattungen eines Fahrzeugs als Ergebnis erzeugen, die
nicht zielführend sind. Die Assoziationsanalyse hingegen ist mit ihrer Eigenschaft,
kombinierte Elemente (Item Sets) zu betrachten, am geeignetsten. Dennoch kann mit
ihr alleine die Zielstellung nicht erreicht werden, da ausfallgefährdete Fahrzeuge nicht
durch einzelne Item Sets, sondern durch die Kombination mehrerer Sets beschrieben
werden [HKP12].

2. Im Sinne der Problemstellung schlagen wir einen angepassten Algorithmus vor, um
ausfallgefährdete Fahrzeugkonfigurationen aus den Garantiedaten zu identifizieren.
Die mit gleichen Konfigurationen zu produzierenden Fahrzeuge werden gezielt mit
einem geeigneten Bauteil ausgestattet. Hierfür haben wir das Item Set Mining des
Apriori Algorithmus angepasst, damit das Analyseergebnis in der Produktionssteue-
rung der Serienfertigung genutzt werden kann.

3. Der vorgestellte Algorithmus ist anhand eines realen Anwendungsfalls im Bereich
der Produktion von Fahrzeugen evaluiert und als geeignet bewertet worden. Dabei
konnten wir Konfigurationsmerkmale identifizieren, mit deren Anwendung 87% der
Feldausfälle hätten verhindert werden können.

Dieser Beitrag gliedert sich in fünf Abschnitte. In Abschnitt 2 stellen wir den Anwendungsfall
und die relevanten Daten vor. Abschnitt 3 stellt die Untersuchungsergebnisse aus der

120 Marco Spieß, Peter Reimann

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 3

Anwendung alternativer Data-Mining Techniken dar. In Abschnitt 4 stellen wir die Grundidee
des vorzuschlagenden Algorithmus sowie das damit erzielte Ergebnis vor. Dieser Beitrag
endet mit der Zusammenfassung und zukünftiger Arbeiten in Abschnitt 5.

2 Anwendungsfall

Der größte Anteil an Garantiekosten ergibt sich durch das vermehrte Auftreten von
Qualitätsproblemen beim Kunden im Produktgewährleistungszeitraum. Im Kontext des Qua-
litätsmanagement werden ausgebaute Schadteile aus dem Feld gezielt in die Befundstellen
der Original-Equipment-Manufacturer (OEM) eingesteuert, um sie einer Schadteilanalyse
zu überführen [Ve09]. Unter einem Schadteil werden jene Teile verstanden, die im Zuge
einer Reparatur ausgebaut und ersetzt werden. Im Kontext der Schadteilanalyse gilt es,
durch Methoden aus den Ingenieurwissenschaften wie bspw. Six Sigma oder 8D diejenigen
Schadteile zu identifizieren, die eine mögliche Fehlerursache für ein Qualitätsproblem dar-
stellen [JSW17]. Der in diesem Beitrag behandelte Anwendungsfall beschreibt das Problem
eines OEM, der die Kupplung als Fehlerursache identifiziert und diese in der Konstruktion
angepasst hat. Diese Anpassung muss nun in der Produktionslinie nachvollzogen werden.
Die Prämisse hierbei ist die limitierte Teileversorgung durch den Lieferanten, welcher
lediglich 50% der Produktion mit angepassten Kupplungen versorgen kann. Durch die
Prämisse der Teileversorgung soll die angepasste Kupplung gezielt in ausfallgefährdete
Fahrzeuge bereits in der Produktion eingebaut werden. Dabei definieren wir ein Fahrzeug
dann als ausfallgefährdet, wenn seine Konfiguration nahezu deckungsgleich ist mit den
Konfigurationen bereits ausgefallener Fahrzeuge. Diese Definition ist aus dem behandelten
Anwendungsfall abgeleitet, bei dem ein Fahrzeugausfall mitunter auf dessen technische
Zusammenstellung zurückzuführen ist. Demnach hat die durchzuführende Datenanalyse
das Ziel eine direkte Fehlerabstellung in der Produktion zu ermöglichen.

Fahrgestellnummer Feldausfall Konfiguration

XYZ4711L590 1 C1/C2/C3/C4/C5/C6/C7/C8/C9/C19/. . . /Cn
XYZ9718L590 0 C3/C6/C7/C8/C14/C34/C45/. . . /Cn
XYZ4707R790 1 C2/C6/C7/C10//C29/C40/. . . /Cn
...

Tab. 1: Exemplarische Datensätze der zu analysierenden Daten

Tab.1 zeigt einen beispielhaften Auszug der zu analysierenden Daten. Darin wird ein Fahr-
zeug eindeutig über dessen Fahrgestellnummer identifiziert. Ob ein Fahrzeug bereits einen
Schaden im Feld bzgl. des betrachteten Qualitätsproblems hatte, wird über das Setzen eines
Flags im Datenfeld Feldausfall erkenntlich. Des Weiteren sind im Datenfeld Konfiguration
sämtliche Merkmale enthalten, die ein Fahrzeug bzgl. dessen verbauter Ausstattungen näher
beschreiben. Dabei werden die Konfigurationsmerkmale als aneinandergereihte Codes der
Form C1, C2, C3 usw. gespeichert. Dabei gibt es in unserem Anwendungsfall insgesamt
3.000 disjunkte Code-Elemente. Im Durchschnitt enthält ein einzelnes Fahrzeug in etwa 300

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 121

4 Marco Spieß und Peter Reimann

unterschiedliche Codes. Da hierunter auch Merkmale enthalten sind, welche in nahezu jedem
Fahrzeug verbaut sind, wie ein Lenkrad, Reifen oder Radio, muss im Ablauf des Algorithmus
ein Mechanismus etabliert werden, der diese Standardkonfigurationen erkennt. In unserem
Anwendungsfall haben wir in der Analysemenge insgesamt 117.000 Fahrzeuge, wovon
2.000 bereits einen Feldausfall zum behandelten Qualitätsproblem aufweisen. Zusammen-
gefasst ergeben sich aus der vorliegenden Datenstruktur zwei wesentliche datentechnische
Herausforderungen für die Datenanalyse:

1. Standardcodes, also allgemeine Ausstattungen wie ein Lenkrad, die sehr viele
Fahrzeuge aufweisen und die aber keinerlei Bezug zum Qualitätsproblem haben,
können im Rahmen einer Mustererkennung nicht verwendet werden. Werden diese
dennoch berücksichtigt, stehen diese in der Ergebnisliste ganz oben. Demnach
müssen diejenigen Codes identifiziert werden, deren Kombination zum einen das
Schadgeschehen aus den Daten möglichst vollständig abbildet und zum anderen die
Menge an noch zu erwartender Feldausfälle möglichst präzise eingrenzt. Gleichzeitig
soll die Gesamtmenge an produzierten Fahrzeugen mit diesen Codes maximal 50%
betragen.

2. Innerhalb der Fahrzeuge kommt es bzgl. deren Ausstattungen zu einer Schnittmen-
genproblematik. Beispiel dafür ist Code C1, der in Kombination mit Code C2 in 150
ausgefallenen Fahrzeugen vertreten ist. Die Kombination C1 und C3 tritt hingegen in
100 reparierten Fahrzeugen auf. Da auch alle drei Codes C1, C2 und C3 in einzelnen
Fahrzeugen auftreten können, resultiert aus dem Beispiel eine kumulierte Anzahl
von 175 statt 250 aufsummierten Reparaturen. Die analytische Herausforderung
besteht darin, diejenigen Kombinationen mit dem möglichst größten Anteil am
Schadgeschehen zu entdecken, deren Anteile nicht in einer anderen Kombination
bereits enthalten sind. Anhand des o.g. Beispiels sollte demnach analysiert werden,
ob es weitere Kombinationen gibt, in denen die Codes C1, C2 und C3 enthalten sind
und durch Hinzunahme weiterer Codes wie bspw. C4, präzisiert werden können.

3 Eignung alternativer Techniken aus dem Stand der Technik

In diesem Abschnitt werden die Untersuchungsergebnisse hinsichtlich der für die Pro-
blemstellung infrage kommenden Techniken aus dem Bereich des Data-Mining vorgestellt
[HKP12]. Die Auswahl der aufgeführten Techniken ergibt sich aus der Struktur der zu
analysierenden Daten sowie dem Analysezweck aus der Problemstellung. Da die Ausstat-
tungsmerkmale eines Fahrzeugs bereits in einer warenkorbähnlichen Struktur vorliegen,
kommt die Assoziationsanalyse als Miningverfahren in Betracht. Ausgehend von der
analytischen Zielsetzung, relevante Konfigurationsmerkmale ausfallgefährdeter Fahrzeu-
ge zu identifizieren, sind auch die Klassifikation und Clusteranalyse Gegenstand dieser
Untersuchung. Die für die Datenanalysen genutzten Features sind bei allen Techniken
jeweils die Konfigurationsdaten. Dies wird damit begründet, da das Analyseergebnis in

122 Marco Spieß, Peter Reimann

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 5

der Serienfertigung genutzt werden soll, in der zu einemproduzierenden Fahrzeug, außer
der eindeutigen Fahrgestellnummer und dessen Ausstattung keine weiteren beschreibenden
Daten vorhanden sind. Für die Untersuchungen haben wir insgesamt 6.327 Instanzen
verwendet. Vor den Analysen haben wir versucht eine manuelle Datenfilterung der Codes
durchzuführen indem vermeintliche Standardcodes wie Lenkrad eliminiert werden. Ebenso
filterten wir weitere Sachverhalte wie Sitzbezüge und Felgen, bei denen keine technische
Relevanz gegeben ist, manuell per Datenbankabfrage aus der Analysemenge heraus. Trotz
dieser Datenfilterung können wir dennoch nicht sicherstellen, alle Standardcodes damit
ausgeschlossen zu haben. Zumal der Anwender i.d.R. kein Wissen über diese besitzt, muss
ein algorithmischer Automatismus entwickelt werden, der die Standardcodes von den
relevanten Codes separiert. Unserer Einschätzung nach lässt sich damit die Analysequalität
verbessern, denn im Allgemeinen stellt sich heraus, dass Standardcodes nicht eindeutig
als solche erkannt werden können. Somit können sie nicht vor einer Analysedurchführung
rausgefiltert werden, ohne das Analyseergebnis zu beeinflussen. Aus diesem Grund haben
wir die Analysen mit den Codes im Original durchgeführt. Dabei haben wir herausgefunden,
dass einzelne Codes in den Daten existieren, die aufgrund ihrer nominalen Bedeutung
eine Standardausstattung sind. Dennoch sind sie wichtig, da sie besonders in den bereits
ausgefallenen Fahrzeugen vorhanden sind.

Knoten 2: Radio

Wurzelknoten: Lenkrad

Knoten 1: Kaffeebecher

Knoten 3: Sitzbezug
…

Fahrgestellnummer C1 C2 C3 C4 C5 C6 C7 C8 Cn

XYZ4711L590 1 0 0 1 0 1 1 0 …

XYZ9718L590 1 1 0 0 0 1 1 0 …

XYZ4707R790 1 1 1 1 0 0 0 0 …

XYZ4727L595 1 0 1 0 1 0 0 0 …

XYZ9736L585 1 1 1 0 0 1 1 1 …

… … … … … … … … … …

Abb. 1: Klassifikation als Entscheidungsbaum

Im nachfolgenden Teil dieses Abschnitts gehen wir lediglich auf die Assoziationsanalyse
detailliert ein. Diese Data-Mining Technik, bzw. der darin vorgelagerte Analyseschritt
des Item Set Mining, hat sich im Rahmen unserer Untersuchung als am geeignetsten
für die Problemstellung herausgestellt. Für diese Feststellung haben wir die Anwendung
einer hierarchischen Clusteranalyse sowie einer Klassifikation als Entscheidungsbaum
für die Problemstellung untersucht. Beide Verfahren erzeugen anhand der nominalen
Konfigurationsdaten eine Baumstruktur, vereinfacht in Abb. 1 dargestellt, in der jeder Pfad
einzeln durchlaufen werden kann. Der stattfindende Test in den Knoten basiert auf der
Entscheidung, ob ein Code vorhanden ist oder nicht. Die dafür notwendige Datenstruktur
ist in Abb. 1 rechts dargestellt. In diesen Pfaden ist in den oberen Verzweigungen eine
signifikant hohe Anzahl von Standardcodes vertreten, die durch die Einbettung in die
Baumstruktur, nicht herausgelöst werden können. Durch den o.g. Punkt, dass Standardcodes
nicht als solche erkannt werden können, bewerten wir die beiden Data-Mining Techniken
bzgl. dieser Problematik als ungeeignet. Diese Bewertung begründet sich darin, dass die
Relevanz einzelner Codes nicht ersichtlich ist. Der in Abb. 1 gelb markierte Pfad stellt

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 123

6 Marco Spieß und Peter Reimann

dabei eine Konfigurationsausprägung dar. Die in der Abbildung aufgeführten Knoten
sind deren jeweiligen Tests. Durch die vorhandene Struktur können Codekombinationen
nicht wie beim Item Set Mining unabhängig voneinander untersucht werden, sondern
es können nur diejenigen Kombinationen betrachtet werden, die einen Pfad durch den
Baum beschreiben. Hingegen werden durch die Baumstruktur jegliche Überschneidungen
von Codes mehrerer Konfigurationsausprägungen und daher mehrerer Pfade im Baum
vermieden. Aus diesem Grund bewerten wir die Clusteranalyse und Klassifikation in
der Schnittmengenproblematik als bedingt geeignet. Nur bedingt deshalb, weil es dafür
erforderlich ist, alle Pfade des Baumes von Anfang bis Ende zu durchlaufen. Aufgrund der
Vielfalt an möglichen Fahrzeugvarianten beträgt die Anzahl an Ästen nahezu der Anzahl an
Instanzen, was nicht zielführend ist, um relevante Codes zu identifizieren.

3.1 Assoziationsanalyse

Im Kontext der Assoziationsanalyse haben wir uns für den Apriori-Algorithmus entschieden,
da er am bekanntesten ist und wir keine Performancevorgaben haben [AS94].

C1, C5, C9, C15

Item Sets

C1, C2, C8, C12

C2, C5, C8, C13

C5, C8, C9, C17

C1, C5, C9, C19

Abb. 2: Ergebnisauszug aus dem Item Set Mining

In Abb. 2 haben wir einen Auszug des visualisierten Ergebnisses aus dem Item Set Mining
mit den o.g. 6.327 verwendeten Instanzen aufgeführt. Die erste gelb markierte Kombination
ist von ihrer Anzahl dahinterstehender Fahrzeuge am höchsten. Da Abb. 2 das Ergebnis mit
allen Instanzen darstellt und nicht zwischen bereits ausgefallenen Fahrzeugen und bisher
nicht auffälligen Fahrzeugen unterscheidet, haben wir diese Codekombination gegen unsere
Datenbank abgefragt. Dabei stellt sich heraus, dass die Kombination C1, C5, C9, C15 zwar
den größten Anteil in den Daten bildet, dennoch sind von diesen 236 Fahrzeugen lediglich
17 bereits im Feld ausgefallen. Bei der untersten Kombination C1, C5, C9, C19 haben
wir hingegen ermittelt, dass von diesen 96 Fahrzeugen, 72 davon bereits einen Feldausfall
haben. Um die Relevanz aller Codekombinationen bzgl. Feldausfällen zu ermitteln, sind
für das Item Set Mining zwei Analysedurchgänge erforderlich und zwar einmal mit den
Fahrzeugen mit Feldausfällen und einmal mit den Fahrzeugen ohne Feldausfall. Anhand des
Beispiels stellen wir fest, dass wir nur einzelne Codekombinationen als relevant identifizieren
können, die lediglich einen Anteil am Schadgeschehen ausmachen. Um eine vollständige
Abbildung der Feldausfälle zu erzielen, ist es erforderlich weitere Kombinationen zu
betrachten. Dieser Punkt richtet sich an die Herausforderung der Schnittmengenproblematik,
da dieKombination mehrerer Item Sets nicht zwangsläufig zu einem besseren Ergebnis führt.

124 Marco Spieß, Peter Reimann

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 7

Vielmehr ist es notwendig die daraus resultierende Abdeckung von Feldausfällen sowie die
Anzahl aller mit diesen Kombinationen produzierten Fahrzeuge zu ermitteln. In Bezug auf
die datentechnische Herausforderung der Standardcodes bewerten wir das Item Set Mining
als bedingt geeignet, da die erzeugten Item Sets unabhängig voneinander betrachtet werden
können. Im Gegensatz zu anderen Data-Mining Verfahren wie der Klassifikation entsteht
hierbei keine Strukturierung, weshalb einzelne Items gezielt ignoriert werden können, ohne
das Analyseergebnis weiterer Item Sets zu beeinflussen. Bei der Klassifikation hingegen wird
damit die gebildete Struktur des Entscheidungsbaumes zerstört, wodurch die Ergebnisse
obsolet werden. Dennoch ist für das Item Set Mining ein vorgelagerter Schritt zu entwickeln
um die minimale Menge an einzelnen Codes zu bestimmen, mit denen das Schadgeschehen
abgebildet werden kann. Um auf die Herausforderung der Schnittmengenproblematik
einzugehen, betrachten wir dazu das erste und letzte Item Set in Abb. 2. Hierbei wollten wir
wissen, wie viele Fahrzeuge es mit beiden Sets zusammen gibt. Das Resultat daraus sind 251
Fahrzeuge. Somit stellen wir fest, dass sich 81 Fahrzeuge durch die Vereinigungsmenge der
beiden Vierer-Item Sets charakterisieren lassen. Daraus lässt sich schließen, dass die Codes,
welche die beiden Item Sets unterscheiden, anteilig jeweils in beiden Item Sets enthalten
sind. In diesem Beispiel sollte demnach ein Fünfer-Item Set gebildet werden, um die
Schnittmengenproblematik der beiden Vierer-Item Sets aufzulösen. Daraus ergibt sich die
Folgeproblematik, dass eine Entscheidung darüber getroffen werden muss, an welchem Punkt
die Erzeugung von weiteren Item Sets gestoppt werden soll. Diese Entscheidung sollte durch
testweises Kombinieren erzeugter Item Sets erfolgen. Dabei wird die eingangs erwähnte
Zielgröße der Teileversorgung von maximal 50% als zu erreichende Abbruchbedingung
herangezogen. Der Standard Apriori-Algorithmus kann diese Anforderung nicht erfüllen,
weswegen wir das Item Set Mining bzgl. der Schnittmengenproblematik als ungeeignet
bewerten. Ergänzend zum Item Set Mining haben wir die Ergebnisse aus der Erzeugung
von Assoziationsregeln auf Basis der bereits berechneten Item Sets untersucht. Das Fazit
dazu ist, dass die Regeln nicht den Analysezweck erfüllen, da mit diesen lediglich eine
Wenn-Dann-Beziehung innerhalb der Codes aufgezeigt wird. Die Erzeugung der Item Sets
als vorgelagerter Analyseschritt brachte hingegen mehr Erkenntnisse über die vorliegenden
Daten. Aus den Sets konnten wir per Ranking einzelne Merkmale finden, welche nicht in
Kombination mit Standardcodes ausgewiesen werden und gleichzeitig in einer signifikant
hohen Menge an ausgefallenen Fahrzeugen enthalten sind.

3.2 Zusammenfassung der Untersuchungsergebnisse

Nachstehende Tab. 2 führt die Ergebnisse der untersuchten Standard Data-Mining Tech-
niken auf deren Eignung bzgl. datentechnischer Herausforderungen auf. Dabei haben wir
festgestellt, dass sich lediglich Teilaspekte der Vorgehensweisen bedingt für jeweils eine
Herausforderung eignen. Die Conclusio der Untersuchung ist, dass sich das Item Set Mining
für die Problemstellung grundsätzlich eignet, da es die erzeugten Item Sets unabhängig von
einer notwendigen Struktur betrachtet. Somit können die von den Item Sets repräsentierten
Teilmengen einzeln analysiert und bewertet werden. Aus den durchgeführten Untersuchun-

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 125

8 Marco Spieß und Peter Reimann

Datentechnische
Herausforderung

Assoziationsanalyse
(Item Set Mining)

Clusteranalyse
(Hierarchisch)

Klassifikation
(Entscheidungsbaum)

Standardcode-
problematik

Bedingte Eignung Ungeeignet Ungeeignet

Schnittmengen-
problematik

Ungeeignet Bedingte Eignung Bedingte Eignung

Tab. 2: Gegenüberstellung von Data-Mining-Techniken bzgl. analytischer Herausforderungen

gen ergeben sich Anforderungen, die im Kontext einer domänenspezifischen Anpassung
des Standard Algorithmus erforderlich sind. (1) Vor der ersten Item Set Erzeugung soll
algorithmisch geprüft werden, welche Codes überhaupt notwendig sind. Damit beschneiden
wir den Ergebnisraum der Item Set Erzeugung, um somit minimale Item Sets zu identi-
fizieren, mit denen wir trotzdem eine nahezu 100% Abdeckung ausgefallener Fahrzeuge
erhalten. (2) Nach jeder Erzeugung von Item Sets, soll getestet werden, ob die erzeugten
Item Sets bereits ausreichen, um die Prämisse von maximal 50% produzierten Fahrzeugen
mit diesen Codes zu erfüllen. Hierfür wird, ausgehend von einem Startelement geprüft,
welche nachfolgenden Item Sets in das Ergebnisset geschrieben werden sollen. Zielsetzung
dabei ist, dass mit dem Hinzufügen eines Sets in die Ergebnisliste, die Abdeckung der
Feldausfälle stetig steigt. Das Unterschreiten der maximalen Anzahl produzierter Fahrzeuge
bildet dabei die Abbruchbedingung des Algorithmus.

4 Lösungsansatz und Ergebnisdiskussion

In diesem Abschnitt stellen wir den Grundgedanken des Algorithmus vor, den wir für die Pro-
blemstellung, unter Berücksichtigung der datentechnischen Herausforderungen, entwickelt
haben. Um die relevanten Codes für eine nahezu 100% Abdeckung bereits ausgefallener
Fahrzeuge zu identifizieren und dabei die Prämisse von 50% Teileversorgung einzuhalten,
sind im Ablauf des Apriori-Algorithmus, die in Abschnitt 3.2 aufgeführten Anforderungen,
notwendig. In Abb. 3 haben wir die Anpassungen am Apriori-Algorithmus exemplarisch
dargestellt. Im Anwendungsbeispiel haben wir einen Input von 117.000 Instanzen, wovon
2.000 einen Feldausfall haben. Zu jeder Instanz sind die Konfigurationsdaten enthalten. Der
zu unterschreitende Parameter beträgt 50%.

Der erste Schritt ist die Bestimmung der kleinstmöglichen Codemenge durch den Algorith-
mus A1, mit der 100% der Feldausfälle abgedeckt werden können, die gleichzeitig in einer
minimalen Anzahl von produzierten Fahrzeugen enthalten sind. Hierfür testet A1 iterativ,
beginnend bei den Codes mit den minimalsten Stückzahlen, ob sich bereits mit diesen das
Schadgeschehen abbilden lässt. Mit jeder Iteration werden weitere Codes in die Betrachtung
miteinbezogen, bis alle Fahrzeuge mit Feldausfällen abgebildet werden. Damit lassen wir
algorithmisch bestimmen, welche einzelnen Codes tatsächlich benötigt werden, um aus

126 Marco Spieß, Peter Reimann

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 9

Input:
117.000 produzierte Fahrzeuge
2.000 schadhafte Fahrzeuge

Attribute:
Fahrgestellnummer
Feldausfall
Konfiguration

Parameter
50% produzierte Fahrzeuge

A1: Algorithmus der
kleinstmöglichen

Codemenge

Item Set Erzeugung

A2: Algorithmus der
Schnittmengenevaluierung

Item Set Erzeugung

Item Set Größe: 1 Item Set Größe: 2 Item Set Größe: n

A2: Algorithmus der
Schnittmengenevaluierung

Abbruchbedingung nach Beendigung von A2 WENN Anzahl produzierter Fahrzeuge <= Parameter

Abb. 3: Ablauf des vorgeschlagenen Algorithmus für das angepasste Item Set Mining

diesen anschließend Item Sets zu bilden. Somit löst A1 die Standardcodeproblematik und
lässt sich zu Anforderung (1) einordnen.

In unserem Anwendungsbeispiel haben wir als Ergebnis von A1 25 disjunkte Codes über
alle Instanzen hinweg erhalten. Die anschließende Item Set Erzeugung erfolgt nach dem
Standardverfahren, jedoch werden nur Item Sets erzeugt, zu denen mindestens ein Fahrzeug
mit Feldausfall existiert. Der darauffolgende Algorithmus A2 evaluiert die Item Sets bzgl.
deren Schnittmengen und kumuliert in einem iterativen Prüfverfahren, welche Item Sets
miteinander kombiniert werden müssen. Ziel dabei ist es, eine Abfolge von Item Set
Kombinationen zu entdecken, die zusammen eine möglichst vollständige Abdeckung der
Feldausfälle erreichen. Ebenso wird in A2 die von dieser Abfolge betroffene Fahrzeuganzahl
berechnet. Ist die Anzahl größer als der gewählte Parameter, erfolgt erneut die Erzeugung
von Item Sets der nächsten Größe. Folglich lässt sich durch A2 die Schnittmengenpro-
blematik lösen und zur Anforderung (2) einordnen, indem die Fahrzeuganzahlen aus den
Vereinigungsmengen der erzeugten Sets berechnet werden.

Item Sets Kumulierte
Feldausfälle

Kumuliertes
Produktions-
volumen

Kum. Anteil an
Feldausfällen

Kum. Anteil am
Produktionsvolumen

C1, C6, C7 1750 57.500 87,50% 49,15%
C1, C8, C12 1400 42.000 70,00% 35,90%
C4, C9, C13 850 25.000 42,50% 21,37%

Tab. 3: Ergebnisdarstellung aus dem vorgeschlagenen Algorithmus

Der Algorithmus endet mit dem Erreichen des initial gewählten Parameters. Das Ergebnis des
Algorithmus ist somit eine Liste von Item Sets, die als Abfolge kombiniert werden, um einen
möglichst hohen Anteil von Feldausfällen abzudecken. In Tab. 3 ist solch ein Ergebnisset
dargestellt. In diesem Beispiel sind drei Item Sets identifiziert und deren kumulierten
Anteile zu Feldausfällen und Stückzahlen absteigend sortiert worden. Diese Kombinationen
können mittels OR-Operator kombiniert werden, um den Verbau von Bauteilen, in den
damit zu identifizierenden Fahrzeugen, zu steuern. Für unseren Anwendungsfall konnten

Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen 127

10 Marco Spieß und Peter Reimann

wir durch die Anwendung des Algorithmus, der prototypisch in T-SQL implementiert ist,
eine für die Produktionssteuerung geeignete Abfolge von Codekombinationen generieren
[MNK15]. Diese haben wir Anfang Juli 2018 mit der o.g. Anzahl Instanzen erzeugt und mit
den Feldausfällen, die bis zum Datenstand 30.11.2018 aufgetreten sind, abgeglichen. Somit
haben wir das Analyseergebnis mit den bis dahin neuen Daten als Validierungsdaten getestet.
Dabei kam heraus, dass wir 87% der bisher nicht betrachteten Feldausfälle mit unserer
Abfolge abdecken. Diese Abfolge wird ab dem 01.12.2018 zur gezielten Bauteilsteuerung
in der Serienfertigung genutzt.

5 Zusammenfassung und Ausblick

Für die Problemstellung, ausfallgefährdete Fahrzeugkonfigurationen für den Verbau einer
angepassten Kupplung zu identifizieren, konnten wir eine domänenspezifische Lösung
erarbeiten. Diese Lösung kann für alle OEMs genutzt werden, da die Datenbasis allgemein
gehalten ist. Diese wird aus den Garantie- sowie den Produktionsstammdaten bereits
produzierter Fahrzeuge gebildet. Mit der Identifizierung ausfallgefährdeter Fahrzeugkonfi-
gurationen können wir die Erfahrungen aus den Gewährleistungsdaten zur Rückkopplung in
die Serienfertigung nutzen. Somit können im Feld als Qualitätsproblem erkannte Fehler
gezielt in der Serienfertigung vermieden werden. In zukünftigen Arbeiten wird die vorge-
stellte Problemstellung formalisiert sowie die Anpassungen des Algorithmus in Form eines
Pseudocodes detailliert. [BW16]

Literaturverzeichnis
[AS94] Agrawal, Rakesh; Srikant, Ramakrishnan: Fast Algorithms for Mining Association Rules

in Large Databases. In: VLDB’94, Proceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile. S. 487–499, 1994.

[BW16] Brunner, Franz J.; Wagner, Karl W.: Qualitätsmanagement. Leitfaden für Studium und Praxis.
Hanser, München, 2016.

[HKP12] Han, J.; Kamber, M.; Pei, J.: Data mining. Concepts and techniques. Elsevier/Morgan
Kaufmann, Amsterdam, 2012.

[JSW17] Jung, B.; Schweißer, S.; Wappis, J.: 8D - Systematisch Probleme lösen. Hanser, München,
2017.

[MNK15] Mertins, D.; Neumann, J.; Kühnel, A.: SQL Server 2014. Galileo Press, Bonn, 2015.

[Ve00] Verband der Automobilindustrie e.V. (VDA): , Jahresbericht, 2000.

[Ve09] Verband der Automobilindustrie e.V. (VDA): , Schadteilanalyse Feld, 2009.

[Wo18] Worldwide Automobile Warranties, https://www.warrantyweek.com/archive/ww20180816.html,
Stand: 11.11.2018.

128 Marco Spieß, Peter Reimann

cba

Vorname Nachname et al. (Hrsg.): BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Context Selection in a Heterogeneous Legal Ontology

Sabine Wehnert, Wolfram Fenske, Gunter Saake1

Abstract: Ontology building in the legal domain is subject to ongoing research. Taxonomic ontologies
provide for instance concept hierarchies for term definitions, annotations, query expansion and support
for inferences. However, the context-dependent application of statuatory legal texts is hard to model,
often leading to a limited ontology scope and fixed terminology to avoid conflicts. In previous work,
we presented a method to create a lightweight heterogeneous ontology from textbooks offering
connections between laws, while avoiding an error-prone and costly ontology alignment step. In our
ontology, laws are linked by common contexts. We propose a new data model, so that the context can
be explored and selected by a user, which is necessary for many applications, such as recommender
systems. To obtain the relevant user context, we added a mechanism to retrieve linked laws from our
ontology, given a scope of user interest and context information for each law.

Keywords: Heterogeneous Ontologies, Legal Text Linking, Context Selection, Full-text Search.

1 Introduction

Nowadays, people are overwhelmed by the amount of legal regulations to consider. Especially
for international companies, it is becoming increasingly difficult to ensure that decisions
comply with all laws. Therefore, our greater research goal is to provide a decision support
system which monitors legislation and informs companies about relevant regulatory changes
so they can update their processes to ensure legal compliance2. It is not trivial to determine
relevance though, since it depends on many factors (e.g., user context, conditioned law
applications). There are two main approaches to incorporate domain knowledge into a system.
First, expert systems define answers for manually pre-defined queries, which is very costly.
Second, ontologies are an approach to ensure a common understanding of the concepts of a
domain, such that a query can be answered by rule-based reasoning. Ontologies are built
from terms of increasing abstraction level, forming a concept hierarchy. For the legal domain,
they can fulfill several reasoning tasks, for example finding consequences of a prohibition
or obligation, or determining analogies between legal cases [Na12]. There are many legal
ontologies [Aj16; Bu16; Ho07; So07], but they are limited to a highly specific domain (e.g.,
national law) or too abstract to be used as a stand-alone knowledge representation. For laws
only describing rules for abstract events, a subsumption to real-world situations is necessary
to understand whether a law applies to a given scenario [Di07]. As a consequence, experts
1 Otto von Guericke University Magdeburg, <firstname>.<lastname>@ovgu.de
2 The work is supported by Legal Horizon AG, Grant No.:1704/00082

cba doi:10.18420/btw2019-ws-13

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 129

https://creativecommons.org/licenses/by-sa/4.0/
<firstname>.<lastname>@ovgu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-13

2 Sabine Wehnert, Wolfram Fenske, Gunter Saake

create new or extend existing ontologies to fulfill the requirements of the respective user.
This is time-consuming and costly. We therefore propose a mechanism which we call context
selection, that allows users identify the laws applicable to their business scenario. It is a
challenging task to model this user context for all possible situations, so we seek to automate
this step by using external sources. In previous work, we extracted concept hierarchies from
legal textbooks which capture law application contexts [We18]. In particular, we annotated
table of contents elements (TOC) and applied them as a hierarchy for any cited legal
text within the respective book. Our process is depicted in Figure 1. From each sentence
containing a reference (REF), we compute a so-called citation summary (CS), the reason
for citing the legal text in the given section.

Table of Contents
1. Commercial law
1.1 Liability in damages
1.1.1 Intangible damage
1.1.2 Material damage
...

1.1 Liability in damages
Claims for compensation may result
from § 823 BGB.

1.1.1 Intangible damage
For compensation in cases of discrimina-
tion, see §§ 823, 253 II BGB , given that the
discrimination is at the same time a crimi-
nal prohibition (e.g., insult § 185 StGB).

REF1

REF2

REF3

TOC1
TOC2
TOC3
TOC4

CS1

CS2

CS3

Fig. 1: Annotation process for references (REF), citation summary (CS) and table of contents (TOC).

For example, the citation summary for § 185 StBG covers the word insult as a reason
for citing. Each book forms its own concept hierarchy from law citations within textbook
sections. We follow the notion of a heterogeneous ontology by Visser and Cui [Vi98] who
cluster concept hierarchies without any alignment. A cluster in our case can be a collection
of similar books on one broad topic, such as banking or IT law. Clusters can be seen as
knowledge modules which can be applied and queried separately. On one hand, books within
each cluster may provide different perspectives on the same topic, and on the other hand
they can enrich the knowledge base with their distinct content. Based on his or her interests,
a user can select relevant concept hierarchies. In this work, we propose a mechanism for
a user to navigate within the heterogeneous structure. Therefore, we develop a context
selection method, based on two use cases:

For the first use case (a), the user searches for possible applications of a law. The user
receives all occurrences of this law and context information from the concept hierarchy.
Then, the user can select one context and determine the level of abstraction. After this
context selection, all laws cited in the same context are retrieved. In the second use case (b),
the user has a passive role and just receives an alert when a law from his or her context has
changed. The context has to be selected beforehand, for example, by subscribing to one law
and selecting one context description. By automatically expanding the subscription to laws
referenced in the same context, users will also receive notifications about changes to relevant
laws they were unaware of. To support these use cases, a suitable data model is needed. In
this paper, we focus on the following aspects: First, we investigate an indexing method for
law reference lookups. Second, we develop a data model for interactive graph traversal for
knowledge extracted from legal textbooks with regard to the previously described use cases.

130 Sabine Wehnert, Wolfram Fenske, Gunter Saake

Context Selection in a Heterogeneous Legal Ontology 3

2 Context Selection

In this section, we describe the properties of our extracted data to choose appropriate search
and data storage methods. Then, we explain our data model and methods to navigate within
the data. Figure 2 illustrates the proposed workflow. We refer to the books which contain
user-relevant contexts as the scope of interest S, which can be composed of several textbook
clusters. The extracted concept hierarchies are stored in a graph database and replicated
into a full-text search engine. Then, we consider one specific query for all occurrences
of a reference to a law and its context. Given the query response, the user can select an
appropriate context by choosing a cutoff point in the respective concept hierarchy. For
instance, in Figure 1, the user can select the cutoff at section 1.1.1 Intangible damage, so
that any reference from 1.1.2 Material damage will be excluded.

Concept Hierarchy Cluster

Instance representation within concept hierarchy
REFi,b, CSi,b, TOCi,b for i ∈ I, b ∈ B ⊂ S

Import in graph database, replicate in full-text search engine

Query search engine for a reference
(a) User input, (b) Trigger-based (known scope)

Book 1 Book 2

Output query matches with context information

Optional scope refinement given output contexts using cutoff h

Fig. 2: Proposed workflow for context selection, given an output of matching instances i for a query.
An instance consists of a reference (REF), the citation summary (CS) and hierarchical context from
the table of contents (TOC). All instances I are drawn from textbooks B within the user-defined scope
S. This scope is reduced by context selection: A user specifies a cutoff level h to prune higher and
more abstract concept hierarchy levels and thereby removes connections to irrelevant laws.

2.1 Search Indexing

Using the context information, the user gets an overview of the concepts related to a legal
text. We expect slight variations in law citations, such as roman or arabic numerals referring
to a specific part of a law. Despite the need for approximate string matching, called fuzziness,
the amount of variation needs to be controlled because the names of statute books can
differ by a single letter, such as the German civil code BGB and the commercial code HGB.

Context Selection in a Heterogeneous Legal Ontology 131

4 Sabine Wehnert, Wolfram Fenske, Gunter Saake

Instead, we use exact matching for the query with references (while allowing for other
present strings). In case no result is obtained (e.g., due to spelling mistakes), we employ
fuzzy search. Despite the advantage of approximate string matching in full-text indexes, the
data can also be stored as a graph. Graph data allow for connections regardless of hierarchy
level and are optimized to process multiple outgoing relationships from one node. Later on,
we plan to analyze the content of legal text documents, which can result in further links
between laws, a so-called citation network. Graph data can be updated easily, however,
the information from a book will not change, once it has been inserted into the ontology.
Hierarchical storage of the data, for example in JSON format, is therefore also an option for
search in hierarchical data, especially when approximate string matching is required. In our
current prototype, we load all references to legal text as nodes into a graph database, create
PartOf relationships with each corresponding table of contents element and replicate the
data in hierarchical storage. Both systems have their own advantages - approximate string
matching and graph traversal - and we can select for each query where to process it.

2.2 A Data Model for Graph Traversal over Linked Legal Texts

As a first step toward graph traversal, we transform the data which were previously extracted3
into two separate csv files, one for the entities and one for their relationships. The data
model is shown in Figure 3. We store all entities using the same LABEL Node in the graph
and the search index. Furthermore, we define an additional field for each of them to preserve
entity TYPE information (e.g., of type Chapter, REF). In the FIELDSTRING, we store the
original text sequence from the book (see the highlighted sample text in Figure 1). There
can be an additional PROPERTY, for example the statute book of each REF (e.g., BGB) or the
noun groups within a CS which define the reason for citing (e.g., claims for compensation).
A relationship connects two entities via an id pointer (START_ID for outgoing and END_ID
for ingoing relationships). Relationships have a mandatory TYPE property. In our case, the
relationship type is a PartOf relation indicating a bottom-up concept hierarchy, such that
an entity of TYPE Subsection will be PartOf another entity of TYPE Section. References
to legal text have only outgoing relationships, while the book instance at the top of the
hierarchy just receives ingoing relationships. We directly access the IDs for scope definition
and linked reference search. This data model supports our use cases as follows. Suppose
a user is searching for possible applications of a law (a). The final output contains all
references to that law, together with context information until the desired abstraction level.
Likewise, a modified law may impact another law within the specified user context (b).
An example for the latter case are changes in company size threshold values for German
dismissal protection regulations (§23 Abs. 1 KSchG), which may be unknown to the user.
By using graph traversal for our two given use cases, legal texts are retrieved which share
the same concept hierarchy node with respect to a start reference. Nodes are traversed up to
the user-chosen cutoff h by accessing the relationships to find the path to the next entity of
type REF.
3 An implementation of the first use case and previous work can be found at https://github.com/anybass/HONto

132 Sabine Wehnert, Wolfram Fenske, Gunter Saake

Context Selection in a Heterogeneous Legal Ontology 5

Relationships

START ID
END ID
TYPE

Entities

ID
TYPE
FIELDSTRING
PROPERTY
LABEL

partOf
[outgoing]

partOf
[ingoing]

Fig. 3: Data model indicating the mapping between entity and relationship IDs in the csv files. The
entity and relationship specifications contain their own TYPE information.

3 Related Work

First, we regard work in relation to legal ontology learning and second, we examine
approaches for ontology-based query expansion. Legal ontology learning approaches are an
automated way of constructing a legal ontology. We observe that it is possible to follow a
combined top-down and bottom-up approach of ontology learning [Ag09; Ca08; El17; Fr10;
Ho07; Pe07]. Unfortunately, these approarches either require expert input or use statistical
language modeling methods which carry an inherent randomness and suffer from instability.
Semi-automated approaches can assist in ontology population, but still face the challenge
of transferring book knowledge - as it is - into an existing ontology without limiting the
knowledge scope. While we identify context-dependent links between legal texts, a suitable
domain ontology can be invoked for reasoning on the document level. Query expansion
is a method to enrich user search terms with further related words - such as synonyms,
hypernyms and homonyms - in order to retrieve more relevant items [Sc07]. Although this
direction is promising, an understandable presentation of the higher amount of documents
to the user is needed, while still accounting for a high recall. Using our context selection
mechanism, a user can control and reduce the number of output documents by pruning
irrelevant subtrees of a concept hierarchy.

4 Conclusion and Future Work

In this paper, we present a method to enable context selection in a heterogeneous lightweight
ontology obtained from legal textbooks. Our ontology offers context-dependent relationships
between legal texts. To this end, we propose a data model for storing the data in a graph
database or in hierarchical format. We develop a context selection mechanism that helps a
user navigate in our legal knowledge base and find different applications of a law, especially
in two use cases: Ad-hoc search for a legal reference and a subscription service. For
future work, we want to compare which storage option is better suited for other types of
queries, such as topics. We will also examine how existing ontologies can be applied for
document-level reasoning. Although preliminary results are promising, we will properly
evaluate our approach in a user study with domain experts.

Context Selection in a Heterogeneous Legal Ontology 133

6 Sabine Wehnert, Wolfram Fenske, Gunter Saake

References

[Ag09] Agnoloni, T. et al.: A two-level knowledge approach to support multilingual legislative
drafting. In: Proceedings of the 2009 conference on Law, Ontologies and the Semantic
Web: Channelling the Legal Information Flood. 2009.

[Aj16] Ajani, G. et al.: The European Taxonomy Syllabus: A multi-lingual, multi-level ontology
framework to untangle the web of European legal terminology. Applied Ontology 11/4,
pp. 325–375, 2016.

[Bu16] Buey, M. G. et al.: The AIS Project: Boosting Information Extraction from Legal Documents
by using Ontologies. In: Proceedings of the 8th International Conference on Agents and
Artificial Intelligence. 2016.

[Ca08] Casellas Caralt, N.: Modelling Legal Knowledge Through Ontologies: OPJK: the Ontology
of Professional Judicial Knowledge, PhD thesis, 2008.

[Di07] Dietrich, A. et al.: Agent Approach to Online Legal Trade. In (Krogstie, J.; Opdahl, A. L.;
Brinkkemper, S., eds.): Conceptual Modelling in Information Systems Engineering. Springer
Berlin Heidelberg, pp. 177–194, 2007.

[El17] El Ghosh, M. et al.: Ontology Learning Process as a Bottom-up Strategy for Building
Domain-specific Ontology from Legal Texts. In: ICAART (2). 2017.

[Fr10] Francesconi, E. et al.: Integrating a bottom–up and top–down methodology for building
semantic resources for the multilingual legal domain. In: Semantic Processing of Legal
Texts. Springer, pp. 95–121, 2010.

[Ho07] Hoekstra, R. et al.: The LKIF Core Ontology of Basic Legal Concepts. In: Proceedings of
the Workshop on Legal Ontologies and Artificial Intelligence Techniques (LOAIT). 2007.

[Na12] Naik, V. M. et al.: Building a Legal Expert System for Legal Reasoning in Specific Domain-A
Survey. International Journal of Computer Science & Information Technology 4/5, p. 175,
2012.

[Pe07] Peters, W. et al.: The structuring of legal knowledge in LOIS. Artificial Intelligence and
Law 15/2, pp. 117–135, 2007.

[Sc07] Schweighofer, E. et al.: Legal Query Expansion using Ontologies and Relevance Feedback.
In: Proceedings of the Workshop on Legal Ontologies and Artificial Intelligence Techniques
(LOAIT). 2007.

[So07] Soria, C. et al.: Automatic extraction of semantics in law documents. In: Proceedings of the
V Legislative XML Workshop. 2007.

[Vi98] Visser, P. R. et al.: Heterogeneous Ontology Structures for Distributed Architectures. In:
Workshop on Applications of Ontologies and Problem-solving Methods. 13th European
Conference on Artificial Intelligence (ECAI-98), 1998.

[We18] Wehnert, S. et al.: Concept Hierarchy Extraction from Legal Literature. In: Proceedings
of the ACM CIKM 2018 Workshops. CEUR Workshop Proceedings, 2018, url: http:
//ceur-ws.org.

134 Sabine Wehnert, Wolfram Fenske, Gunter Saake

http://ceur-ws.org
http://ceur-ws.org

cba

Herausgeber et al. (Hrsg.): Workshop on Big (and Small) Data in Science and Humanities,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Software solutions for form-based, mobile data collection —
A comparative evaluation

Markus D. Steinberg1 , Sirko Schindler2 , Friederike Klan3

Abstract:

Many citizen science projects rely on their contributors going to the field and collecting data. Due to
their wide availability and increasing capability, modern mobile devices have become an indispensable
tool to ease the collection process. Projects can publish mobile apps, that allow contributors to easily
collect data and submit their results. The requirements of individual projects oftentimes overlap to
a large extent, which triggered the development of multiple generic frameworks. They allow new
projects to quickly generate customized apps and reuse existing infrastructure. However, the wide
landscape of tools with diverging capabilities requires projects to compare and choose. This report
supports data managers in making an informed decision. We report on our experiences primarily on
the whole data collection workflow starting from setting up your own instance to finally analyzing
the retrieved data. We compare eight tools – both free and commercial – according to the features
provided and difficulties encountered.

Keywords: Data collection; Citizen Science; Mobile Software; Web Applications

1 Introduction

Collecting field data is an integral part of many projects in citizen science and other fields
of research, especially the life sciences. Mobile applications offering form-based-surveys
and making use of built-in sensors are increasingly used to facilitate this process. Since the
creation of mobile field surveys from scratch can be a tedious task, multiple tools have been
developed that can help with form design, data collection via mobile devices, data export
and storage. Some even support simple data analysis.

With the increasing number of software options, data managers often face the question,
which tool is most suitable for their current use case. To provide a clear foundation for such
a decision, this paper evaluates and compares a selection of software tools for survey design
1 Friedrich Schiller University Jena, Institute for Computer Science, Ernst-Abbe-Platz 2-4, 07743 Jena, Germany

markus.daniel.steinberg@uni-jena.de
2 German Aerospace Center (DLR), Institute of Data Science, Mälzerstraße 3, 07745 Jena, Germany

sirko.schindler@dlr.de, https://orcid.org/0000-0002-0964-4457
3 German Aerospace Center (DLR), Institute of Data Science, Mälzerstraße 3, 07745 Jena, Germany

friederike.klan@dlr.de, https://orcid.org/0000-0002-1856-7334

cba doi:10.18420/btw2019-ws-14

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 135

https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-0964-4457
https://orcid.org/0000-0002-1856-7334
mailto:markus.daniel.steinberg@uni-jena.de
mailto:sirko.schindler@dlr.de
https://orcid.org/0000-0002-0964-4457
mailto:friederike.klan@dlr.de
https://orcid.org/0000-0002-1856-7334
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-14

2 Markus D. Steinberg, Sirko Schindler, Friederike Klan

and mobile data collection. To the best of our knowledge no previous, comparable study on
this topic has been published yet.

All tools were tested with respect to different aspects relevant to their usage. A list of
such tool-characteristics was compiled from the features that are advertised by the tools
themselves. Availability and usability of these features were then evaluated by thoroughly
testing each of the tools: First, general information about the tool like its open source
repository (if available) and its license were identified by consulting its website and
documentation. Then, if no web-based version was offered, a local, self-hosted instance of
the tool was set up. Afterwards the typical data collection workflow (Fig. 1) was executed:
(1) a form was designed, examining all available form-elements and form-building features
like skip-logic or localization, (2) the survey was deployed to the mobile app, (3) sample
data were collected, (4) submitted to the server and then (5) exported. Finally, (6) additional
features like visualization or data encryption were explored. In cases where the availability of
features was not obvious, the tool’s community channels or its support team were consulted
for clarification.

Survey Design
(1)

Data Collection
 (2+3+4)

Data Export &
Publication (5)

Visualization &
Analysis (6)

Fig. 1: Data collection workflow

Of course, such a study will never be able to cover all published tools, especially since their
number is ever growing. The examined tools were selected because of their active and rapid
development, their large user community, explicit recommendations by the tool’s users,
their extensive feature repertoire, or their professional design.

The following tools were considered:

• EpiCollect5 (EC5)4, developed at the Imperial College London, the successor of
Epicollect [Aa09] and Epicollect+ (Plus)5,

• Open Data Kit 1 (ODK1) [Ha10] and Open Data Kit 2 (ODK2) [Br13], the two open
source tool suites that are being developed by Nafundi6 and the ODK community,

• Ohmage, an open source data collection platform that promises additional features
like data analysis and visualization, developed at the University of California, Los
Angeles7, and Cornell Tech 8 [Ra12; Ta15],

4 https://five.epicollect.net

5 http://plus.epicollect.net/

6 https://nafundi.com

7 http://www.ucla.edu/

8 https://tech.cornell.edu

136 Markus Steinberg, Sirko Schindler, Friederike Klan

https://five.epicollect.net
http://plus.epicollect.net/
https://nafundi.com
http://www.ucla.edu/
https://tech.cornell.edu

Software solutions for form-based, mobile data collection 3

• KoBo Toolbox, an open source data collection tool being developed by members of
the Harvard Humanitarian Initiative (HHI) [Ha],

• SurveyCTO [Su] and Magpi [Ma], two paid subscription-based data collection
platforms, which also offer free subscriptions that come with a few restrictions. For
this study, the capabilities of the free versions were examined.

The Fieldtrip Open software suite developed by the EU-project Citizen Observatory Web
(COBWeb), described in [Hi16] and published in [Ci], was initially considered as well,
but was deemed unfit for thorough testing (see details in Sect. 2). The data collection tool
BioCollect, which is popular in the biodiversity domain and was developed by the Atlas of
Living Australia [Br18], was not examined in this study because, in contrast to the other
examined tools, it is not generic, but tailored to recording species observations.

Sect. 2 reports on our hands-on experiences with the examined tools in the different phases
of the data collection workflow and compares their features. Sect. 3 highlights the most
important results and makes suggestions for future development and improvement of mobile
data collection tools.

2 Comparative evaluation

The comparison evaluates the conditions for use and customization set by the considered
tools and frameworks, discusses installation related aspects and goes on with usage related
features grouped together according to the individual steps of the data collection workflow
as illustrated in Fig. 1. A more in-depth version of this evaluation was published in [St].

Conditions for use and customization One of the first aspects that should be considered
in the decision for or against a certain tool is the conditions it sets for using and extending it.
The following facets were examined. The results for these elements are shown in Tab. 1.

Active Development Is the software currently under active development, i.e. can we expect
that new features will be added over time and software bugs are fixed? This is judged,
if possible, by commits in the past six months, otherwise by activity on social media
or in forums.

License Under which conditions can the software be installed, used, or extended?

Open Source Is the source code of the software provided as open source? This includes all
parts that are required to build and deploy a survey, collect data with a mobile device
and store the data on a server.

Programming language Which programming languages are used for developing the tool?

Software solutions for form-based, mobile data collection 137

4 Markus D. Steinberg, Sirko Schindler, Friederike Klan

Self-hosting Is it possible to host the software yourself, so the collected data is stored on
your own server?

Tab. 1: Usage and development related criteria.
(. . . criterion fulfilled; #. . . criterion not fulfilled)

EC5 ODKv1 ODKv2 Kobo Ohmage SurveyCTO Magpi COBWEB
Active

Development # #
Open Source # # #

Programming
language -

Java
JavaScript
Python

Java
JavaScript

Java
JavaScript
Python

Java
Objective C - - JavaScript

Python

License - Apachea Apachea Apachea,
GNUb Apachea - - BSD3c

Self-hosting # # #
a Apache License 2.0 b GNU Affero General Public License v3.0 c 3-Clause BSD License

Software installation and technical issues Some of the examined tools have components
that need to be installed by the form author before they can be used. As an outcome of this
step, we decided to exclude the Fieldtrip Open software suite from futher testing. Due to
the missing documentation for its different parts, the software could not be fully set up in
order to properly test its capabilities. Multiple attempts to set up the required persistence
middleware on a Windows OS were unsuccessful. The middleware and the survey designer
could finally be run on a Linux based computer, but the button that is supposed to save the
designed survey resulted in JavaScript errors hinting at (1) access control problems and (2)
problems inside the running middleware. It is unclear whether these errors occurred due to
software problems or due to incorrect or missing configuration (which, in turn, could be the
result of missing documentation).

The ODK suites require form authors to set up a server, ODK Aggregate, on a cloud-platform
(AWS, Google, . . .) or host it themselves. This server is then used for survey distribution,
data storage, visualization and data export. ODK2 additionally requires the setup of the
ODK Application Designer which in turn requires Java, Google Chrome, NodeJS, Grunt
and the Android SDK as prerequisites.

The other tools provide a web-based UI and do not involve an installation. Thus, no
technical knowledge is required for their usage. All tools that offer a self-hostable version
of their software provide detailed guides for the required steps. KoBo even maintains a
Docker-version for a convenient setup. SurveyCTO’s support team also mentioned in an
email conversation that self-hosting of their software could be arranged on a case-by-case
basis for their paying customers, provided that all additional costs will be settled by the user.

138 Markus Steinberg, Sirko Schindler, Friederike Klan

Software solutions for form-based, mobile data collection 5

Survey design Almost all of the studied tools offer a form designer, a graphical user
interface facilitating survey design, for example by allowing to add and arrange form
elements via drag and drop. In the following, features are described that simplify form-
authoring or allow to build more sophisticated and user-friendly surveys. The respective
support among the tools is shown in Tab. 2.

Skip Logic Skip certain parts of a survey depending on previous answers.

Localization Define labels for questions in multiple languages, so the survey can automati-
cally be translated to a user’s preferred language.

Calculations Evaluate mathematical or logical expressions referencing answers to preceding
questions in a survey and use the results in skip logic, text-blocks, etc.

Queries Read data from a structured source (e.g. a CSV file) and use the results for skip
logic, as answer-options, etc.

Linked Tables Launch subforms that store data in different database tables.

Required & optional fields Mark a question as mandatory or optional to indicate whether
the survey can be finished without providing an answer.

Validation Define validity constrains for form-fields, e.g., the range of valid values for a
number input.

Building custom prompts Build prompts with custom functionality, typically using a markup
language like HTML for the presentation and a programming language to define the
functionality.

Tab. 2: The survey design features provided by the examined tools.
(. . . feature included; G#. . . feature partially included; #. . . feature not included)

EC5 ODKv1 ODKv2 Kobo Ohmage SurveyCTO Magpi
Form Designer #

Skip Logic #
Localization # G#a # #
Calculations # # #

Queries # # # # # #
Linked Tables # # # # # #

Required &
Optional Fields

Validation
Building custom

prompts # # # # # #
a Not supported in form designer, has to be added manually by exporting the form, editing the .xls file and then
importing it.

Software solutions for form-based, mobile data collection 139

6 Markus D. Steinberg, Sirko Schindler, Friederike Klan

The examined tools support and guide inexperienced form authors to a different extent.
Particularly noteworthy are the extensive help-texts that are provided by SurveyCTO. They
explain the typical workflow in the user interface as well as the different features and
options that are available for each step. Inexperienced authors are thus guided through all
necessary steps. SurveyCTO and Magpi also offer template forms that can be used to learn
about the different form elements and their configuration. ODK1 provides explanations for
the configuration of available form elements but the workflow-guidance is missing in the
user interface. The reason is most likely the fact that ODK’s form builder is a tool that is
separated from the deployment-server and therefore also has a separate user interface.

Worth mentioning are also the wizards that EpiCollect5, KoBo, SurveyCTO and Magpi offer
to build, for example, skip logic expressions. These wizards greatly simplify the formulation
of complex logic statements, especially for inexperienced form authors.

As shown in Tab. 2, ODK2 offers some additional features like queries, linked tables and
custom prompts that none of the other tools provide. However, ODK2 is the only one of the
examined tools that does not offer any kind of form designer. Forms have to be created as .xls
files and are then transformed using the ODK Application Designer. This, in addition to the
more complex and technical deployment of surveys to the server and then to mobile devices,
makes the usage of ODK2 more difficult compared to other tools. Thus, as the official ODK
help page emphasizes, the usage of ODK2 is only recommended if the additional features
are required for a certain use case [Op].

The form design also depends heavily on the input elements that are available. All of the
tools provide support for the most basic types of information: text input, integer and decimal
numbers, dates and times as well as single- and multiple-choice questions. They also allow
to display textual information to the data collector.

Location information, which is a very important factor in many surveys, is also supported
by all examined tools in the form of automated location determination using the collection
device’s sensors. However, manual input of a location, for example by placing a pointer on a
map or explicitly stating latitude, longitude, altitude and/or accuracy, is only supported by
ODK1 and SurveyCTO. More complex geographical information like paths (a sequence of
locations) or an area (a closed path) are only supported by KoBo and SurveyCTO.

Images can be collected by all tools except Magpi; audio recordings, video recordings and
barcodes by all except Magpi and Ohmage. Additionally, KoBo and Magpi offer some
unique input elements: KoBo is currently developing and testing ratings (e.g. assigning
“good”, “bad” or “neutral” to a defined set of options) and rankings (ranking a predefined
set of options). The latter could, for example, be used to express personal preferences, e.g.
allow the user to state that he prefers apples over bananas over oranges.Magpi on the other
hand allows to read information via Near-Field Communication9.
9 http://nearfieldcommunication.org/about-nfc.html

140 Markus Steinberg, Sirko Schindler, Friederike Klan

http://nearfieldcommunication.org/about-nfc.html

Software solutions for form-based, mobile data collection 7

Data collection After the survey is designed and deployed on a server, data can be
collected via a mobile device, typically using a mobile app. All of the examined tools
provide support for offline data collection, meaning that data can be collected without an
active internet connection and can later be submitted.

The support for mobile operating systems differs among the tools: All of them support
Android-OS but only EpiCollect5, Ohmage and Magpi also offer apps for iOS. Apart from
these two, no other operating systems are supported. For the open source tools, we were able
to verify that the data collection apps are developed as native apps and not as cross-platform
mobile applications. However, for closed source projects we were not able to obtain this
information.

Another important factor in the data collection step is, if metadata are automatically gathered
and stored with the collected data. Metadata describe the context of the collection process
and the individual data records and therefore allow for a meaningful interpretation of the
data. All tools provide information about date and time of data collection or submission
as well as some kind of identification of the user who collected the data (username or
e-mail address). ODK1, KoBo and SurveyCTO also allow to collect information about the
mobile device that was used: the device-ID (IMEI), the subscriber-ID (IMSI), the SIM serial
number or the phone number.

In cases where highly sensitive or private data is collected in a survey, the form author might
want to ensure that no one will be able to get unauthorized access to the data. For such cases
ODK1, KoBo and SurveyCTO provide the option to store a public key that automatically
encrypts the data as soon as it is saved on the mobile device. The data can only be decrypted
with the matching private key once the data is downloaded from the storage server. This
ensures that the data is not only secure during the submission (which would usually be
assured via the SSL/TLS protocol) but also while it is stored on the server, thus providing a
strong level of security.

With automated quality checks, SurveyCTO offers an feature that can drastically improve
data quality. In addition to the validation of the values inserted into form fields, such checks
allow to detect submitted values that are outliers, values that occur too frequently, or other
potentially faulty items. These quality checks can be configured to be run at certain time
intervals and to be reported to a given e-mail address.

Data export & publication Regardless of the data collection tool, once the collected data
are uploaded to the server, they can be exported as a file. The available file types differ
among the examined tools: All of them support data export in the form of CSV files. As
seen in Tab. 3 most of them also support some other file types that can be useful depending
on the use case or user preferences.

Beside data export, data publication is directly integrated in some of the tools. EpiCollect5
provides an API to access its data and a guide on the usage of that API to publish the collected

Software solutions for form-based, mobile data collection 141

8 Markus D. Steinberg, Sirko Schindler, Friederike Klan

data to Google Spreadsheets. ODK1 offers direct data publication to Google Spreadsheets,
Google FusionTables, REDCap10 servers and custom JSON servers. SurveyCTO also
supports export to Google Spreadsheets and Google FusionTables. It additionally offers an
integration with Zapier11. This is especially noteworthy since Zapier is a platform that can
be used as a “bridge” to integrate the published data with hundreds of different services and
applications.

A feature currently not provided by any of the examined tools is the semantic enrichment
of the collected data. Embedding the assembled data in a semantic framework and
interlinking individual data items with one another can give further interpretational
context and allows a more seamless integration with other projects or information sources.

Tab. 3: The data export formats supported by the examined tools.
(. . . feature included; #. . . feature not included)

EC5 ODKv1 ODKv2 Kobo Ohmage SurveyCTO Magpi
CSV

JSON # # # # #
XLS # # # #

XML # # # # # # #
XML/KML # # # # #

RDF # # # # # # #

Data visualization & analysis All of the tools provide some kind of built-in support for
data visualization, though the supported types vary as seen in Tab. 4. On the other hand,
data analysis is currently not supported by any of the tools. Ohmage claims to provide such
features but does not properly integrate them in the tool’s interface. SurveyCTO provides a
way to monitor the incoming data and visualize relationships between different fields of
data, but does not offer the capabilities of full analytic software. Magpi seems to have a
similar feature as SurveyCTO but it is locked for free users.

Currently, the best way to analyze the collected data, regardless of the tool, is to either
export it using one of the supported file types and then import that file in a data analysis
tool of one’s choice or to publish the data on a cloud-based platform and then use analysis
tools that integrate well with the platform.

10 https://www.project-redcap.org

11 https://zapier.com

142 Markus Steinberg, Sirko Schindler, Friederike Klan

https://www.project-redcap.org
https://zapier.com

Software solutions for form-based, mobile data collection 9

Tab. 4: Visualization types, analysis and semantic enrichment features
(#. . . feature not included)

EC5 ODKv1 ODKv2 Kobo Ohmage SurveyCTO Magpi

Visualization Map,
Pie chart

Map,
Pie chart,
Bar chart

Map

Map,
Pie chart,
Bar chart,
Line chart,
Area chart

Map,
Pie chart,
Bar chart,
Line chart

Map,
Pie chart,
Bar chart,

Scatterplot,
Trend plota

Map

Analysis # # # # # # #
Semantic

Enrichment
#

a Plotting a numeric value over time

3 Conclusion

The presented comparison shows that due to the different features that are offered by the
different software tools, the choice of a platform depends on the given use case with its
unique requirements. However, it also shows that ODK1 and KoBo Toolbox are the open
source tools that offer the most comprehensive set of features. SurveyCTO, on the other
hand, offers the most professional and user-friendly environment if the limitations of the
free subscription are of no concern. For most data collection projects, at least one of these
three tools should be able to cover the requirements.

Another point that this comparison shows very clearly is that none of the tools currently
provide any kind of semantic component that would provide a unique and machine-
comprehensible semantics of the exported data. The only tool that seemed to take a step
in this direction was the COBWeb software suite with its RDF export, which was not fit
for proper testing. Since linked and semantically enriched data enable more meaningful
interpretation of the data and even automated reasoning, such features could drastically
improve both quality and usability of the collected data. Therefore, such features deserve
some attention in the future enhancement of data collection platforms and tools.

Analysis support for the collected data is another point that could be integrated in the tools.
Currently, projects have to rely on external tools for such features, which means that the
data either has to be transferred to a cloud platform or manually exported and imported into
some analysis software. Both options require additional time-consuming effort and could in
some cases even create privacy issues if highly sensitive data is involved.

A third improvement that could be taken into account by the examined tools is the use of
cross-platform technologies for mobile applications. Advantages here would be two-fold:
Data collection projects would only have to maintain a single code base for all their mobile
applications. At the same time this could increase the number of potential survey participants
and therefore the engagement in projects that involve data collection.

Software solutions for form-based, mobile data collection 143

10 Markus D. Steinberg, Sirko Schindler, Friederike Klan

References

[Aa09] Aanensen, D. M.; Huntley, D. M.; Feil, E. J.; Spratt, B. G., et al.: EpiCollect: Linking
Smartphones to Web Applications for Epidemiology, Ecology and Community Data
Collection. PLoS ONE 4/9, ed. by Hay, S. I., e6968, Sept. 2009.

[Br13] Brunette, W.; Sundt, M.; Dell, N.; Chaudhri, R.; Breit, N.; Borriello, G.: Open data kit 2.0:
expanding and refining information services for developing regions. In: Proceedings of the
14th Workshop on Mobile Computing Systems and Applications - HotMobile ’13. ACM,
ACM Press, p. 10, 2013.

[Br18] Brenton, P.: BioCollect - A modern cloud application for standards-base field data recording.
Biodiversity Information Science and Standards 2/, e25439, May 2018.

[Ci] Citizen Observatory Web: COBWEB - Software Outputs, url: https://cobwebproject.
eu/news/publications/software-outputs, visited on: 10/31/2018.

[Ha] Harvard Humanitarian Initiative: KoBoToolbox: Data Collection Tools for Challenging
Environments, url: https://www.kobotoolbox.org/, visited on: 10/27/2018.

[Ha10] Hartung, C.; Lerer, A.; Anokwa, Y.; Tseng, C.; Brunette, W.; Borriello, G.: Open data
kit: tools to build information services for developing regions. In: Proceedings of the 4th
ACM/IEEE International Conference on Information and Communication Technologies and
Development - ICTD ’10. ACM, ACM Press, p. 18, 2010.

[Hi16] Higgins, C. I.; Williams, J.; Leibovici, D. G.; Simonis, I.; Davis, M. J.; Muldoon, C.;
van Genuchten, P.; O’Hare, G.; Wiemann, S.: Citizen OBservatory WEB (COBWEB):
A generic infrastructure platform to facilitate the collection of citizen science data for
environmental monitoring. International Journal of Spatial Data Infrastructures Research
(IJSDIR) 11/, pp. 20–48, 2016.

[Ma] Magpi: Advanced Mobile Data Collection, Messaging, and Visualization, url: https:
//home.magpi.com/, visited on: 10/27/2018.

[Op] Open Data Kit: ODK Help page, url: https://opendatakit.org/help/), visited on:
10/28/2018.

[Ra12] Ramanathan, N.; Alquaddoomi, F.; Falaki, H.; George, D.; Hsieh, C.-K.; Jenkins, J.;
Ketcham, C.; Longstaff, B.; Ooms, J.; Selsky, J., et al.: ohmage: An open Mobile System for
Activity and Experience Sampling. In: Proceedings of the 6th International Conference on
Pervasive Computing Technologies for Healthcare. IEEE, IEEE, pp. 203–204, 2012.

[St] Steinberg, M. D.: Software solutions for form-based collection of data and the semantic
enrichment of form data, arXiv: 1901.11053 [cs.CY].

[Su] SurveyCTO: Collect data you can trust, url: https://www.surveycto.com/, visited on:
10/27/2018.

[Ta15] Tangmunarunkit, H.; Hsieh, C.-K.; Longstaff, B.; Nolen, S.; Jenkins, J.; Ketcham, C.;
Selsky, J.; Alquaddoomi, F.; George, D.; Kang, J., et al.: Ohmage: A general and extensible
end-to-end participatory sensing platform. ACM Transactions on Intelligent Systems and
Technology 6/3, pp. 1–21, Apr. 2015.

144 Markus Steinberg, Sirko Schindler, Friederike Klan

https://cobwebproject.eu/news/publications/software-outputs
https://cobwebproject.eu/news/publications/software-outputs
https://www.kobotoolbox.org/
https://home.magpi.com/
https://home.magpi.com/
https://opendatakit.org/help/)
http://arxiv.org/abs/1901.11053
https://www.surveycto.com/

cba

Herausgeber et al. (Hrsg.): BTW,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Quality Indicators for Text Data

Cornelia Kiefer1

Abstract: Textual data sets vary in terms of quality. They have different characteristics such as the
average sentence length or the amount of spelling mistakes and abbreviations. These text characteristics
have influence on the quality of text mining results. They may be measured automatically by means of
quality indicators. We present indicators, which we implemented based on natural language processing
libraries such as Stanford CoreNLP2 and NLTK3. We discuss design decisions in the implementation
of exemplary indicators and provide all indicators on GitHub4. In the evaluation, we investigate free
texts from production, news, prose, tweets and chat data and show that the suggested indicators predict
the quality of two text mining modules.

Keywords: data quality, text data quality, text mining, text analysis, quality indicators for text data

1 Introduction

Plenty research on the quality of structured data tries to capture the quality of a data set as a
number, e.g., in the interval [0,1] where 0 means bad quality and 1 means high quality (e.g.,
see [SC13], [CKK17]). E.g., the percentage of null, out-of-domain and duplicate values
indicate the quality of structured data sets and can be expressed as a number in [0,1]. These
methods are based on a comparison of the structured data to a ’perfect’ version of the
data (or parts of it) that represent the real world, or to a rule that captures characteristics
of such perfect versions of the data set. Unstructured textual data needs to be processed
in natural language processing pipelines. Thus, additional means to capture how text
characteristics influence the quality of text analysis modules in such pipelines are needed.
However, corresponding methods for texts are missing [BS16]. The indicators suggested in
this work may automatically measure text characteristics such as the percentage of spelling
mistakes, the number of unknown words and the confidence of standard text processing
tools. Quality indicators for text data are needed: the amount of unstructured text data is
exploding. Moreover, text data in science, humanities and industry comprise various crucial
information such as descriptions of experimental settings, experience reports, error reports,
and machine documentations [Ka14, LW16].
1 University of Stuttgart, Graduate School of Excellence Advanced Manufacturing Engineering, Nobelstr. 12,

Germany cornelia.kiefer@gsame.uni-stuttgart.de
2 https://stanfordnlp.github.io/CoreNLP/
3 http://www.nltk.org/
4 https://github.com/kieferca/quality-indicators-for-text

cba doi:10.18420/btw2019-ws-15

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 145

https://creativecommons.org/licenses/by-sa/4.0/
cornelia.kiefer@gsame.uni-stuttgart.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-15

2 Cornelia Kiefer

These textual data sets differ significantly in quality. Moreover, many crucial textual data
sets in science, humanities and industry are of low quality (e.g., see [KM16]). While the
domain experts read parts of the textual data and are thus often aware of quality problems,
concrete implemented indicators, which can be used to characterize the textual data sets are
missing. Moreover, the influence of certain text characteristics on the quality of text mining
results can only be discussed if concrete indicators are available. By now it is not clear what
data indicators are useful and how they capture the quality of different textual data sets.

A worker or analysts who is reading a text full of spelling mistakes and abbreviations may
have problems to understand it. Also, a text of bad quality may result in bad quality text
mining results. The quality of such text mining results can only be calculated if manual
annotations are available. Usually this is not the case for data sets in industry, science and
humanities. Nevertheless, the quality of operational data sets may be indicated by means of
the data quality indicators presented in this work. This paper has two main contributions
that are facing these challenges: (1) we present 9 quality indicators for texts and (2) we
investigate to what extend the suggested indicators are able to predict the quality of text
analysis results of a language identifier and a part of speech tagger.

We start this paper with a presentation of related work in Section 2. Then, we list concrete
quality indicators and discuss design decisions in the implementation (Section 3). In Section
4 we present and characterize the data sets used in the evaluation. Finally, we test the
suggested quality indicators and present the results in Section 5. We conclude our work in
Section 6.

2 Related Work

Many data quality indicators for structured data exist (e.g., [SC13, WS96]). Moreover, many
works present first conceptual ideas for data quality methods for text [Sc12, BS16, So04].
However, none of these works presents quality indicators with concrete implementations
that are applied to texts.

Data quality research on text is still in its beginnings, but the quality of textual documents
is already considered in other research areas and applications. For example, the quality of
written student essays [MK00] and of posts in online discussions [WGM07] can be assessed
automatically. Also, many companies provide guidelines in writing texts such as error
reports. The guidelines ensure that the texts can be processed automatically in high quality,
e.g., by machine translation systems [Ku13]. For example, very long and nested sentences
should be avoided with respect to the quality of an automatically generated translation
of a text. Researchers on text simplification develop automated methods to simplify texts
[Sh14]. Genova et al. suggest a framework to measure and improve the quality of textual
specifications for software [Gé13]. While these works provide interesting starting points
with respect to text data quality, they do not provide means to characterize the quality of
textual data sets with respect to the quality of text analysis modules, such as the language

146 Cornelia Kiefer

Quality Indicators for Text Data 3

identifier and part of speech tagger as considered in this work. If indicators are suggested at
all, these are special to the respective domain and no implementation details are given.

Readability measures such as the Flesch readability index capture how easy and fast a human
may read and understand a text. Flesch’s formula is based on the number of words per
sentence and the number of syllables per word. For an overview on readability indices, see
Klare [Kl74]. Many automatic readability checkers exist5. For these tools, no implementation
details are given, though, and the code is closed-source. These readability measures only
capture a very limited set of text characteristics, namely the number of words, syllables and
sentences.

Particularly in the medical domain, much work is done in automatically detecting and
resolving abbreviations (e.g., see [Li18]). In these works, the focus lies on resolving
abbreviations and the percentage of abbreviations is not used as quality indicator. Botha et
al. [BB12] investigate the effect of text size on the accuracy of language identifiers. They
found that, the smaller the text size, the lower accuracy is. In our evaluation, we confirm this
result. Additionally, we add more indicators besides text size and investigate the accuracies
of a language identifier as well as a part of speech tagger.

While many valuable first reference points for quality indicators for text data exist, they do
not cover all necessary aspects. They are oftentimes not executable or closed-source and
come from fields different than data quality research and thus have a limited perspective on
text quality. Moreover, in none of these related works indicators are applied to various data
sets of varying quality as characterized by text analysis modules.

3 Quality Indicators for Text Data

In a text analysis pipeline the raw textual data is processed by several text analysis modules
such as a language identifier, a part of speech tagger and a named entity recognizer. These
modules enrich the textual data with information on the language a text is written in, the
parts of speech of the words such as verb and noun and with named entities such as on
companies, countries and persons. Thus, a reasonable measurement of the quality of texts
needs to consider two main components: (1) the raw text data and (2) the text analysis
modules. The latter group of indicators measure text characteristics with respect to standard
text analysis modules, which employ default resources (such as newspaper texts as training
data). These standards and defaults are oftentimes employed in domain-specific text analysis
pipelines.

In Table 1, we present a non-exhaustive list of quality indicators for textual data. We
restrict the methods presented to those applicable to textual data in the context of text
analysis. All indicators are freely available on GitHub6. In the following, we describe an

5 e.g., hemingwayapp.com and readable.io
6 https://github.com/kieferca/quality-indicators-for-text

Quality Indicators for Text Data 147

4 Cornelia Kiefer

exemplary excerpt of the indicators and give design decisions in the implementation. The
implementation of the indicator ’percentage of abbreviations’ is based on a supervised
machine learning algorithm and is more complex. All other quality indicators listed in
Table 1 have straightforward implementations which are based on existing natural language
processing libraries.

Tab. 1: Text Data Quality Indicators with respect to Data and Text Analysis Modules

Group Indicator
ID

Indicator Description

Data

1 Percentage of abbreviations
2 Percentage of spelling mistakes
3 Lexical diversity
4 Percentage of uppercased words
5 Percentage of ungrammatical sentences
6 Average sentence length

Text Analysis
Modules

7 Fit of (default) training data
8 Confidence of standard processing modules
9 Percentage of unknown words

The implementation of the first indicator, which automatically measures the percentage
of abbreviations (indicator 1) is based on the Stanford Named Entity Recognizer7. This
is a classifier which automatically recognizes named entities such as persons, cities and
companies. Therefore, it uses information gained via natural language processing, such
as the part of speech tags and syntax. Also, it uses training data manually annotated with
named entities. It is based on conditional random fields (CRF), a supervised machine
learning algorithm for sequential classifications8. In our case, the sequence to classify
is a sequence of words. Given the sequence of words, the method classifies each word
as abbreviation or non-abbreviation. To adapt the Stanford NER classifier to the task of
determining if a word is an abbreviation or not, we trained it on a new training data set,
which we compiled by manually annotating all individual words in a text collection with the
two labels abbreviation and non-abbreviation. The compiled training data set is based on
annotated excerpts of the data sets listed in Section 4. We moreover adapted the Stanford
Named Entity Recognizer to the task of detecting abbreviations by implementing additional
features, which are based on natural language processing methods from Stanford CoreNLP9:
(1) word length, (2) contains symbols, (3) contains period, (4) sentence dependencies,
(5) sequence of vowels and consonants representing the current word and (6) wordform
(sequence of upper and lowercased characters representing the current word). We evaluated
the classifier prototype on unseen data resulting in a precision of 0,85 and a recall of 0,72.
Thus, it works reliable enough for our purpose of measuring the percentage of abbreviations
as data quality indicator. For the calculation of precision and recall, we used the data sets as
described in Section 4 and split them into separate training and testing slices. In Section 5

7 https://nlp.stanford.edu/software/CRF-NER.shtml
8 The CRF sequence models used are described in [FGM05].
9 https://stanfordnlp.github.io/CoreNLP/

148 Cornelia Kiefer

Quality Indicators for Text Data 5

we will investigate if the percentage of abbreviations in a text is useful in predicting it’s
quality.

The percentage of spelling mistakes (indicator 2) in a text corpus may be calculated using
the Python implementation PyEnchant10 or any other spelling correction module.

Lexical diversity (indicator 3) is calculated using standard methods in NLTK for counting
words. It is based on a formula suggested in the NLTK book [BKL09]. The relevant code is
displayed in Listing 1, where the length (len) of the set of all tokens and words in the text
(set) is divided by the length of all tokens and words in the text.

1 def lexical_diversity(text):

2 return (len(set(text)) / len(text))

List. 1: ’Lexical diversity’ implementation based on standard Python tools

For measuring the fit of (default) training data (indicator 7), we calculate the text similarity
of the operational text data set that is actually being analyzed and the default training data
set. Since it is most often used as default in many processing modules in natural language
processing, we use the Treebank data set as default (see Section 4). We employ the Cosine
Similarity metric from the DKPro Similarity library11. The core method used is illustrated
in Listing 2. The whole concept, design decisions in implementation and a throughout
evaluation with various text similarity metrics will be presented in future work.

1 TextSimilarityMeasure measure = new CosineSimilarity();

2 double score = measure.getSimilarity(operational, default);

List. 2: Excerpt of ’Fit of default training data’ implementation based on DKPro Similarity

The confidence of standard processing modules (indicator 8) can be calculated for many
classifiers, e.g., for the part of speech tagger. A statistical classifier estimates the probabilities
for each class from a fixed list of classes. These probabilities are also called confidence
values (for more details, see [GFL06]). Confidence is expressed as a number in the interval
[0,1]. For example, confidence measures are available and can be retrieved for the natural
language processing tools in OpenNLP12 (such as the tokenizer and part of speech tagger).
To get these confidence values, we followed the documentation of the OpenNLP library (see
footnote 12). E.g., for the part of speech tagger, we just call the probs method which returns
an array of the probabilities for all tagging decisions. The method is shown in Listing 3.
Then, we calculate the mean over all sentences and return it. In Section 5 we discuss if these
confidence values for the OpenNLP part of speech tagger may be used as a quality indicator.

10 http://pythonhosted.org/pyenchant/
11 https://dkpro.github.io/dkpro-similarity/
12 https://opennlp.apache.org/

Quality Indicators for Text Data 149

6 Cornelia Kiefer

1 POSTaggerME tagger = new POSTaggerME(model);

2 tagger.tag(sentence);

3 double probs[] = tagger.probs();

List. 3: Excerpt of ’confidence of standard processing modules’ implementation based on OpenNLP

The percentage of unknown words (indicator 9) may be calculated by applying the
standard part of speech tagger implemented in NLTK to the texts, which has an individual
class for unknown words, i.e., ’X’.

The measured percentages and raw numbers need to be transferred into consistent data
quality metrics in [0,1] where 0 means low and 1 high quality. We transfer the measured
percentages and raw numbers by means of adequate step functions. Some indicators such as
’confidence’ are already fitting numbers in [0,1] and do not need to be transferred. But other
indicators such as the percentage of abbreviations and the average sentence length need
to be transferred into a consistent quality metric in [0,1]. For example, the first indicator
measures the percentage of abbreviations. A high percentage of abbreviations should result
in a low quality metric and a low percentage of abbreviations in a high quality metric. This
can be achieved by means of a step function, where, e.g. 0-1% abbreviations are transferred
to the quality metric 1 and >10% to 0, etc. We will describe this transfer of indicators to
data quality metrics in more detail in future work.

The indicators presented build the basis for methods that can improve the quality of texts.
These will be adressed in future work. For example, if the measured percentage of spelling
mistakes is high, data quality may be improved by means of an automatic spelling mistakes
correction method.

4 Data Sets used in the Evaluation

We conduct experiments on 5 different data sets. They comprise prose, news, chat posts,
tweets and production data. The prose and news data sets (Brown and a subset of the Penn
Treebank) and chat posts (NPS Chat data) are taken from NLTK13. The Twitter corpus was
taken from Gimpel et al. [Gi11]. Additionally, we employ a confidential data set from an
industry partner in Germany. It comprises information on downtimes in a production line
and contains German free text information. The data set contains information on the reasons
for downtimes and the actions that were taken to put the production line running again. The
workers on the shop floor can fill the free text field via text entry into a tablet. In Table 2 we
list the main characteristics of the data sets. All data sets come with gold annotations for at
least one text mining module. Thus, in our evaluational setting, we are able to calculate
accuracies. Accuracy calculations will be discussed in the next section.

13 http://www.nltk.org/nltk_data/

150 Cornelia Kiefer

http://www.nltk.org/nltk_data/

Quality Indicators for Text Data 7

Tab. 2: Data sets used in the experiments

Data collection Type # of tokens
Brown Prose 1.15M
Treebank (stub) News 40k
Twitter corpus Tweets 35k
NPS Chat Chat 45k
Industry corpus Production 153k

5 Evaluation

The quality of text mining results is judged by comparing the predictions of the tools with
the gold labels annotated by human experts. For example, to determine the quality of a part
of speech tagger, it’s ’Token Accuracy’ is calculated as shown in Equation 1.

ACC =
(# correct POS tags in tagged data)

(# total POS tags in tagged data)
(1)

The accuracy of language identifiers is calculated by comparing the gold language annotations
with the annotations made by the tool. As already mentioned in the introduction of this work,
accuracies can only be calculated if manual annotations are available. This is oftentimes not
the case. The calculation of the suggested quality indicators does not need such manual
annotations, though. In Table 3, we show first results with respect to whether they are able
to predict the quality of such tools.

In the first column in Table 3, we note the data set. In the following three columns we
present the overall and single accuracies for two text analysis modules: (1) the Apache Tika
language identifier14 (LI (Tika)) and (2) the CRF part of speech tagger from NLTK15 (POS
(CRF)). Compiling manual annotations costs time and expert knowledge. Therefore, as
oftentimes the case for operational data sets, for the industry data no manual annotations
of part of speech are available. Thus, part of speech (POS) accuracy can’t be calculated.
Nevertheless, the accuracy of the language identifier (LI) and the indicators give insights on
the textual characteristics. In the following columns, we present the results for our suggested
quality indicators for text data.

We report the raw numbers gained for data quality indicators as described in Section 3. Thus,
most indicators are measured in percent and some are plain numbers such as the average
sentence length. In future work, these raw measurement results need to be transferred to
uniform data quality metrics as already mentioned in Section 3. Also, further analysis
modules, implementations and data sets need to be adressed in future work.

From first to last row, the overall accuracy of the two text mining modules decreases.
Treebank and Brown (news and prose) can be processed in a reliable quality by these text

14 https://tika.apache.org/
15 https://www.nltk.org/_modules/nltk/tag/crf.html with the universal tagset and Treebank training data

Quality Indicators for Text Data 151

8 Cornelia Kiefer

Tab. 3: Evaluation results

Data Accuracy Indicator
O

ve
ra

ll

LI
(T

ik
a)

PO
S

(C
RF

)

A
bb

re
vi

at
io

ns
(1

)

Sp
el

lin
g

(2
)

Le
xi

ca
lD

iv
er

sit
y

(3
)

U
pp

er
ca

se
d

(4
)

U
ng

ra
m

m
at

ic
al

(5
)

Av
g.

Se
nt

en
ce

Le
ng

th
(6

)

Fi
to

ft
ra

in
in

g
da

ta
(7

)

Co
nfi

de
nc

e
(8

)

U
nk

no
w

n
w

or
ds

(9
)

Treebank 0,90 0,86 0,94 2,0 19,0 1,5 1,6 0,1 24,0 1,0 0,9 0,0
Brown 0,86 0,84 0,88 0,6 12,0 0,1 0,9 0,4 20,3 0,9 0,9 0,1
Twitter 0,62 0,47 0,76 4,6 27,0 10,6 7,0 1,5 14,5 0,5 0,8 0,2
Chat 0,49 0,20 0,78 11,0 34,0 4,6 15,8 1,0 4,3 0,5 0,6 0,3
Industry n.a. 0,34 n.a. 7,1 23,0 0,4 0,1 0,0 4,8 0,5 0,7 0,5

mining tools (=Overall Accuracy is high). Tweets, chat posts and industry data can only be
processed in low quality (=Overall Accuracy is low). A similar classification is made by
the data quality indicators: Treebank and Brown contain less abbreviations and spelling
mistakes and have a low lexical diversity. The amount of uppercased characters is low.
They hardly contain ungrammatical sentences. The sentences are longer when compared to
tweets and especially when compared to chat and industry data. The fit of training data and
confidence are high, and the amount of unknown words is low.

Low quality of Tweets, Chat posts and Industry data is indicated by many abbreviations,
spelling mistakes and unknown words as well as a low fit of training data and low confidence
values. Tweets contain a significantly higher lexical diversity than the other data sets. Chat
posts contain particularly many abbreviations and lexical diversity is high. In both, Tweets
and Chat posts, more words than in the other data sets are uppercased and they contain
more ungrammatical sentences. In Chat and Industry data the sentences are very short.
The industry data is full of domain-specific abbreviations, unknown words and spelling
mistakes. Lexical diversity is rather low and the sentences are very short and parseable, i.e.
the number of ungrammatical sentences is low.

Both text analysis modules selected are high quality modules oftentimes employed in text
mining projects in industry. While the language identifier seems to be very sensible with
respect to some text characteristics, the part of speech tagger is more robust. From Table 3 it
can be seen that the suggested indicators are good starting points that may indicate quality.
Thus, in a real analysis situation in humanities, science or industry, where accuracies are
not calculable and thus not known, the suggested data quality indicators give a hint on how
good processing modules may be able to cope with the data set(s).

152 Cornelia Kiefer

Quality Indicators for Text Data 9

6 Conclusion

We have presented 9 data quality indicators for text data sets. Operational text data sets
usually do not come with manual gold annotations for text processing steps. Thus, the quality
of many text analysis results is not known in text mining projects in the humanities, science
and industry. We suggested data quality indicators which help in deciding if default text
mining modules will deal easily with the textual data or not, i.e. if improvement strategies
are needed or not. For each indicator, corresponding improvement strategies exist, which
will be adressed in future work. Moreover, in future work we adress the transformation of
percentages and raw numbers into data quality metrics in [0,1] and integrate and combine
the methods into a complete framework for data quality assessment and improvement.

Acknowledgment

The authors would like to thank the German Research Foundation (DFG) for financial
support of this project as part of the Graduate School of Excellence advanced Manufacturing
Engineering (GSaME) at the University of Stuttgart. Moreover, we thank Raoul Graumann
and Marco Link for crucial implementation work.

References
[BB12] Botha, Gerrit Reinier; Barnard, Etienne: Factors that affect the accuracy of text-based

language identification. Computer Speech & Language, 26(5):307–320, 2012.

[BKL09] Bird, Steven; Klein, Ewan; Loper, Edward: Natural Language Processing with Python.
O’Reilly Media, 2009.

[BS16] Batini, Carlo; Scannapieco, Monica: Data and Information Quality. Springer International
Publishing, Cham, 2016.

[CKK17] Chung, Yeounoh; Krishnan, Sanjay; Kraska, Tim: A Data Quality Metric (DQM): How
to Estimate the Number of Undetected Errors in Data Sets. Proc. VLDB Endow.,
10(10):1094–1105, 2017.

[FGM05] Finkel, Jenny Rose; Grenager, Trond; Manning, Christopher: Incorporating Non-local
Information into Information Extraction Systems by Gibbs Sampling. In: Proceedings
of the 43rd Annual Meeting on Association for Computational Linguistics. ACL ’05,
Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 363–370, 2005.

[Gé13] Génova, Gonzalo; Fuentes, José Miguel; Morillo, Juan Llorens; Hurtado, Omar; Moreno,
Valentin: A framework to measure and improve the quality of textual requirements. Requir.
Eng., 18(1):25–41, 2013.

[GFL06] Gandrabur, Simona; Foster, George; Lapalme, Guy: Confidence Estimation for NLP
Applications. ACM Transactions on Speech and Language Processing (TSLP), 3(3):1–29,
2006.

Quality Indicators for Text Data 153

10 Cornelia Kiefer

[Gi11] Gimpel, Kevin; Schneider, Nathan; O’Connor, Brendan; Das, Dipanjan; Mills, Daniel;
Eisenstein, Jacob; Heilman, Michael; Yogatama, Dani; Flanigan, Jeffrey; Smith, Noah A.:
Part-of-speech Tagging for Twitter: Annotation, Features, and Experiments. In: Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies: Short Papers - Volume 2. HLT ’11, Association for
Computational Linguistics, Stroudsburg, PA, USA, pp. 42–47, 2011.

[Ka14] Kassner, Laura; Gröger, Christoph; Mitschang, Bernhard; Westkämper, Engelbert: Product
Life Cycle Analytics - Next Generation Data Analytics on Structured and Unstructured Data.
In: Proceedings of the 9th CIRP Conference on Intelligent Computation in Manufacturing
Engineering - CIRP ICME ’14. Elsevier, Naples, pp. 1–6, 2014.

[Kl74] Klare, George R.: Assessing Readability. Reading Research Quarterly, 10(1):62–102,
1974.

[KM16] Kassner, Laura; Mitschang, Bernhard: Exploring Text Classification for Messy Data: An
Industry Use Case for Domain-Specific Analytics. In: Advances in Database Technol-
ogy - EDBT 2016, 19th International Conference on Extending Database Technology,
Proceedings. OpenProceedings.org, pp. 491–502, 2016.

[Ku13] Kuhn, Tobias: A Survey and Classification of Controlled Natural Languages. Computa-
tional Linguistics, 40(1):121–170, 2013.

[Li18] Liu, Yue; Ge, Tao; Mathews, Kusum S.; Ji, Heng; McGuinness, Deborah L.: Exploiting
Task-Oriented Resources to Learn Word Embeddings for Clinical Abbreviation Expansion.
CoRR, abs/1804.04225, 2018.

[LW16] Lemke, Matthias; Wiedemann, Gregor: Text Mining in den Sozialwissenschaften. Springer
Fachmedien, Wiesbaden, 2016.

[MK00] Miltsakaki, Eleni; Kukichy, Karen: Automated evaluation of coherence in student essays.
In: Proceedings of LREC, pp. 1–8. 2000.

[Sc12] Schmidt, Andreas; Ireland, Chris; Gonzales, Eloy; Del Pilar Angeles, Maria; Burdescu,
Dumitru Dan: , On the Quality of Non-structured Data, 2012.

[SC13] Sebastian-Coleman, Laura: Measuring data quality for ongoing improvement: A data
quality assessment framework. Elsevier Science, Burlington, 2013.

[Sh14] Shardlow, Matthew: A Survey of Automated Text Simplification. International Journal
of Advanced Computer Science and Applications(IJACSA), Special Issue on Natural
Language Processing 2014, 4(1), 2014.

[So04] Sonntag, Daniel: Assessing the Quality of Natural Language Text Data. In: GI Jahrestagung.
pp. 259–263, 2004.

[WGM07] Weimer, Markus; Gurevych, Iryna; Mühlhäuser, Max: Automatically Assessing the Post
Quality in Online Discussions on Software. In: Proceedings of the 45th Annual Meeting
of the ACL on Interactive Poster and Demonstration Sessions. ACL ’07, Association for
Computational Linguistics, Stroudsburg, PA, USA, pp. 125–128, 2007.

[WS96] Wang, Richard Y.; Strong, Diane M.: Beyond accuracy: what data quality means to data
consumers. J. Manage. Inf. Syst., pp. 5–33, 1996.

154 Cornelia Kiefer

cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 11

Entity Extraction in the Ecological Domain — A practical
guide

Vladimir Udovenko1, Alsayed Algergawy2

Abstract: Scientific information comes in many shapes: As data in databases or spreadsheets, but
also as textual information in papers and books. In order to exploit all this information and integrate
all the knowledge that is available regarding a specific entity, it is necessary to identify entities and
their relationships. In this paper, we provide a guideline to setting up a pipeline that supports entity
and relationship extraction from scientific publications from the ecological domain.

Keywords: Information integration; Entity extraction; Relation extraction

1 Introduction

Research builds on knowledge gained from earlier resources. Such knowledge is encoded
in data stored in various data sources as well as text. An essential step for integrating
data from these heterogeneous data sources is to identify similar entities represented in
different sources as well as their relations[DHI12]. However, the majority of scientific data
are represented in unstructured formats, i.e. information and knowledge of interest are still
hidden mostly in data sets without any formalized schema. It maybe scientific publications.
They may contain tables or pictures, but mostly text data. The main objective is to make
such information stored in text accessible for further data processing, such as integration
and analysis [YB18].

Extracting information of interest from scientific publications in general and ecological in
specific including entities and relations is a critical challenge to support the automation
of integrating structured and unstructured data [KN04]. Suppose that we have this sample
of a scientific publication "N2O contributes to the destruction of ozone layer", it becomes
more difficult to identify and recognize named entities in such a domain specific scenario.
Compared to the personal domain, which is well-established, it is hard to create and/or get
annotations for such named entities. This requires the need to prepare training datasets that
can be used either in learning-based approaches or as a list of domain-specific entities in
the rule-based approaches. In both cases, the preparation process includes the collection
and organization of domain specific information resources, such as ontologies.
1 Friedrich-Schiller University of Jena, Heinz Nixdorf Chair for Distributed Information Systems, Germany
2 Friedrich-Schiller University of Jena, Heinz Nixdorf Chair for Distributed Information Systems, Germany

alsayed.algergawy@uni-jena.de

cba doi:10.18420/btw2019-ws-16

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 155

https://creativecommons.org/licenses/by-sa/4.0/
alsayed.algergawy@uni-jena.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-16

12 Vladimir Udovenko, Alsayed Algergawy

To this end, in this paper, we describe how existing building blocks can be combined to
create a framework that supports in the identification and extraction of soil-related entities
from scientific publications belonging to the Biodiversity Exploratory3. The extracted set of
entities are then annotated by domain specific resources, which support the identification of
relations across the entities. The proposed approach is implemented and validated using
more than 100 publications and the preliminary experiments demonstrate encourage results.

2 Related work

The main goal of information extraction is the organization and structure of hidden
knowledge in textual data that makes it accessible for other applications, e.g. as part of joint
data integration systems [Ho02, Go18, Ch06]. In general, three main steps are needed for
information extraction, namely; text preprocessing, named entity recognition, and entity
linking (relationships between named entities). Named entity (N E) recognition is the task
of identifying and classifying predefined types of named entities, like persons, location, etc.
[YB18, BKL09, NS07]. In general, there are two approaches of named entity recognition
[NS07]: rule-based and statistical-based approaches. In the case of rule-based approaches,
manually constructed rules like regular grammars are used. Gazetteer-based annotation
technique (string matching) is also an element of the rule-based toolkit. Using statistical
methods of named entity recognition makes it possible to derive such rules based on
training data. Such statistical models are general applications of machine learning. In these
approaches, text chunk labeling is considered as a classification task and several algorithms
can be used for this task, such as conditional random fields, supervised learning techniques
like SVM [CL11] and deep learning [Sh17].

3 Proposed framework: An overview

To deal with the extraction of entities and relations between entities from the ecological
domain, we propose a new approach. The main idea of the proposed approach is to exploit
semantic information represented in domain-specific ontologies. The main components of
proposed approach are depicted in Fig. 1. The figure shows that the framework has two
main components to extract entities and relations as well as necessary preprocessing steps.
In the following and for the space limitation, we are going to focus on the entity extraction
and recognition component.

Term extraction: As Figure1 shows the proposed framework accepts three kinds of inputs:
(i) text from where entities should be identified and classified, (ii) domain information
resources: gazetteers or ontologies, and optional (iii) domain expert knowledge. First, the
proposed framework accepts a text corpus and applies a preprocessing step, i.e. tokenization,
sentence splitting, and POS-tagging. This functionality is implemented as elements of

3 https://www.biodiversity-exploratories.de/startseite/

156 Vladimir Udovenko, Alsayed Algergawy

Entity Extraction in the Ecological Domain 13

Fig. 1: Proposed framework

GATE corpus processing pipelines. Due to the size of the annotated XML files, we cannot
store the whole text corpus in the main memory, as thus leads to its overflow even in the
case of relatively small text set. To make this framework able to work with text corpus
of any size, each document will be processed separately with new initialization of GATE
resources. After preparing the input text, the next task is to extract terminologies related to
the domain of interest. The term extraction process is a pattern matching problem. It may be
solved using a part of speech tagger and a set of strict grammar rules in order to reflect the
context. Following the definition in the book by [Ki14], we see that a term may be a noun
phrase or a single word and also may be composed of nouns, adjectives, and prepositions.
Therefore, a method to assign part-of-speech (POS) tags to tokens in textual data is used.
The deployed method creates term annotations based on POS-tags using the grammar-based
pattern matching. The expected result is a set of named entities with term label extracted
from the given text corpus.

Keyness ranking. Once having the initial list of extracted terms, the next step is to filter it,
because it will be a mix of general terms (non-specific) and domain specific terms which
are needed. For each term, it is possible to compute a appearance frequency, but in the
case of non-specific terms it will be always bigger than domain specific terms frequencies.
Keyness ranking [Ki14] probably provides a solution for this problem. The main idea is
relatively simple, we compute the frequencies of previously extracted terms in some general
text corpus, also called reference corpus, keynessterm =

f pm f ocus+n

f pmre f +n
, where, f pm f ocus is

the term frequency normalized per million in focus corpus (our normal working corpus),
f pmre f is the term frequency normalized per million in reference corpus and n - smoothing
parameter, by default n = 1. An excerpt of the result is shown Table 1.

Tab. 1: A sample of extracted terms along their keyness values

Term beech grassland Microbiol decomposer fine root rRNA Soil
Keyness 653.6 641.8 564.35 525.03 421.25 351.73 344.34

Validation and filtering. Keyness ranking provides a good filtering already and helps with
the selection of needed terms. But it is semantically blind, some of the extracted terms are
still non-domain terms. To deal with this issue, we make use of the services provided by

Entity Extraction in the Ecological Domain 157

14 Vladimir Udovenko, Alsayed Algergawy

BioPortal4, which support the possibility to retrieve the definition for each term. Bioportal
provides a comfortable terminology search API and returns requested information as JSON
data. From such responses, we extract the definition of each term as well as the ontology
that contains it. For example, here is the search for the term soil structure

{

"prefLabel": "structure of soil",

- "synonym": [

"soil structure"

],

- "definition": [

"The structure of some soil."

],

"links": {"ontology":

"http://data.bioontology.org/ontologies/AGRO",

...}

List. 1: Example of JSON response

This method allows us to get a list of domain ontologies for a given text corpus. Additionally,
an automated semantic terminology validation/filtering may be implemented based on
keywords in definitions. The appearance of word soil in retrieved definition speaks in favor
that this term is related to the domain of soil science and so on.

Entity annotation. After preparing the input text for processing (token and sentence anno-
tations), the next step is identify and recognize named entity. In the current implementation,
we make use of two different schemes: (i) using classical gazetteers: we have a list of entities
and search for them in given text data. Additionally, it may be improved with fuzzy string
matching techniques. (ii) using ontology as an information resource, which requires some
preparation before usage. To implement ontology-based annotation of named entities, we
construct a little bit tricky architecture for GATE processing application. After the ontology
is loaded as language resource, we construct two processing pipelines: one for ontology
resource pre-processing (RootFinder) and another corpus pipeline to create annotations.
RootFinder pipeline is here to prepare ontology-resources (related human-readable lex-
icalizations). The result set is stored in OntoRoot gazetteer module and then forwarded
into Flexible gazetteer in corpus pipeline to make annotations based on extracted ontology
resources.

4 Experimental evaluation
The proposed approach has been developed and implemented using Java 8 utilizing GATE
8.4.15 with embedded JAPE- for text annotation and grammars over annotations and Apache
Jena 3.9.0- for ontology processing. To validate the performance of the approach, we carried
out a set of experiments utilizing a corpus of 112 scientific works (articles, publications,

4 http://bioportal.bioontology.org/
5 https://gate.ac.uk/

158 Vladimir Udovenko, Alsayed Algergawy

Entity Extraction in the Ecological Domain 15

theses, etc) from the ecological and environmental domains obtained from the Biodiversity
Exploratory publication list. Originally they are in PDF format, and thus text data extraction
was needed for next steps of work. Preprocessing like tokenization and sentence splitting
are implemented as a part of GATE pipelines.

To evaluate the quality of the term extraction component, we asked domain experts from the
soil from different scientific groups. We first run the term extraction process, selected the
top-1000 terms and split them into four different sets, allowing overlap between sets. Then
we asked domain experts to validate the set of extracted terms. Computing the precision
of the available evaluations we get a precision of precision1 = 0.607 for the first group,
while the second group scores with a precision of 0.846. We believe that this initial and
preliminary results are encouraging especially for this specific domain.

Keyness ranking. Here we consider the computation of keyness score on an example of
the keyword soil. Before all, it is necessary to get normalized per million frequencies of
the extracted keyword. In our working (focus) corpus there are about 2149404 tokens and
soil occurs 16499 times. Hence, the normalized frequency is: f pm f ocus =

16499·1000000
2149404 =

7676.08. In the reference corpus, we may find the same term soil 3489 times, or 28.38
per million. In this regard, keyness score will be computed as follows: keynessterm =
f pm f ocus+n

f pmre f +n
= 7676.08+1

28.38+1 = 261.302. Here n = 1 is a smoothing parameter used to prevent
division by zero if some term was not found in the reference corpus. A larger value of the
keyness score (in comparison with other terms) speaks in favor that this term is domain
specific. Using these computed values, we construct a terminology ranking table.

Search for domain-relevant ontologies. To achieve this task, we make use of BioPortal,
which provides access to 774 ontologies (as of 28.01.2019). To find domain knowledge
resources we used the top-2000 list of keyness-ranked domain terms. Technically it was
relatively difficult to apply search API to the whole list, instead we have drawn three random
samples with about 100 terms in each one. In settings of search process we established exact
matching. Based on this, we create ranked lists of ontologies for each prepared terminology
sample. Table 2 illustrates an example of this ranking. By using three samples we compute
the average score and use it as a criterion for ontology selection. Note that very big ontologies
like IOBC are less applicable in the context of this work due to technical limitations.

Tab. 2: Occurrence-based ranking of domain ontologies.

Ontology Terminology samples AverageSample 1 Sample 2 Sample 3
IOBC 23 21 31 25,0
NCIT 13 15 19 15,7
NIFSTD 13 11 20 14,7
SNOMEDCT 13 7 15 11,7
CHEAR 10 11 12 11,0
NBO 8 9 11 9,3
AGRO 9 6 12 9,0
CRISP 8 10 8 8,7
ENVO 6 10 9 8,3
ECSO 6 9 8 7,7
MESH 6 8 9 7,7

Entity Extraction in the Ecological Domain 159

16 Vladimir Udovenko, Alsayed Algergawy

5 Conclusion and future work

Many applications need extraction of named entities. To this end, we presented a framework
that identifies and extracts entities from scientific publications from the ecological domain.
The next step is to find not only named entities but also relations among entities. We have
preliminary work on that.

6 Acknowledgements

We would like to thank A. Hildebrandt, FSU Jena and I. Schoening and T. Kloetzing, Max
Planck Institute for Biogeochemistry, for evaluating extracted terms as domain experts.
Also, we thank Andreas Ostrowski, FSU Jena, for providing the text corpus. This work has
been mostly funded by the Deutsche Forschungsgemeinschaft (DFG) as part of CRC 1076
AquaDiva.

References
[BKL09] Bird, S.; Klein, E.; Loper, E.: Natural Language Processing with Python: Analyzing Text

with the Natural Language Toolkit. O’Reilly Media, 2009.

[Ch06] Chang, Chia-Hui; Kayed, Mohammed; Girgis, Moheb R; Shaalan, Khaled F: A survey of
web information extraction systems. IEEE TKDE, 18(10):1411–1428, 2006.

[CL11] Chang, Chih-Chung; Lin, Chih-Jen: LIBSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

[DHI12] Doan, AnHai; Halevy, Alon; Ives, Zachary: Principles of data integration. Elsevier, 2012.

[Go18] Golshan, Parisa Naderi; Dashti, HosseinAli Rahmani; Azizi, Shahrzad; Safari, Leila: A
Study of Recent Contributions on Information Extraction. CoRR, abs/1803.05667, 2018.

[Ho02] Hobbs, Jerry R.: Information extraction from biomedical text. Journal of Biomedical
Informatics, 35(4):260–264, 2002.

[Ki14] Kilgarriff, Adam; Baisa, Vít; Bušta, Jan; Jakubíček, Miloš; Kovář, Vojtěch; Michelfeit, Jan;
Rychlý, Pavel; Suchomel, Vít: The Sketch Engine: ten years on, volume 1. Jul 2014.

[KN04] Krauthammer, Michael; Nenadic, Goran: Term identification in the biomedical literature.
Journal of Biomedical Informatics, 37(6):512–526, 2004.

[NS07] Nadeau, David; Sekine, Satoshi: A survey of named entity recognition and classification.
Investigationes, 30(1):W3–W26, 2007.

[Sh17] Shen, Yanyao; Yun, Hyokun; Lipton, Zachary Chase; Kronrod, Yakov; Anandkumar,
Animashree: Deep Active Learning for Named Entity Recognition. In: Rep4NLP@ACL.
pp. 252–256, 2017.

[YB18] Yadav, Vikas; Bethard, Steven: A Survey on Recent Advances in Named Entity Recognition
from Deep Learning models. In: COLING 2018. pp. 2145–2158, 2018.

160 Vladimir Udovenko, Alsayed Algergawy

Studierendenprogramm

cbe

LNI-Band (Hrsg.): BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Automated Architecture-Modeling for Convolutional
Neural Networks

Manh Khoi Duong1

Abstract: Tuning hyperparameters can be very counterintuitive and misleading, yet it plays a big
(or even the biggest) part in many machine learning algorithms. For instance, finding the right
architecture for an artificial neural network (ANN) can also be seen as a hyperparameter e.g. number
of convolutional layers, number of fully connected layers etc. Tuning these can be done manually
or by techniques such as grid search or random search. Even then finding optimal hyperparameters
seems to be impossible. This paper tries to counter this problem by using bayesian optimization,
which finds optimal parameters, including the right architecture for ANNs. In our case, a histological
image dataset was used to classify breast cancer into stages.

Keywords: CNN; Model Architecture; Breast Cancer; Histology

1 Introduction

Hyperparameters in machine learning are properties of an algorithm. There exist many
hyperparameters and especially neural networks have numerous of them. An essential task
is to find the hyperparameters which lead to the best results of the proposed classifier.
Techniques such as grid search and random search [BB12] can be proposed to solve this task
but lack of the ability to learn from previous outcomes. This is where Bayesian optimization
[Mo75] comes into play. This paper describes how Bayesian optimization can be used
to counter the problem of finding the right model architecture for Convolutional Neural
Networks to yield for the best results. The final evaluation of the proposed method in this
paper was done on a histological dataset [Ar17].

2 Related works

Similar works whose task is to optimize the model architecture are [ZL16], [Li17] and
[Zo17]. The mentioned works use reinforcement learning to consider the results of the
previous architectures to find better ones after each step. A controller, which is equivalent
to an agent, trains a child network each step. The feedback scores for the controller are the
1 Heinrich-Heine-Universität, Datenbanken und Informationssysteme, Universitätsstraße 1, 40225 Düsseldorf,

Germany manh.duong@hhu.de

cba doi:10.18420/btw2019-ws-17

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 163

https://creativecommons.org/licenses/by-nc/3.0/
manh.duong@hhu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-17

2 Manh Khoi Duong

validation accuracies. This guides the controller to produce better models at each iteration.
In contrast to this paper, the methods in [ZL16], [Li17] and [Zo17] use recurrent neural
networks where hyperparameters have to be set, too. Differently, the methods used in this
paper require only two hyperparameters which are the number of models to be trained and
the choice of the acquisition function. The trade-off seems to be better as fewer settings
have to be considered to optimize a function which requires much more settings.

3 Foundation

Bayesian optimization is a global optimization algorithm and works by firstly making a
prior belief about the objective function2. Then a prediction is made to find the minimum
or maximum. After observing the current evidence, the posterior belief is updated by the
given evidence and the prior belief. This update step is repeated for a defined number of
iterations so that the uncertainty decreases and the objective function can be approximated.
Assuming that each point of the function is normally distributed, then this function can
be modeled with Gaussian process (GP) regression. It can target multiple variables, thus
multiple hyperparameters can be optimized.
To determine the next point xnext for an observation X , an acquisition function is required.
This function usually noted by a : X → R+, with set of points X , takes all observations and
the best result into account [BCdF10]. It also has to be maximized to select the next point
xnext to evaluate the function at e.g. xnext = argmaxxa(x). Solving another optimization
problem than the objective function seems to be impractical but the acquisition function is
usually easier to optimize and much cheaper. It also limits the regression task of the objective
function: not all points are going to be evaluated, only points which are important to find
the minimum or maximum. An acquisition deals with the trade-off between exploration and
exploitation. Exploration is discovering regions with higher uncertainty and exploitation is
sampling on regions that will likely offer an improvement [BCdF10]. Exploration is needed
to escape from the local optimum.

Consider the hyperparameter optimization task with n hyperparameters, the objective
function is the function that samples all hyperparameter settings. Each point is n-dimensional
and contains values for each hyperparameter. The objective function has to be maximized
because a high accuracy is yielded. This can be formalized as argmaxx f (®x,D, y,Dval, yval)
where x is the n-dimensional vector containing hyperparameter values, D is the training
data, Dval is the validation data, y and yval are labels with f being a classifier which returns
the validation accuracy. The search space can be defined as intervals, making it continuous
as in random search.
2 A function to minimize or maximize

164 Manh Khoi Duong

Automated Architecture-Modeling for CNNs 3

4 Methods

This chapter aims to explain the method of how hand tuning has been replaced. The proposed
method can be divided into two steps: finding the model and fine-tuning the model. The first
subsection deals with the aspect which models can be found and the second subsection deals
with the details of fine-tuning the best model that has been found. This method has been
split in two because searching for all hyperparameters at once is not practical considering
the exponential growth of the search space.

4.1 Model finding

As already said in Section 3, the classifier can be seen as a function f which takes
®x,D, y,Dval, yval as inputs and returns the validation accuracy. Due to the fact that
the used python package [Sc] minimizes the objective, the optimization problem is
argminx f̃ (®x,D, y,Dval, yval) with f̃ being the classifier which returns the negative valida-
tion accuracy. Note that the goal is to find ®x.

The objective is called by the bayesian optimization algorithm which can be seen in
Algorithm 1 [BCdF10]. The attended hyperparameter ®x and its linked validation_accuracy
= F(®x,D, y,Dval, yval) are being saved to D̃ which is not to be confused with the training
or validation data. The Gaussian process regression is then updated in the last step. The
best hyperparameters can then be observed after n iteration steps of calling the objective
with different ®x. This optimization method does not have many hyperparameters itself.
Only the number of calls and the acquisition function is needed. For this paper, Expected
Improvement was chosen as the acquisition function and is defined for the minimization
task as follows [JSW98]:

EI(x) = E[max {0, f (x̃) − f (x)}]

where x̃ is the best hyperparameter that has been observed so far. This formula expresses
that the current f (x) has to be smaller than f (x̃) and their difference should be maximized.
The expected improvement can then be obtained by the expected value.

The model architectures proposed by this algorithm follow the trend of how modern
convolutional neural networks are built (see comparison with VGG16, VGG19 [SZ14],
DenseNet [Hu17]). The created model architectures are sequential and nonrecurrent. As
seen in Figure 1, the first convolutional block can be of size m, meaning it can contain m
convolutional (Conv) layers activated with the ReLu function. The second Conv block can
be of size n. The batch normalization (BN) layer was marked differently in the Figure as
the use of it was set to be a hyperparameter. Convolutional layers that are contained in the
same block have equivalent output dimensions and filter sizes. After several additional p
Conv blocks, the output is fed to k dense layers. A dropout layer is added between each
dense layer. The dense layers were also activated with the ReLu function. The last layer is

Automated Architecture-Modeling for Convolutional Neural Networks 165

4 Manh Khoi Duong

Algorithm 1 Bayesian Optimization
1: procedure bayesopt(®x,D, y,Dval, yval)
2: for i ← 1,n do
3: ®xnext ← argmax®xacq(®x, D̃) . acq is the acquisition function
4: val_accuracy← f̃ (®xnext ,D, y,Dval, yval)
5: if val_accuracy < best_accuracy then
6: best_accuracy← val_accuracy
7: ®xbest ← ®xnext
8: end if
9: D̃← D̃ ∪ (®xnext , val_accuracy)

10: Update Gaussian process regression based on D̃
11: end for
12: return ®xbest
13: end procedure

the softmax function which produces probabilities for the final output. Note that after each
Conv Block, a maxpooling (MP) layer is added consecutively. The MP layer reduces the
shape it receives into a much smaller shape. Too many MP layers can lead to an exception
of negative output shapes. The maximum amount of Conv blocks is therefore limited by
the very first input shape. Larger image sizes can have deeper models because more MP
layers are allowed. The algorithm developed for this paper is able to adapt the maximum
amount of Conv blocks to be created based on the input shape. To prevent underfitting, the
parameters m,n, p (see Figure 1) are at least one. Differently, it is possible that the created
neural network can have zero additional dense layers (k = 0).

4.2 Fine-tuning

The fine-tuning was applied on the model that has achieved the best results on the model
finding algorithm. The algorithm in fine-tuning is the same as described in Algorithm 1.
The only difference is that the objective gets different hyperparameters. In the fine-tuning
process a total of eight hyperparameters were tuned. The output dimension of the first,
second and other Conv blocks make up three hyperparameters. The rest consists of the
learning rate, dropout, number of dense nodes, lambda value of the L2-regularization and
the kernel size of each Conv filter. All other settings that are not mentioned were preserved
from the model finding task e.g. the optimizer and activation function were not changed.
The hyperparameters which are to be optimized in this task can be easily switched up with
other hyperparameters available. The hyperparameter vector ®x and the search space could
be defined arbitrary.

After finding the right model and fine-tuning the model, it was aimed to train the model
further to achieve even better results.

166 Manh Khoi Duong

Automated Architecture-Modeling for CNNs 5

ReLu Batchnormalization Max
Pooling

Dense

Conv2d

Dense(num_classes)

Dropout

outputsoftmax

ReLu Flatten

ReLu Max
PoolingConv2d

ReLu Max
PoolingConv2d

1. Convolutional
Block

2. Convolutional
Block

p* Convolutional
Blocks

Input

m x

k x

o x

n x

p x

Fig. 1: Model architectures that can possibly be created

5 Evaluation

The application of the methods was done on a histological dataset of breast cancer (see
Figure 2). The dataset provided by [Ar17] consists of 249 training samples and 36 test
samples labeled in the following four classes: normal, benign, in situ carcinoma and invasive
carcinoma. This leads to a four-class classification task. Another task that comes up by
this dataset is the classification into carcinoma and noncarcinoma cells where normal,
benign are noncarcinoma and in situ, invasive are carcinoma. Each image has a resolution
of 2048 × 1536 pixels. The breast tissues were stained with haematoxylin and eosin (H&E)
and were digitized under the same conditions. The magnification on this tissue is 200×. The
provided test set contains 20 images where the images can be classified clearly (labeled
as initial in [Ar17]) and 16 additional images with increased ambiguity. The latter were
labeled as extended. The classes have almost evenly distributed samples.
Because neural networks require a high amount of training samples, the dataset was aug-
mented with flippings, mirrorings, rotations and random contrast changes. The augmentation
increased the number of images by eight times. This results in 1992 samples to train the
neural network.

Automated Architecture-Modeling for Convolutional Neural Networks 167

6 Manh Khoi Duong

(a) Normal (b) Benign (c) In Situ (d) Invasive

Fig. 2: Samples of each stage

5.1 Inspecting bayesian optimization

Due to the use of bayesian optimization to find the optimal hyperparameters, its accom-
plishment in this task can be studied further in this section. From a theoretical point of
view, this optimization algorithm should find better values after each evaluation of the
objective function and a convergence should be seen. To see how this optimization technique
performed, a plot (see Figure 3) has been made which shows the accuracy of each created
model in the y-axis and the nth model in the x-axis. It was set that each created model has
to be trained for 40 epochs. Note that the fine tuning process was not done yet in this figure
and only the created models are considered.

0 100 200 300 400 500 600
20%

40%

60%

80%

100%

Tw
o-

cla
ss

Model accuracy
Training Validation

0 100 200 300 400 500 600
Iteration

20%

40%

60%

80%

100%

Fo
ur

-c
la

ss

Fig. 3: Accuracy of the created models on both classes. A linear regression for each validation and
training accuracy describes how bayesian optimization finds optimal models.

Considering the two-class classification, the values in the y-axis ranges from slightly under
50% to 100%. This is because guessing in a binary classification problem will already

168 Manh Khoi Duong

Automated Architecture-Modeling for CNNs 7

result in an accuracy of 50% on average if the dataset is evenly distributed which is fulfilled
in our given dataset. A lot of models that were created, scored bad accuracies. Meaning
those models were not able to learn from the data. This can be seen in the figure where a lot
of points lie in the accuracy of 50% which nearly creates a horizontal line visually. The
same can be observed in the four-class classification where the threshold is 25%. If the
plot as a whole is considered, there is no evidence of a convergence obtainable. All points
appear to be randomly distributed. The linear regression even shows a decrease in both
training and validation accuracy with each model that is found. This contradicts with the
theoretical assumption that better models should be found. For both classification tasks, the
best validation accuracy was found after 157 iterations. The achieved validation accuracy in
the four-class task is 61%. For the two-class task, the achieved validation accuracy is 75%.
This might be caused by randomly bad weight initializations or by the exploration step that
was done too much.

5.2 Final results

The best model that was found as described in Section 5.1 was fine-tuned and trained for
additional epochs. 1000 different hyperparameter settings were tested and it was chosen
to let the model train for 60 epochs with each hyperparameter setting. The results which
are presented in the following are based on the validation set: The confusion matrices in
Figure 4 are normalized which means that the number of predictions were divided by the
total number of images per class. This results in class-wise recall scores on the diagonal.
The confusion matrix in Figure 4a) shows on the diagonal that nearly all classes were
predicted correctly with a probability of 67%. Only benign has a recall score of 78%. It
can be misleading to state that benign tissues get classified at best because the first column
shows that benign was predicted at most and therefore the ANN was already likely to score
best at it. The higher number of predictions on the benign class can be explained by the
slightly unbalanced class distribution as it makes up 28% of the training data. The precision
score for the benign class is only 50%. Because normal and benign belong to non-carcinoma
cells, the most confusion happened there: 1

3 of the normal tissues were labeled as benign
but the opposite did not happen. The confusion matrix in 4b) shows that the classifier stages
carcinoma and non-carcinoma tissue both with a probability of 89%. As seen, the false
positive rate and false negative rate is 11%.

Table 1 shows different metrics to evaluate the classifiers. As seen, the metrics score for two
classes is the same everywhere. This is due to the equally distributed dataset and - as seen in
Figure 4b) - that all classes were fortunately predicted right with the same probability. For
non-binary classes there exists different averaging methods for the measures. The chosen
averaging method is macro which computes the given measure for each class and then takes
the arithmetic mean of it. As seen, the precision score is higher than the recall score for four
classes. The neural network is therefore good at classifying into the right classes but misses
a few elements which belong to it.

Automated Architecture-Modeling for Convolutional Neural Networks 169

8 Manh Khoi Duong

Ben
ign

In
Sit

u

Inv
asi

ve

Norm
al

Predicted label

Benign

In Situ

Invasive

Normal

Tr
ue

 la
be

l

0.78 0.11 0.11 0.00

0.22 0.67 0.00 0.11

0.22 0.00 0.67 0.11

0.33 0.00 0.00 0.67

Confusion Matrix, normalized

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Four-class

car
cin

om
a

no
nca

rci
no

ma

Predicted label

carcinoma

noncarcinoma

Tr
ue

 la
be

l

0.89 0.11

0.11 0.89

Confusion Matrix, normalized

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Two-class

Fig. 4: Confusion matrices of the ANN on both classification tasks

Classes Accuracy Recall Precision F1-score
Two-class 89% 89% 89% 89%
Four-class 69% 69% 74% 70%

Tab. 1: Different metrics to evaluate the ANNs

5.3 Comparing with related works

The following comparison is done against [GAS18], [Na18] and [NAE18] who made their
papers publicly available. The mentioned works participated in the ICIAR 2018 Grand
Challenge on Breast Cancer Histology Images [Ar18]. The dataset provided in this challenge
is based on the dataset [Ar17] used in this paper but consists of 151 more samples which is
an advantage. The dataset provided by the challenge was not used here because the dataset
was only made available for the participants. The comparison can be seen in Table 2 and all
results are based on the validation accuracy.

Team 4-class acc. 2-class acc. Approach
Aditya et al. [GAS18] 85% 93% Transfer learning: Inception-v3 [Sz15]
Wajahat et al. [Na18] 81% - Transfer learning: AlexNet [KSH12]
Kamyar et al. [NAE18] 95% - Transfer learning: Inception-v3 [Sz15]
Own work 69% 89% Automated Architecture-Modeling

Tab. 2: Validation accuracies compared with similar works

As seen in Table 2, not every team did the two-class classification. The comparison for two
classes can only be done against Aditya et al. [GAS18]. It can be observed that the results
are very similar in this case. For four classes, this work achieved inferior results against
the participants of the challenge. This can be caused by the higher amount of samples the

170 Manh Khoi Duong

Automated Architecture-Modeling for CNNs 9

teams had or by the use of a very common method of transfer learning. Though transfer
learning has been used by every mentioned team, the results can still differ. The results can
even vary if the teams use the same base model ([NAE18] and [KSH12]). As the number
of samples is essential for neural networks, the differences in the results can likewise be
caused by the different preprocessing and data augmentation methods. Apparently the
validation set is not the same for every team which can also lead to an inaccurate comparison.
[GAS18] and [Na18] used a fixed validation set throughout the hyperparameter search
whereas [NAE18] used cross-validation. The split was set differently by every participant.
The results, therefore, should be obtained with caution.

6 Conclusion and future works
Though the presented methods were applied on only one dataset consisting of two tasks, the
results were quite decent as an accuracy of 89% was achieved in the binary classification
task. For the four-class task, an accuracy of 69% was achieved. Also, it has been shown that
the real application of bayesian optimization neglects the intuitive results as no convergence
could be observed. This can be caused by many reasons, a further inspection and application
of the methods could be done in future works.

Furthermore, the model finding method could be extended by allowing the creation of
recurrent and nonsequential models. Considering more hyperparameters could lead to a
closer goal to the global optimum. Though the problem might be the curse of dimensionality
when considering too many possibilities, a bypass is to split the task into more steps instead
of two. The model finding algorithm could also be optimized: Some models already lack
to learn from the data and further training is not required. Some models, however, can
accomplish better results when being trained on a very high amount of epochs. When
considering the number of epochs as the depth and the amount of models that are going to
be created as the breadth, an application of iterative deepening depth-first search which
combines the breadth-first and depth-first search can thus be applied.

References
[Ar17] Araújo, Teresa; Aresta, Guilherme; Castro, Eduardo; Rouco, José; Aguiar, Paulo; Eloy,

Catarina; Polónia, António; Campilho, Aurélio; et al: Classification of breast cancer
histology images using Convolutional Neural Networks. PLOS ONE, 12(6), 2017.

[Ar18] Aresta, Guilherme; Araújo, Teresa; Kwok, Scotty; Chennamsetty, Sai Saketh; P., Mo-
hammed Safwan K.; Varghese, Alex; Marami, Bahram; Prastawa, Marcel; Chan, Monica;
Donovan, Michael J.; Fernandez, Gerardo; Zeineh, Jack; Kohl, Matthias; Walz, Christoph;
Ludwig, Florian; Braunewell, Stefan; Baust, Maximilian; Vu, Quoc Dang; To, Minh
Nguyen Nhat; Kim, Eal; Kwak, Jin Tae; Galal, Sameh; Sanchez-Freire, Veronica; Brancati,
Nadia; Frucci, Maria; Riccio, Daniel; Wang, Yaqi; Sun, Lingling; Ma, Kaiqiang; Fang,
Jiannan; Koné, Ismaël; Boulmane, Lahsen; Campilho, Aurélio; Eloy, Catarina; Polónia,
António; Aguiar, Paulo: BACH: Grand Challenge on Breast Cancer Histology Images.
CoRR, abs/1808.04277, 2018.

Automated Architecture-Modeling for Convolutional Neural Networks 171

10 Manh Khoi Duong

[BB12] Bergstra, James; Bengio, Yoshua: Random Search for Hyper-parameter Optimization. J.
Mach. Learn. Res., 13:281–305, 2012.

[BCdF10] Brochu, Eric; Cora, Vlad M.; de Freitas, Nando: , A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning, 2010.

[GAS18] Golatkar, Aditya; Anand, Deepak; Sethi, Amit: Classification of Breast Cancer Histology
using Deep Learning. CoRR, abs/1802.08080, 2018.

[Hu17] Huang, G.; Liu, Z.; v. d. Maaten, L.; Weinberger, K. Q.: Densely Connected Convolutional
Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2261–2269, 2017.

[JSW98] Jones, Donald R.; Schonlau, Matthias; Welch, William J.: Efficient Global Optimization
of Expensive Black-Box Functions. Journal of Global Optimization, 13:455–492, 1998.

[KSH12] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E: ImageNet Classification with Deep
Convolutional Neural Networks. In (Pereira, F.; Burges, C. J. C.; Bottou, L.; Weinberger,
K. Q., eds): Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc., 2012.

[Li17] Liu, Chenxi; Zoph, Barret; Shlens, Jonathon; Hua, Wei; Li, Li-Jia; Fei-Fei, Li; Yuille,
Alan L.; Huang, Jonathan; Murphy, Kevin: Progressive Neural Architecture Search. CoRR,
abs/1712.00559, 2017.

[Mo75] Močkus, J.: On bayesian methods for seeking the extremum. Springer Berlin Heidelberg,
pp. 400–404, 1975.

[Na18] Nawaz, Wajahat; Ahmed, Sagheer; Tahir, Muhammad; Khan, Hassan: Classification Of
Breast Cancer Histology Images Using ALEXNET. pp. 869–876, 06 2018.

[NAE18] Nazeri, Kamyar; Aminpour, Azad; Ebrahimi, Mehran: Two-Stage Convolutional Neural
Network for Breast Cancer Histology Image Classification. In: International Conference
Image Analysis and Recognition. Springer, pp. 717–726, 2018.

[Sc] Scikit-optimize. Website. Online available: https://github.com/scikit-optimize/
scikit-optimize; visited 29/07/2018.

[SZ14] Simonyan, Karen; Zisserman, Andrew: Very Deep Convolutional Networks for Large-Scale
Image Recognition. CoRR, abs/1409.1556, 2014.

[Sz15] Szegedy, Christian; Vanhoucke, Vincent; Ioffe, Sergey; Shlens, Jonathon; Wojna, Zbigniew:
Rethinking the Inception Architecture for Computer Vision. CoRR, abs/1512.00567,
2015.

[ZL16] Zoph, Barret; Le, Quoc V.: Neural Architecture Search with Reinforcement Learning.
CoRR, abs/1611.01578, 2016.

[Zo17] Zoph, Barret; Vasudevan, Vijay; Shlens, Jonathon; Le, Quoc V.: Learning Transferable
Architectures for Scalable Image Recognition. CoRR, abs/1707.07012, 2017.

172 Manh Khoi Duong

https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize

cba

A.Heuer et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Chain-detection for DBSCAN

Janis Held 1, Anna Beer 2, Thomas Seidl 2

Abstract:

Chains connecting two or more different clusters are a well known problem of the probably most
famous density-based clustering algorithm DBSCAN. Since already a small number of points resulting
from, e.g., noise can form such a chain and build a bridge between different clusters, it can happen that
the results of DBSCAN are distorted: several disparate clusters get merged into one. This single-link
effect is rather known but to the best of our knowledge there are no satisfying solutions which extract
those chains, yet. We present a new algorithm detecting not only straight chains between clusters,
but also bent and noisy ones. Users are able to choose between eliminating one dimensional and
higher dimensional chains connecting clusters to receive the underlying cluster structure by DBSCAN.
Also, the desired straightness can be set by the user. We tested our efficient algorithm on a dataset
containing traffic accidents in Great Britain and were able to detect chains emerging from streets
between cities and villages, which led to clusters composed of diverse villages.

Keywords: DBSCAN, clustering, chain-detection, single link effect

1 Introduction

Fig. 1: The red points cause a density-
connection between the intentional two
clusters and thus form a chain.

The human eye can easily detect areas of high den-
sity within a set of points. Derived from this human
intuitive clustering method the basic idea behind
density-based clustering is finding clusters by detect-
ing areas of high density. The famous density-based
algorithm DBSCAN [Es96] builds clusters around
points with high density, so-called seed points, and
expands them taking all density-connected points
into account as described in Section 2. As long as the
clusters are clearly separated, this procedure works
very well but if there are e.g. some density-connected
noise points creating a chain between clusters, DB-
SCAN expands the cluster along these chains resulting in a single huge cluster instead of
the intuitive ones.
1 Ludwig- Maximilians- Universität München, Institut für Informatik, Oettingenstr. 67, 80538 München, Germany,

J.Held@campus.lmu.de
2 Ludwig-Maximilians-Universität München, Institut für Informatik, Oettingenstr. 67, 80538 München, Germany,
{beer, seidl}@dbs.ifi.lmu.de

cba doi:10.18420/btw2019-ws-18

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 173

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-18

2 Janis Held, Anna Beer, Thomas Seidl

While keeping the requirements of DBSCAN, like minimal domain knowledge to determine
the input parameters, discovering clusters of arbitrary shape and good efficiency on large
databases, we developed an algorithm which detects such chains in clusters found by
DBSCAN. For that we use PCA (Principal Component Analysis) assuming that a chain
has a lower dimensionality than the clusters it connects. Figure 1 shows an example where
two 3D clusters are connected by a red chain with only little expansion in two of the three
dimensions. Our algorithm is adaptable, users can choose which type of chains they want to
connect: straight chains or bent ones, noisy or thin ones. Through recognizing those chains
and eliminating them from the clustering the underlying individual clusters can be revealed
by DBSCAN.

The paper is structured as follows: First, we introduce shortly the related work and basics
we use in Section 2. In Sections 3 we explain our novel method to find chains in detail,
giving an overview over the whole algorithm in Section 3.6. We analyze the complexity in
Section 4 and prove its effectiveness in Section 5 with some experiments. In Section 6 we
conclude and give a brief idea of some future work.

2 Related Work and Basics

There are already many extensions of DBSCAN, e.g. ST-DBSCAN, an extension for
clustering spatial-temporal data [BK07], MR-DBSCAN, which is an efficient parallel
density-based clustering algorithm using map-reduce [He11], or C-DBSCAN: Density-
based clustering with constraints [RSM07]. To the best of our knowledge, there is yet no
extension of DBSCAN to circumvent the disadvantages of the single-link effect or chains
connecting clusters. In this section, we give the basics needed for the following sections,
namely some details of DBSCAN and the Principal Component Analysis (PCA).

DBSCAN Density-based spatial clustering of applications with noise [Es96] is a density
based clustering algorithm that clusters points based on their density and marks outliers
lying in low-density regions. A point with at least minPts points in its ε-range is called a
core point. All points in the ε-range of a core point c belong to the same cluster as c and are
called density-reachable from c. All reachable points are assigned to the cluster from which
they are reachable, while points which are neither reachable nor core points are declared
noise. Like that, it is possible that a small chain of density-reachable points connects two
clusters as Figure 2 shows.

PCA (Principal Component Analysis) [JC16] transforms given data points to a new
coordinate system where the greatest variance by any projection of the data lies along
the first coordinate (the first principal component), the second greatest variance along the
second coordinate, and so on. PCA is a good indicator of how well some data fits into a
lower dimensional subspace.

174 Janis Held, Anna Beer, Thomas Seidl

Chain-detection for DBSCAN 3

PCA regards the eigenvalue decomposition of the data covariance matrix, usually after mean
centering the data matrix for each dimension. Then the eigenvectors of the covariance matrix
form an orthogonal basis and each eigenvalue describes how much variance is explained by
its corresponding eigenvector [JC16].

Let d be the dimensionality of the data space Ω and N = {n1, ...,nm} the ε range of some
point p ∈ Ω. The data matrix is defined as (n1, ...nm)T . Let mj be the mean of column j.
One can now calculate the covariance matrix Θ with

Θi j =

∑m
k=1(nki − mi)(nk j − mj)

m
, i = 1, .., d, j = 1, .., d. (1)

Note that the covariance matrix is symmetric and positive semi-definite, thus its eigenvalues
are non negative. Finally the eigenvalues are normalized by dividing them by the sum of all
eigenvalues, such that the sum of all normalized eigenvalues equals to 1.

3 The Approach

Let DBSCANε ,minPts(X) be the clustering of DBSCAN with parameters ε and minPts
of some data X and C be a cluster found by DBSCAN in the data space Ω. We want to
find a set of candidates that may form chains in C. With the assumption of chains having
a subdimensional shape we can utilize the definition of neighborhood from DBSCAN
and look for an algorithm that decides for each point if it lies within a subdimensional
neighborhood. Additionally the algorithm has to fulfill some restraints: first of all it has to be
rotation invariant as the direction of the chains does not matter. Secondly it has to be error
resistant, as we want to be able to allow some bending of chains and apply it on a application
with noise. The idea is to use the distribution of all points in the ε-range of each point as an
indicator for its likelihood do be part of a chain. Therefore, a point in C is considered a
shape-based chain-point candidate if there exists a subspace with a lower dimensionality
thanΩ, such that all points of the ε range of p lie close to it. Note that ”lower dimensionality”
and the word ”close” will become parameters for the chain-detection algorithm. Clustering
all remaining points may result in some noise points. We call the union of shape-based
chain-point candidates with all those noise points chain-point candidates. Now we can
cluster the chain-point candidates and each cluster is called a chain-candidate. Note that
all chain-point candidates which were marked as noise are not part of a chain-candidate,
because we want a chain to be at least big and dense enough to form a cluster itself. The last
step will be to validate if the chain-candidate indeed connects two clusters of the remaining
points and is not some kind of tail.

Chain-detection for DBSCAN 175

4 Janis Held, Anna Beer, Thomas Seidl

3.1 Chains

Fig. 2: The red dots connect
two clusters and thus form a
chain.

Fig. 3: Since the chain-like
looking red dots do not con-
nect any clusters, they are not
considered a chain.

Fig. 4: The red dots may or
may not be a chain, depending
on the user. The red circle is
one of the ε ranges.

Assume the user wants to detect one-dimensional chains in a two-dimensional data space
and DBSCAN would not label the red dots in the following figures as noise, then Figure 2
shows a simple example of a chain. The red dots in Figure 3 are not considered a chain,
because they do not form a connection between two clusters. The red dots in Figure 4 are
not perfectly linear, because the ε range of each red point (the red circle is one of the ε
ranges) does not perfectly fit inside a one dimensional subspace, and thus it depends on the
user if he wants to detect those as a chain.

3.2 Chain-Point candidates

For each point in a cluster C the objective is to determine if this point is a chain-point
candidate. To achieve this, for each point p ∈ C the technique behind principal component
analysis (PCA) is utilized to calculate how good the ε range of p fits inside a subspace with
a dimensionality lower than the dimensionality of the data space Ω. To be more precise,
PCA is utilized to find this subspace and then to calculate the explained variation of those
ε-neighbors of p which do not fit inside this subspace.

Theorem 1 Let d be the dimensionality of the data space Ω and N = {n1, ...,nm} ⊂
Ω be the ε range of some point p ∈ Ω. Furthermore let λ1 ≥ ... ≥ λd be
the sorted normalized eigenvalues of the covariance matrix Θ derived from N .

1. If λd = 0, then N lies inside a hyperplane.

2. If λd = 1/d, then N is perfectly distributed across all dimensions.

3. if λi = 0 and 1 < i < d, then N lies inside a subspace with dimension i − 1.

176 Janis Held, Anna Beer, Thomas Seidl

Chain-detection for DBSCAN 5

Proof 1 1. If λd = 0, then the corresponding eigenvector evd describes 0 variance. Since
the eigenvectors form a orthogonal basis N lies entirely in the hyperplane
orthogonal to evd .

2. Since the sum of all eigenvalues equals to 1 and there are d eigenvalues and
all are non negative, each eigenvalues must be equal to 1/d. That means
each eigenvector describes the same variance, thus N is perfectly distributed
across all dimensions.

3. Since the eigenvalues are sorted, non negative and λi = 0 it follows
that λj = 0,∀ j ∈ {i, ..., d}. That means the corresponding eigenvectors
evj, j ∈ {i, ..., d} of the orthogonal basis describe 0 variance. Thus, N lies
entirely in the subspace spanned by evj, j ∈ {1, ..., i − 1}.

3.3 Parameters

With theorem 1 one can now define two parameters

1. chainDim ∈ {1, ..., d − 1}, which describes the dimensionality of chains the user
wants to detect.

2. allowedVariation ∈ [0,1[, which allows variation beyond the allowed dimensionality
of the chain.

Like in Section 3.2, let N = {n1, ...,nm} be the ε range of some point p ∈ C and λ1, ..., λd the
descending sorted normalized eigenvalues of the covariance matrix Θ corresponding to N .
To calculate how good N lies within a chainDim dimensional subspace, one calculates the
accumulated error e :=

∑d
i=chainDim+1 λi . The sum starts with chainDim + 1, because only

the d − chainDim least significant principal components explain the variation beyond the
wanted chain dimensionality. It holds that λd ∈ [0,1/d], because the sum of all eigenvalues
equals to 1, there are d eigenvalues and λd is the smallest one. If λd < 1/d then λ1 > 1/d,
otherwise λ1 would not be the largest normalized eigenvalue. That means the sum of the
i smallest normalized eigenvalues is at most i/d, that is if all eigenvalues are 1/d. Thus
e ∈ [0, (d − chainDim)/d] To make the user-input independent of the dimensionality of Ω
and chainDim, one normalizes the error by

ē := e ∗ d
d − chainDim

∈ [0,1]. (2)

Now, p is a chain-point candidate if ē ≤ allowedVariation.

Chain-detection for DBSCAN 177

6 Janis Held, Anna Beer, Thomas Seidl

3.4 Fuzziness of Chains

In Figure 5 examples for various values of normed errors are given for a two dimensional
data space with chainDim = 1. ē describes the variation beyond a linear subspace. The
closer the points get to a linear subspace the lower the error gets and vice versa. In Figure
5c the error is close to 1 since the points are almost perfectly distributed in all directions.

(a) ē ≈ 0.0002 (b) ē ≈ 0.1563 (c) ē ≈ 0.9997

Fig. 5: Various degrees of fuzziness dependent on the normed error ē

Let us have a look at some synthetic example data. In Figure 6 the points are colored by its
normed error values with chainDim set to 1. Some points are clearly marked red, because
they have a low normed error, indicating that they might be part of a chain. On the other hand
most of the points inside those clouds have a high normed error because their ε range hardly
fits into a one-dimensional subspace. Setting allowedVariation to some value determines
for each point if it is a chain-point candidate. Setting allowedVariation to 0.2 on the data
of Figure 6 results in the shape-based chain-point candidates seen in Figure 7.

Fig. 6: Example data: Each point is colored by
the normed error ē derived from its ε range.
Yellow means the error is close to 1 and red
means it is close to 0.

Fig. 7: Example data: With
allowedVariation = 0.2 the red points
are selected as shape-based chain-point
candidates. The arrow highlights an outlier.

3.5 Finding and validating chain candidates

Let Cē be the set of shape-based chain-point candidates. First of all each shape-based
chain-point candidate is added to the set of chain-point candidates. After clustering the
remaining points C \ Cē by DBSCANeps,minPts all points marked as noise are not part

178 Janis Held, Anna Beer, Thomas Seidl

Chain-detection for DBSCAN 7

of a cluster of non-candidates, indicating that they also might be part of a chain, see the
highlighted black dot on the left of Figure 7. These points are now added to the set of
chain-point candidates.

Clustering the set of chain-point candidates by DBSCANeps,minPts results in clusters of
chain-point candidates, which are the desired chain-candidates and noise.

Let Cci, i ∈ I be those chain-candidates, R := C \ ∪i∈ICci be the set of the remaining points
and DBR be DBSCANeps,minPts(R). Note that R contains those chain-point candidates,
which were marked as noise by clustering all chain-point candidates. To validate Cci check
for each point p ∈ Cci , if their ε range contains points r ∈ R and note the cluster of r
found in the clustering DBR. As soon as two clusters are noted the chain is validated and
considered a chain. If all points are checked but no two clusters are noted the chain-candidate
Cci could not be validated and is not considered a chain.

Finally we receive a set of chains - which can now be considered clusters themselves or
simply marked as chains - and a set of remaining points, which remain to be clustered to get
the final clustering without chains.

3.6 The complete algorithm

Let C be the cluster found by DBSCAN with metric dist(·, ·) and parameters ε
and minPts. chainDim and allowedVariation are the parameters of chain detection.
RangeQuery(C, dist, p, ε) returns the set {q ∈ C |dist(p,q) ≤ ε}. For the sake of simplicity
assume the result of DBSCAN contains the property "Noise", which is the set of points
marked as noise and the property "Clusters", which is the set of clusters. Algorithm 1
recapitulates our complete approach. For a full implementation with example code see
https://github.com/Quesstor/DBSCAN-with-density-based-connection-detection.

4 Runtime complexity

Let n be the number of points in the cluster, on which the chain-detection algorithm is
applied, in a d dimensional data space. For each point a range query with linear complexity
is calculated. Calculating the covariance matrix of the ε-neighborhood, which in the worst
case consists of all n points, is O(n∗d2). Then the eigenvalues of the d×d covariance matrix
is calculated, which has runtime complexity of O(d3). So the total runtime complexity for
the for loop is O(n(n + n ∗ d2 + d3)). The DBSCANs on a subset of the cluster each have
the worst case run time complexity of O(n2). The validation step calculates for less than n
points a range query resulting in a worst case run time complexity of O(n2). So the for loop
is causing the largest performance hit with a runtime complexity of O(n(n + n ∗ d2 + d3)).
Assuming d << n one can simplify the runtime complexity to O(n2).

Chain-detection for DBSCAN 179

https://github.com/Quesstor/DBSCAN-with-density-based-connection-detection

8 Janis Held, Anna Beer, Thomas Seidl

Algorithm 1 Chain-detection
procedure ValidateChaincandidate(Chain,R,DBR, dist, ε)

clusterFound ← null
for c ∈ Chain do

for p ∈ RangeQuery(R, dist, c, ε) do
if clusterFound == null then

clusterFound ← DBR .labelFor(p)
else

if clusterFound , DBR .labelFor(p) then
return True

return False
procedure Chain-detection(C, dist, ε,minPts, chainDim,allowedVariation)

d ← dim(C) . The dimensionality of the data
Cc ← {} . The set of chain-points
for p ∈ C do . Find all chain-point candidates

N ← RangeQuery(C, dist, p, ε)
EV ← EigenValues(CovarianceMatrix(N))
EV ← EV/EV .sum() . Norm eigenvalues
EV ← EV .sorted(descending=TRUE) . Sort eigenvalues descending
e← EV .sum(start=d − chaindim + 1) . Calculate error
e← e ∗ (d/(d − chainDim)) . Norm error
if e ≤ allowedVariation then . Compare error with parameter

Cc ← Cc ∪ {p} . Add p to the set of chain-points
if |Cc | == 0 then return {}
R← C \ Cc . The set of remaining points
DBR ← DBSCAN(R, dist, ε,minPts) . Cluster the remaining points
Cc ← Cc ∪ DBR .Noise . Add noise to the set of chain-points
DBCc

← DBSCAN(Cc, dist, ε,minPts) . Cluster chain-points
if |DBCc

.clusters| == 0 then return {} . No chain-candidate found
R← C \ ∪DBCc

.Clusters . Update the set of remaining points
DBR ← DBSCAN(R, dist, ε,minPts) . Cluster the remaining points
if |DBR .clusters| ≤ 1 then return {} . No chain-candidate can be validated
Chains← [] . The list of validated chains
for V ∈ DBCc

.Clusters do . Validate each chain-candidate
if ValidateChaincandidate(V,R,DBR, dist, ε) then

Chains.append(V)
return Chains

180 Janis Held, Anna Beer, Thomas Seidl

Chain-detection for DBSCAN 9

To improve performance the range queries should be executed on a tree structure and
calculating the normed error for each point, which causes the largest performance hit, can
easily be parallelized.

5 Experiments

The dataset on which the experiments are performed consists of all reported traffic accident
locations in Great Britain from the years 2014 - 2016. It was downloaded on February
the 27th 2018 from https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-
england-scotland-wales/data and clustered by DBSCAN with parameters ε := 0.01 and
minPts := 15. These parameters were obtained by trial and error while clustering the area
of roughly 100km in each direction around London’s center with the goal to obtain a cluster
which contains chains of traffic accidents.

Traffic accidents in London The chain-detection will be demonstrated on the cluster
found at London city, see Figure 8. The results obtained by DBSCAN are not a satisfying
clustering, because the highways, on which a lot of accidents happen, connect the suburban
areas outside London to a single cluster. So let us apply the chain-detection algorithm. To
detect these highways, which are basically one-dimensional chains, one sets the chainDim
parameter to 1. Since the highways are not perfectly linear and surrounded by noise, one
wants to allow some error and set the allowedVariation parameter to 0.2. Figure 9 shows
the resulting clustering after applying the chain-detection algorithm. Most of the suburban
areas are now separated from the main cluster of London city and almost all chains are
found on highways.

Fig. 8: The cluster around London found by
DBSCAN clustering of traffic accidents in Great
Britain. The dots are stretched to fit the underly-
ing map.

Fig. 9: Chain-detection applied on the cluster
around London found by DBSCAN clustering
of traffic accidents in Great Britain. Chains are
marked red.

Chain-detection for DBSCAN 181

https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/data
https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/data

10 Janis Held, Anna Beer, Thomas Seidl

Traffic accidents in Liverpool and Manchester Another example is the cluster found
at Liverpool and Manchester. As there are a lot of accidents between those cities both
end up in the same cluster, see Figure 10. Let us apply the chain-detection algorithm with
parameters chainDim := 1 and allowedVariation := 0.2, for the same reasons as in the
previous example. In Figure 11 we can see how the traffic accident clusters are now well
divided, one cluster in Liverpool and one in Manchester.

Fig. 10: The cluster of traffic accidents at Liver-
pool and Manchester.

Fig. 11: Result of the chain-detection algorithm
applied on the traffic accidents in Liverpool and
Manchester.

6 Conclusion

In conclusion we developed the first algorithm which solves the problem that DBSCAN
unintentionally detects only one cluster where several are connected by a chain or several
noise points. We achieved that by recognizing chain points by analyzing the eigenvalues of
the covariance matrix of their neighborhood. In our experiments we applied the algorithm
on a real world dataset containing traffic accidents, where it found the intentional chains and
enabled DBSCAN to find the original, smaller clusters in the dataset, instead of aggregated
ones. Our approach is not limited to DBSCAN, but could also be of use after executing other
clustering algorithms which tend to aggregate clusters connected by chains. Nevertheless,
the ε parameter which determines in which range of each point the distribution of points is
regarded, would have to be determined. We plan to examine further areas of application and
experiments in future work.

References

[BK07] Birant, D.; Kut, A.: ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data
& Knowledge Engineering 60/1, pp. 208–221, 2007.

[Es96] Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise, 1996, url: https://ocs.aaai.org/
Papers/KDD/1996/KDD96-037.pdf, visited on: 01/11/2019.

182 Janis Held, Anna Beer, Thomas Seidl

https://ocs.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://ocs.aaai.org/Papers/KDD/1996/KDD96-037.pdf

Chain-detection for DBSCAN 11

[He11] He, Y.; Tan, H.; Luo, W.; Mao, H.; Ma, D.; Feng, S.; Fan, J.: Mr-dbscan: an efficient
parallel density-based clustering algorithm using mapreduce. In: Parallel and Distributed
Systems (ICPADS), 2011 IEEE 17th International Conference on. IEEE, pp. 473–480,
2011.

[JC16] Jolliffe, I. T.; Cadima, J.: Principal component analysis: a review and recent developments,
2016, url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792409/, visited on:
01/11/2019.

[RSM07] Ruiz, C.; Spiliopoulou, M.; Menasalvas, E.: C-dbscan: Density-based clustering with
constraints. In: International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and
Granular-Soft Computing. Springer, pp. 216–223, 2007.

Chain-detection for DBSCAN 183

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792409/

cba

Vorname Nachname et. al. (Hrsg.): BTW 2019 - Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Konzeption und Umsetzung einer DSL zur
Informationsfusion auf verteilten heterogenen Graphen

Alexander Kern1

Abstract: Informationsintegration ist das Zusammenführen von Informationen aus verschiedenen
Quellen. Dadurch soll eine effektivere Nutzung der Daten erreicht werden, als durch die Arbeit mit
den einzelnen Quellen möglich ist. Allerdings ist Informationsintegration ein hochkomplexes Problem.
Es umfasst neben der Duplikatserkennung auch das Auflösen von Inkonsistenzen auf Schema- und
Instanzlevel. Diese Arbeit stellt eine domänenspezifische Sprache zur Lösung von Konflikten auf
Attributwertebene für heterogene Graphdaten vor. Die Sprache stellt mit der Informationsfusion einen
Teilschritt des Informationsintegrationsprozesses zur Verfügung. Neben der Gestaltung der DSL
und der Entwicklung eines Prototyps mit Apache Flink und Gradoop beurteilt eine Evaluation der
Fusionsergebnisse die Qualität des Verfahrens.

Keywords: Informationsintegration, Informationsfusion, Gradoop, Graphen, DSL, Apache Flink

1 Einleitung

Die Verarbeitung großer Datenmengen ist eine immer wichtigere Aufgabe in vielen
verschiedenen gesellschaftlichen Bereichen. Die Arbeit mit Big Data bringt jedoch eine
Vielzahl von Schwierigkeiten mit sich. Neben der großen Menge an Daten, die oft nicht mehr
an einem einzelnen Rechner bearbeitet werden können, sind auch verschiedene Datenformate,
fehlende oder fehlerhafte Daten und die Anforderung nach zeitnaher Datenverarbeitung
Probleme, die gelöst werden müssen. Eine weitere Herausforderung ist es, eine geeignete
Darstellung für die gesammelten Daten zu finden. Eine mögliche Darstellungsart für
Datenobjekte mit komplexen Beziehungen sind Graphen, denn diese ermöglichen eine
intuitive Abbildung und Analyse der vorhandenen Daten[JP16]. Graphen stellen Entitäten
als Knoten und Beziehungen zwischen diesen Entitäten als Kanten dar.

Eine wichtige Aufgabe ist das Zusammenführen von Daten aus unterschiedlichen Quellen.
Hierbei spricht man von Informationsintegration. Dadurch ist es möglich, in einzelnen
Quellen fehlende Daten zu ergänzen, Fehler zu finden und beheben und durch weiter-
gehende Analysen zusätzliche Erkenntnisse, auch über Datenquellengrenzen hinweg, zu
erlangen[Li10, S. 266]. Allerdings ist Informationsintegration ein komplexes Problem, dass
1 Universität Leipzig, Big Data Kompetenzzentrum, Ritterstraße 9-13, 04109 Leipzig, ak44xubu@studserv.uni-

leipzig.de

cba doi:10.18420/btw2019-ws-19

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 185

https://creativecommons.org/licenses/by-sa/4.0/
ak44xubu@studserv.uni-leipzig.de
ak44xubu@studserv.uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-19

2 Alexander Kern

unterschiedliche Teilaspekte wie Transformationen, Schemaintegration, Entity Resolution,
Duplikatserkennung und Datenfusion umfasst[LN06, S. 6ff].

Diese Arbeit stellt eine Lösung für Attributwertkonflikte bei der Fusion von Daten in
einem Prozess zur Informationsintegration vor. Die Lösung nutzt eine domänenspezifische
Sprache zur Auswahl von Attributen aus heterogenen Graphdaten und Lösungsstrategien
für Konflikte zwischen den vorhandenen Attributwerten. Mithilfe der DSL lässt sich das
Schema und die Logik zur Berechnung der Ausgabeknoten festlegen.

2 Verwandte Arbeiten

Im Paper „Declarativ Data Cleaning: Language, Model, and Algorithms“[GFS01] stellen
Galhardas et. al. eine an die SQL-Syntax angelehnte deklarative Sprache vor, die durch
mehrere Schritte unsaubere Daten aufbereitet. Unsauberkeiten können Fehler, Inkonsistenzen
und inkompatible Schemaunterschiede sein. Das Ziel ist dabei eine klare Trennung der
logischen Beschreibung mithilfe der Querysprache und der physischen Ausführung durch das
Programm. Dabei werden die Queries, welche die einzelnen Schritte beschreiben, zu Java-
Programmen umgewandelt. Nach dem Laden und Transformieren der Daten findet Entity
Resolution, das Auffinden von verschiedenen Datensätzen, die eine Entität beschreiben,
statt. Der letzte Schritt ist das Merging, in dem benutzerdefinierte Aggregationsfunktionen
die vorhandenen Attributwerte zu einem einzelnen Wert zusammenführen. Der im Paper
vorgestellte Prozess legt den Schwerpunkt auf das Aufbereiten von unsauberen Daten.
Eventuelle Heterogenität im Datenschema beseitigt der Prozess beim Laden, weshalb das
Merging auf homogene Daten beschränkt ist.

Einen ähnlichen Prozess zur Informationsintegration von heterogenen Graphdaten stellen
Lim et. al. in [Li10] vor. Der erste Schritt in ihrem Prozess ist die Schemaintegration. Dabei
werden Daten aus den verschiedenen Quellen zuerst in ein einheitliches Schema gebracht.
Anschließend werden beim Instance Matching Entitäten und Relationen einander zugeordnet.
Am Ende findet die Auflösung von Attribute-Value-Konflikten statt. Die Veröffentlichung
betrachtet nur den Schritt des Instance Matching im Detail.

In „Declarative Data Cleaning With Conflict Resolution“[NH02] konzentrieren sich Felix
Naumann und Matthias Häussler auf die Lösung von Attribute-Value-Konflikten. Sie verfol-
gen einen Ansatz um Datenintegration mithilfe von SQL durchzuführen. Im Paper nennen die
Autoren eine Vielzahl von möglichen Funktionen zur Auflösung von Attributwertkonflikten.

Gradoop (Graph Analytics on Hadoop) ist ein Framework für verteilte deklarative Graph-
analysen. Es verbindet die Stärken von Graphdatenbanksystemen wie Neo4j und verteilten
Graph Processing Systeme wie Google Pregel oder Gelly, in dem es die verteilte Ausführung
von Graphabfragen und -algorithmen für EPGM-Graphen bietet. Das Extended Property
Graph Model beschreibt Graphen mithilfe von Knoten, Kanten, Graphen und Graph Collec-
tions. Jedes Objekt im EPGM-Graph kann dabei durch Properties mit Eigenschaften als

186 Alexander Kern

Informationsfusion auf verteilten heterogenen Graphen 3

Key-Value-Paaren versehen werden.[Ju18] FAMER ist ein Framework für verteilte Entity
Resolution auf Daten aus verschiedenen Quellen. Zur Ausführung setzt FAMER Apache
Flink und Gradoop ein[SPR17].

3 Konzeption

Das folgende Kapitel erläutert den geplanten Informationsintegrationsprozess und die daraus
resultierenden Anforderungen an die domänenspezifische Sprache zur Informationsfusion.

Graph 1 Graph 2 ... Graph n

Graph
Transformation

Graph
Transformation

Graph
Transformation

Entity
Resolution

Informations-
fusion

Integrated Graph

Vertex Cluster

Abb. 1: Informationsintegrationsprozess mit Gradoop

Abb. 1 zeigt den Ablauf der Informationsintegration mithilfe von Gradoop. Mithilfe von
Transformationen kann eine Vorverarbeitung der Daten stattfinden. Eine Angleichung der
Datenschemata ist hierbei allerdings nicht zwingend nötig. Die Unterstützung heterogener
Daten ist ein essentieller Unterschied zu den anderen vorgestellten Arbeiten. Anschließend
findet Entity Resolution mithilfe von FAMER statt. Die dabei gematchten Datensätze
beschreiben jeweils die gleiche Entität. Jeder dieser Matching-Cluster wird anschließend
mithilfe der von der DSL beschriebenen Query zu einem einzelnen Knoten fusioniert. Der
Ergebnisgraph umfasst alle diese generierten Knoten. Eine Fusion eventuell vorhandener
Kanten findet derzeit nicht statt.

3.1 Anforderungen an die DSL

Die Hauptaufgaben der DSL sind das Auswählen der Attribute aus den heterogenen
Eingangsdaten, die Definition des Schemas und die Lösung von Attributwertkonflikten
in den Ausgabeknoten. Die DSL beschränkt sich derzeit auf die Informationsfusion der
Knoten der Graphen, die Fusion von Relationen ist nicht Teil der Problemstellung.

Konzeption und Umsetzung einer DSL zur Informationsfusion 187

4 Alexander Kern

Auf der obersten Ebene muss die DSL im Stande sein, einen oder mehrere Ausgabekno-
tentypen zu definieren. Für jeden Ausgabeknoten müssen Transformationsregeln festlegen,
welche Attribute der Eingabedaten mit welcher Konfliktlösungsstrategie (vgl. Abschnitt 3.2)
betrachtet werden sollen. Falls die gewählte Strategie zusätzliche Optionen benötigt, muss
die Sprache diese bei der Regeldefinition akzeptieren können. Die Menge der Transformati-
onsregeln beschreibt gleichzeitig das Schema des Ausgabeknotens.

Außerdem soll es möglich sein, weitere vorhandene Attribute ohne explizite Transformati-
onsregeln zu übernehmen. Dies soll nicht das Standardverhalten sein, jedoch zur möglichen
Verkürzung von Queries einsetzbar sein. Die Idee hierbei ist, ohne großen Aufwand einen
ersten Überblick über die Daten zu gewinnen, den der Nutzer anschließend mit spezifischen
Transformationsregeln verfeinern kann.

Zur Vereinfachung von Queries soll es außerdem eine Kurzform für die Listen von
Eingabeattributen geben, wenn diese in allen Quellen den gleichen Namen haben. Diese
Voraussetzung lässt sich durch Graphtransformationen leicht herstellen.

Die Endanwender der DSL sind einerseits Nutzer von Gradoop, bei denen von vorhandenen
Java- und SQL-Kenntnissen ausgegangen werden kann. Andererseits soll die DSL auch von
Domänenexperten, beispielsweise aus dem Business-Intelligence-Bereich, nutzbar sein. Bei
diesen kann zwar nicht von Programmierkenntnissen, allerdings auch von SQL-Kenntnissen
ausgegangen werden.

Ein wichtiger Aspekt für die Gestaltung einer domänenspezifische Sprache sind die Kosten
für Programmerstellung, -verifikation und -wartung[Ba17]. Um diese gering zu halten, ist
es nötig, die Problemdomäne so abzubilden, dass die Anwendung der Sprache dem Nutzer
möglichst klar erscheint. Aber auch Punkte wie die Komplexität der Syntax sind hierbei
von Bedeutung. Unter Beachtung der Endnutzer der Sprache sollen diese Faktoren beim
Design beachtet werden.

3.2 Attribute Value Conflict Resolution

Unter Betrachtung der von Naumann und Häussler vorgestellten Strategien zur Lösung
von Attributwertkonflikten [NH02] wurden die Tab. 1 gezeigten Konfliktlösungsstrategien
entwickelt.

Diese Konflikte können aus unterschiedlichen Datenschemata (zum Beispiel bei Datums-
angaben), verschiedenen Semantiken in den unterschiedlichen Quellen (zum Beispiel
bezeichnet name einmal den gesamten Namen einer Person, einmal nur den Nachnamen),
inhaltlichen Fehlern (zum Beispiel Tippfehler oder veraltete Daten) oder unterschiedlicher
Schemata der Quelldaten stammen.

Einfache Strategien sind beispielsweise das Wählen des ersten Werts in der alphanumerischen
Ordnung und das Konkatenieren aller vorhandenen Werte durch ein Separatorsymbol. Die

188 Alexander Kern

Informationsfusion auf verteilten heterogenen Graphen 5

Strategie Beschreibung Optionen
Straight Erster Nicht-Null-Wert nach alphanumerischer

Ordnung
-

Retain Konkatenation der vorhandenen Werte Separatorsymbol
Priority Erster Nicht-Null-Wert in der spezifizierten Ord-

nung der Quellen
Sortierung der Quellen

Newest Wert mit dem aktuellsten Zeitstempel Zeitstempel-Attribute
Majority Wert, der in den meisten Quellen vorhanden ist -
Source Wert mit dem höchsten summierten Gewicht Gewichte für Quellen
Property Auswahl anhand der vorhandenen Attributwerte

mit Substrategie
Substrategie

Tab. 1: Strategien zur Konfliktlösung

priority-Strategie nutzt eine Ordnung für die Quellen, mit der ein Anwender Präferenzen
ausdrücken kann. Verfügen die Datensätze über Zeitstempel ist es möglich, den neuesten
bzw. zuletzt geänderten Wert auszuwählen.

Die majority-Strategie ermöglicht die Auswahl des am häufigsten vorhandenen Werts. Eine
Verfeinerung dazu ist die source-Strategie, die den Quellen zusätzlich Gewichte gibt, um so
detailliertere Präferenzen auszudrücken. Bei Gleichstand soll wie bei der straight-Strategie
der erste Wert in der alphanumerischen Ordnung gewählt werden.

Strategien basierend auf den vorhandenen Attributwerten sind in der property-Strategie
gebündelt. Diese lassen sich in zwei Klassen aufteilen: Strategien für Strings und Strategien
für Zahlenwerte. Für Strings steht die Auswahl des kürzesten, längsten oder des längsten ge-
meinsamen Teilstrings (LCS) zur Verfügung. Aus Zahlwerten können Minimum, Maximum,
Mittelwert oder der Median gebildet werden.

4 Design der DSL

Basierend auf den Anforderungen aus dem vorigen Abschnitt entstand eine prototypische
Implementierung einer DSL und der dazugehörigen Ausführungsengine. Zur Umsetzung
der Sprache dient das Tool ANTLR2, das aus Grammatiken in EBNF3-ähnlicher Form
Lexer und Parser erzeugen kann. Das Programm parst die Queries zu Java-Objekten,
mithilfe derer die Ausführungsengine durch den Einsatz von Apache Flink und Gradoop die
Informationsfusion für die vorhandenen Daten ausführen kann.

Barišić stellt in ihrer Doktorarbeit[Ba17] einen iterativen Prozess zum Design von DSLs
hinsichtlich der im vorigen Kapitel genannten Qualitätsmerkmale vor. Er beginnt mit der
Abbildung der Problemdomäne, geht weiter über das konkrete Gestalten und Implementieren
der Sprache hin zur Evaluation durch Endnutzerfeedback oder Metriken wie Effektivität

2 https://antlr.org (07.08.2018)
3 https://www.ics.uci.edu/ pattis/ICS-33/lectures/ebnf.pdf (07.11.2018)

Konzeption und Umsetzung einer DSL zur Informationsfusion 189

6 Alexander Kern

im Vergleich zum Arbeitsprozess ohne DSL. Sind die Ergebnisse der Evaluation nicht
zufriedenstellend, muss der Sprachentwickler die vorigen Schritte nach Bedarf wiederholen.

Insgesamt wurden vier funktional identische Sprachprototypen entwickelt und hinsichtlich
ihrer Nutzerfreundlichkeit evaluiert. Der erste Sprachansatz nutzt die Ergebnisse von
Galhardas et. al.[GFS01] und erweitert ihre Sprache um Unterstützung für heterogene
Schemata und die vorgestellten Strategien und mögliche Optionen. List. 1 zeigt das Beispiel
aus dem Paper in der DSL.

CREATE MERGING

LET Author

name = property(

(Source1.author.name, Source2.author.full_name),

textual:longest),

authorKey = straight(key)

List. 1: SQL-basierte DSL

Das Beispiel zeigt die wichtigsten Eigenschaften der Sprache. Sie generiert einen Aus-
gabeknoten mit dem Label Author, der zwei Attribute name und authorKey erhält. Die
Berechnung der Attributwerte für die erzeugten Knoten erfolgt durch zwei verschiedene
Strategien. Die erste Regel zeigt die Auswahl von Attributen aus heterogenen Quellen anhand
des Quellennamens, Knotentyps und Attributnamens, sowie die zusätzliche Angabe einer
Option für die property-Strategie. Die zweite Regel zur Wahl des authorKey ähnelt in der
verkürzten Form wiederum stark der von Galhardas vorgeschlagenen Sprache. Ausführliche
Queries umfassen weitere Ausgabeknoten mit mehr Transformationsregeln.

node Author {

property name {

Source1.author.name

Source2.author.full_name

} strategy property { textual:longest }

property authorKey { key } strategy straight

}

List. 2: Kotlin-inspirierte DSL

Ein anderer Designansatz orientiert sich am Design von DSLs, die mithilfe der Program-
miersprache Kotlin erstellt werden können. Diese DSL nutzt Schlüsselwörter und Blöcke um
Beschreibungen näher an natürlicher Sprache zu erreichen. List. 2 zeigt die Beispielquery
in der Sprache.

Die dritte DSL ist ähnlich zur SQL-basierten DSL aufgebaut und unterscheidet sich vor
allem in kleinen Details wie der Definition von Attributlisten. Der vierte Ansatz nutzt statt

190 Alexander Kern

Informationsfusion auf verteilten heterogenen Graphen 7

einer mit ANTLR generierten Sprache YAML. Die Beschreibung der Informationsfusion
findet mithilfe einer YAML-Datei statt, deren Schema wohldefiniert ist.

Die letzte vorgestellte Sprache ist sowohl was die textuelle Länge der Queries als auch
den Komfort der Queryerstellung angeht den anderen Sprachen unterlegen. Das manuelle
Schreiben von YAML ist zwar einfacher als in anderen Auszeichnungssprachen, trotzdem
deutlich anspruchsvoller als die Nutzung der anderen DSLs. Die drei weiteren Sprachen sind
sich sehr ähnlich. Die Vorteile der weiten Verbreitung von SQL nennen bereits [GFS01]
und [NH02]. Unter Berücksichtigung der Annahme, dass die Endnutzer bereits über SQL-
Erfahrungen verfügen, fällt die Entscheidung für diese DSL. Die geringe Einstiegshürde
durch Vorerfahrung und die relativ bekannte Syntax ermöglichen es, Queries in der DSL
sowohl schnell erstellen als auch verstehen zu können.

Durch die Trennung der Sprache von der Ausführungsengine ist es allerdings jederzeit
möglich, die Sprache zu ändern, auszutauschen oder mehrere DSLs parallel zu nutzen.
Genau so kann das Backend ersetzt werden, um andere Datenquellen neben Graphdaten in
Gradoop zu unterstützen, um die Sprache beispielsweise für Konfliktlösung bei relationalen
Daten zu nutzen.

5 Evaluation

Um die Laufzeit und Qualität der Informationsfusion zu messen, wird diese auf den
MusicBrainz-Datensatz angewandt. Er besteht aus echten MusicBrainz-Daten und mithilfe
des DAPO-Datengenerators[Hi18] erzeugten Duplikaten. Der Datensatz umfasst 10780
Knoten in 4611 Clustern. Daraus entsteht ein Graph mit 15391 Knoten und 19767 Ähn-
lichkeitskanten. Zur Messung der Matching-Qualität kommt FAMER zum Einsatz. Die
Berechnungen finden auf dem Galaxy-Cluster4 mit Gradoop 0.4.0 und Apache Flink 1.5.0
statt.

5.1 Matching-Qualiät

Die Qualität des Matchings soll mit den Maßen Recall, Precision und F-Measure bestimmt
werden. Dafür werden aus den bereits geclusterten Ausgangsdaten mithilfe der Informati-
onsfusion die Ergebnisknoten erzeugt und zu dem Graph der Ausgangsdaten hinzugefügt.
Daraus lässt sich leicht der Referenzgraph mit den gegebenen Ähnlichkeitskanten bestim-
men. Anschließend werden die Informationen über die bisherige Clusterzugehörigkeit
entfernt und ein neues Linking mithilfe von FAMER berechnet. Die dabei entstehenden
Ähnlichkeitskanten können mit dem Referenzgraph verglichen werden. Clustering wird
nicht eingesetzt. Als grobe Vergleichswerte dienen hierbei die Matching-Ergebnisse aus dem
Evaluationspaper von FAMER [SPR17]. Im Paper erreicht das Matching nach Linking und

4 https://www.urz.uni-leipzig.de/fue/sc/galaxy/ (06.12.2018)

Konzeption und Umsetzung einer DSL zur Informationsfusion 191

8 Alexander Kern

Clustering für den MusicBrainz-Datensatz Werte im Bereich [0.5, 0.7] für das F-Measure.
Die Linking-Konfiguration entspricht der aus dem Paper, d.h. Blocking nach album und
3-Gramme als Ähnlichkeitsfunktion. Clustering kommt nicht zum Einsatz, alle weiteren
Einstellungen entsprechen gegebenen Standardwerten.

poly_1 poly_2 poly_3 poly_4 poly_5 poly_6 poly_7 poly_8 poly_9poly_10
Type

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

F-
M

ea
su

re

F-Measure per Query

Abb. 2: Ergebnisse der Poly-Strategie-Queries

Abb. 2 zeigt die Ergebnisse von Queries, die verschiedene Strategiekombinationen einsetzen.
Die meist relativ ähnlichen Ergebnisse für die einzelnen Strategien zeigen, dass das Verfahren
flexibel einsetzbar ist. Da die Auswahl der Strategien letztlich abhängig von den gegebenen
Daten und dem Kontext und Ziel der Informationsfusion abhängt, ist es vorteilhaft, dass die
Strategien frei kombinierbar sind. Durch bessere Konfigurationen von FAMER lassen sich
die Ergebnisse deutlich verbessern.

5.2 Laufzeitmessung

Zur Berechnung der Laufzeit werden die im vorigen Abschnitt vorgestellten Queries jeweils
100 mal auf dem Cluster ausgeführt. Apache Flink führt Transformationen erst aus, wenn
eine Senke definiert ist. Deshalb findet die Messung innerhalb des Java-Programms um
die gesamte Job-Ausführung inklusive IO-Operationen statt. Abb. 3 zeigt die gemessenen
Laufzeit für eine beispielhafte Query mit verschiedenen eingesetzten Strategien.

Es zeigen sich jeweils zwei Gruppen von Laufzeiten (bei ca. 10750ms und 12750ms
Laufzeit) um die sich die weiteren gemessenen Werte in einem Bereich von etwa 750ms
verteilen, was einer Abweichung von etwa 6.9% bzw. 5.8% entspricht.

192 Alexander Kern

Informationsfusion auf verteilten heterogenen Graphen 9

10500 11000 11500 12000 12500 13000 13500
Runtime in ms

0

5

10

15

20

Fr
eq

ue
nc

y
Runtime for strategy poly_1

Abb. 3: Laufzeitmessung

Das Verfahren skaliert durch die Verteilung der einzelnen Cluster. Die maximale Cluster-
größe entspricht theoretisch der Anzahl an Quellen und ist damit eher gering, die Anzahl
der Cluster ist idealerweise die Anzahl an Entitäten und dementsprechend groß. Da die
parallele Berechnung der einzelnen Cluster unabhängig verteilbar ist, sollte das Verfahren
gut skalieren.

6 Zusammenfassung und Ausblick

Im Rahmen dieses Beitrags wurde eine domänenspezifische Sprache zur Informationsfusion
von heterogenen Graphdaten vorgestellt. Die Sprache stellt einen Teil der Informationsintegra-
tion mit Gradoop zur Verfügung. Nutzer können mit ihr definieren, wie Attributwertkonflikte
zwischen vorhandenen Werten gelöst werden sollen. Mithilfe von Apache Flink und Gradoop
findet eine verteilte Ausführung der Informationsfusion statt. Laufzeit und Qualität des
Verfahrens wurden außerdem in Abschnitt 5 evaluiert.

Weitergehende Aufgaben sind eine ausführliche Evaluation mit Endnutzern der Sprache
und die Erweiterung der DSL auf Graphkanten. Ein weiterer interessanter Punkt ist die
Auswahl von Standardstrategien anhand der gegebenen Datenschemata. Auch die Nutzbarkeit
für andere Anwendungsfälle sowie mögliche Implementierungen geeigneter zusätzlicher
Strategien können in Zukunft untersucht werden.

Acknowledgements:

Konzeption und Umsetzung einer DSL zur Informationsfusion 193

10 Alexander Kern

Die vorliegende Arbeit wurde teilweise gefördert durch das Bundesministerium für Bildung
und Forschung innerhalb des Competence Center for Scalable Data Services and Solutions
(ScaDS) Dresden/Leipzig (BMBF 01IS14014B). Betreut wurde die Arbeit von Matthias
Kricke5 und Eric Peukert6. Berechnungen für diese Arbeit wurden mit Ressourcen des
Rechenzentrums der Universität Leipzig durchgeführt.

Literatur

[Ba17] Barisic, A.: Usability Evaluation of Domain-Specific Languages, Diss., Universidade
Nova De Lisboa, Dez. 2017.

[GFS01] Galhardas, H.; Florescu, D.; Shasha, D.: Declarative Data Cleaning: Language, Model,
and Algorithms. In: In VLDB. S. 371–380, 2001.

[Hi18] Hildebrandt, K.; Panse, F.; Wilcke, N.; Ritter, N.: Large-Scale Data Pollution with Apache
Spark. IEEE Transactions on Big Data/, 2018, issn: 2332-7790.

[JP16] Junghanns, M.; Petermann, A.: Verteilte Graphanalysen mit Gradoop. JavaSPEKTRUM
5/, Abgerufen am 26.07.2018, 2016, url: https://www.sigs-datacom.de/uploads/tx_
dmjournals/junghans_petermann_JS_05_16_eeNZ.pdf.

[Ju18] Junghanns, M.; Kießling, M.; Teichmann, N.; Gómez, K.; Petermann, A.; Rahm, E.:
Declarative And Distributed Graph Analytics With GRADOOP. In: PVLDB. Bd. 11. 12,
2018.

[Li10] Lim, E. P.; Sun, A.; Datta, A.; Kuiyu, C.: Information Integration for Graph Databases.
In: Link Mining: Models, Algorithms, and Applications. Research Collection School Of
Information Systems, Kap. 10, S. 265–281, 2010.

[LN06] Leser, U.; Naumann, F.: Informationsintegration: Architekturen und Methoden zur In-
tegration verteilter und heterogener Datenquellen. dpunkt.verlag GmbH, 2006, isbn:
978-3898644006.

[NH02] Naumann, F.; Häussler, M.: Declarative Data Merging With Conflict Resolution. In:
International Conference on Information Quality (IQ 2002). 2002. S. 212–224, 2002.

[SPR17] Saeedi, A.; Peukert, E.; Rahm, E.: Comparative Evaluation of Distributed Clustering
Schemes for Multi-source Entity Resolution. In: Advances in Databases and Information
Systems - 21st European Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27,
2017, Proceedings. S. 278–293, 2017, url: https://doi.org/10.1007/978-3-319-
66917-5%5C_19.

5 kricke@informatik.uni-leipzig.de
6 peukert@informatik.uni-leipzig.de

194 Alexander Kern

https://www.sigs-datacom.de/uploads/tx_dmjournals/junghans_petermann_JS_05_16_eeNZ.pdf
https://www.sigs-datacom.de/uploads/tx_dmjournals/junghans_petermann_JS_05_16_eeNZ.pdf
https://doi.org/10.1007/978-3-319-66917-5%5C_19
https://doi.org/10.1007/978-3-319-66917-5%5C_19

cbe

A. Heuer et al. (Hrsg.): BTW 2019 – Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Computation Offloading in JVM-based Dataflow Engines

Haralampos Gavriilidis1

Abstract: State-of-the-art dataflow engines, such as Apache Spark and Apache Flink scale out on
large clusters for a variety of data-processing tasks, including machine learning and data mining
algorithms. However, being based on the JVM, they are unable to apply optimizations supported by
modern CPUs. On the contrary, specialized data processing frameworks scale up by exploiting modern
CPU characteristics. The goal of this thesis is to find the sweet spot between scale-out and scale-up
systems by offloading computation from dataflow engines to specialized systems. We propose two
computation offloading methods, reason about their applicability, and implement a prototype based
on Apache Spark. Our evaluation shows that for compute-intensive tasks, computation offloading
leads to performance improvements of up to a factor of 2.5x. For certain UDF scenarios, computation
offloading performs worse by up to a factor of 3x: our microbenchmarks show that 80% of the time is
spent on serialization operations. By employing data exchange without serialization, computation
offloading achieves performance improvements by up to 10x.

Keywords: dataflow engines; computation offloading; data exchange; native execution

1 Introduction

Dataflow engines are a popular tool for large-scale data processing, due to their user-friendly
programming interfaces and their ability to scale-out on clusters. Through their numerous
application programming interfaces (APIs), dataflow engines provide domain-specific
abstractions for a variety of data processing tasks, such as relational processing, graph
processing, and machine learning. Dataflow programs consist of chained data processing
operators, while custom functionality is added by user-defined functions (UDFs). State-of-
the-art dataflow engines, such as Apache Spark [Za12] and Apache Flink [Al14] provide
their standard APIs in JVM-based programming languages, e.g. Scala and Java, since they
are built on the JVM. JVM-based languages are a convenient choice for users, because of
their higher-level abstractions, but at the same time are incapable of applying lower-level
optimizations supported by modern CPUs [Cr15; Es18]. Additionally, in the case of big
data applications, the garbage collection of a large number of objects causes execution stalls
[Ng16]. On the contrary, specialized processing frameworks, such as database systems
[Ne11] and numerical libraries are built using lower-level programming languages, and
therefore provide better support for CPU-specific optimizations. To enhance dataflow
1 Technische Universität Berlin, Database Systems and Information Management Group, Einsteinufer 17, 10587

Berlin harry_g@mailbox.tu-berlin.de

cba doi:10.18420/btw2019-ws-20

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 195

https://creativecommons.org/licenses/by-nc/3.0/
harry_g@mailbox.tu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-20

2 Haralampos Gavriilidis

engines with native performance, we propose to offload computations from the JVM to
native runtimes. We describe the applicability of computation offloading in current systems,
and discuss the challenges of such an integration. More specifically, we make the following
contributions:

• We propose two methods for computation offloading in state-of-the-art dataflow
engines and describe a prototype implementation on Apache Spark.
• We evaluate our approaches with microbenchmarks and end-to-end benchmarks using

several types of UDFs.

2 Background

In this section we give a brief overview of dataflow engines and the JVM memory model.

2.1 Dataflow Engines

In the following we describe the main characteristics of state-of-the-art dataflow engines,
such as Apache Spark [Za12] and Apache Flink [Al14].
Programming Model. Dataflow engines employ distributed collection processing, in-
troduced by the MapReduce paradigm. Users implement dataflow programs by chaining
second-order functions, such as map and reduce. Custom functionality is added by UDFs.
Higher-level APIs offer domain-specific operators, e.g. for relational processing, graph
processing and machine learning. Each operator describes a transformation to the dataset.
The composed operator tree forms a directed graph, used for optimization and execution.
Architecture and Execution Model. Dataflow engines use the master/worker model in
a shared-nothing environment. Each worker node runs a JVM instance, which is used
to execute processing tasks. Workers receive processing instructions and execute them
independently. Intermediate computation results are exchanged between workers through
their network interface. During execution, workers store and process data in memory, and
move it to the disk only when it exceeds the memory size. The discussed dataflow engines
implement the iterator model, where every physical operator is executed element-wise for
all data records. For failed computations, dataflow engines use recovery mechanisms, such
as lineage graphs and snapshots.

2.2 JVM Heap and Off-Heap

The JVM memory is organized around objects. New objects are created on the Heap, which
is periodically scanned by the garbage collector. The garbage collector organizes objects
based on their age and cleans unreferenced objects. Next to the Heap, JVM applications have
access to the Off-Heap. Binary data residing on the Off-Heap is accessed as in lower-level

196 Haralampos Gavriilidis

Computation Offloading in JVM-based Dataflow Engines 3

languages, using memory pointers. Since the Off-Heap is not managed by the JVM, it is
not subject to garbage collection. However, it is necessary to implement manual memory
management within applications to avoid JVM crashes.

3 Computation Offloading in Dataflow Engines

In this section, we describe our computation offloading approach by the example of UDF
processing. First, we analyze the current UDF processing method in dataflow engines
and discuss potential bottlenecks. Second, we discuss two mechanisms for data exchange
between a worker JVM process and a native process. Finally, we describe the implementation
of our computation offloading prototype in Apache Spark.

3.1 Current UDF Processing

UDFs are important building blocks of dataflow programs. Depending on the semantics
of the surrounding operator, UDFs are either applied on single elements or on groups of
elements. In JVM-based dataflow engine APIs, UDFs are implemented in Java or Scala.
During distributed execution, workers deserialize binary data received from their network
interface before processing the UDF, as illustrated in Fig. 1. Incoming data is deserialized
from the Off-Heap memory to the Heap, before processing the UDF. Subsequently, the
UDF result is serialized from the Heap to the Off-Heap memory, and sent over the network
interface. We observe three performance bottlenecks in the current UDF processing method.

Fig. 1: Current UDF processing method. Fig. 2: UDF computation offloading.

First, instead of directly processing the data, workers must deserialize it and transform it
into objects2. Second, because of the dataflow engine execution model, data is serialized

2 Memory management in Flink: https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html

Computation Offloading in JVM-based Dataflow Engines 197

4 Haralampos Gavriilidis

row-wise. This means that for every row on the Off-Heap, the respective object will be
created on the Heap. Garbage collection of a large number of objects leads to execution stalls
[Ng16]. Third, the JVM runtime hinders lower-level optimizations, e.g. SIMD instructions,
supported by modern CPUs [Cr15; Es18].

3.2 UDF Offloading Architecture

In the following, we describe an architecture for moving UDF computations from the JVM to
native environments. Executing the UDF in a native environment avoids the deserialization
operations, the garbage collection overhead, and allows for optimized processing using
CPU-specific instructions. The architecture of our approach is depicted in Fig. 2. Using a
shared memory area, the worker is able to exchange data between the the JVM and a native
process. The UDF is offloaded from the JVM task executor to a native task executor. We
propose two methods to exchange data between the JVM and the native runtime.

Fig. 3: Off-Heap data exchange. Fig. 4: On-Heap data exchange.

Off-Heap Offloading. During the off-heap data exchange method illustrated in Fig. 3, the
Off-Heap memory is used as a shared memory region between the worker JVM and the
native process. Since languages such as C and C++ process binary data, it is not necessary
to transform the data before UDF execution in the native process. By exchanging a memory
pointer, the native process has access to the data on the Off-Heap. A disadvantage of this
method, is that native UDF execution is carried out directly on network buffers. This means
that if the data is serialized row-wise in the network buffers, no optimizations for columnar
processing can be applied. Moreover, network buffers contain metadata, such as event logs,
next to the data records, which hinders efficient memory access during UDF processing.

198 Haralampos Gavriilidis

Computation Offloading in JVM-based Dataflow Engines 5

On-Heap Offloading. To address the limitations of the off-heap method regarding data
formats, we introduce the on-heap method. As illustrated in Fig. 4, after receiving and
deserializing the data to the JVM Heap, the objects are serialized to the JVM Off-Heap,
through the offloading component. The result of the native UDF is written to the JVM
Off-Heap. Subsequently, the offloading component deserializes the result binary data to the
Heap, which is then serialized again by the worker to send it over the network interface. An
advantage of the on-heap approach is that its implementation is possible without altering
the dataflow engine core. Moreover, since a custom serializer is provided in the offloading
component, it is possible to choose the format for UDF processing, instead of being bound
to the format in the network buffer. A disadvantage of the discussed approach is the
overhead of the mediating computation offloading component. On the one hand, it allows to
choose between data formats for improving the UDF performance. On the other hand, the
intermediate serialization and deserialization operations lead to significant performance
overhead, as we discuss in the next section.

The main advantage of the off-heap method is that serialization operations are completely
avoided. However, it is not possible to implement it within current systems, without
changing system components. On the contrary, the on-heap method is applicable without
any modifications. The main disadvantage of the on-heap method, is the overhead of
the intermediate serialization operations, which allow to change the data format before
processing. Converting the data to a columnar format, is beneficial for certain operations, e.g.
aggregations that reference few columns of a dataset. Additionally, aggregation UDFs have
a small result size, a property that minimizes the on-heap’s intermediate serialization step
overhead. Furthermore, using the on-heap method, efficient memory access is guaranteed
in the native UDF, since the offloading component serializes only necessary record data.

3.3 Prototype on Spark

We implement our on-heap offloading prototype on top of Apache Spark. We use the interface
of the mapPartitions operator to implement the computation offloading component, which
serializes and deserializes all intermediate input and output data. For the serialization
operations we use the ByteBuffer library3, which allows to create ByteBuffer objects
on the Off-Heap (DirectBuffer objects). We use custom row and column serialization
for data exchange. For the row-oriented serialization, we write all input element attributes
consequently to one DirectBuffer, while for the column-oriented serialization we use as
many DirectBuffer objects as input columns. For our prototype, we implement UDFs in C,
and compile them to shared libraries using gcc. We use the Java Native Interface4 (JNI), a
framework for embedding native applications within the JVM runtime, to register the native
functions in our prototype. Data exchange is established by serializing data to DirectBuffer
objects and passing pointers and the input data size as the native function parameters.

3 https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
4 https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html

Computation Offloading in JVM-based Dataflow Engines 199

6 Haralampos Gavriilidis

Our prototype uses pre-compiled compute kernels implemented in C. To build optimized
kernels for the native task executor, lower-level libraries that make use of specialized
hardware and SIMD instructions can be used, e.g. Intel MKL5, BLAS6. For arbitrary UDF
support, it is necessary to extend the prototype with a compiler component, which translates
UDFs to lower-level representations. Furthermore, to implement the off-heap approach in
current systems, UDF interfaces which provide access to serialized buffers for the native
task executor are necessary7, for both row and columnar formats.

4 Evaluation

In this section, we evaluate the performance of our proposed computation offloading
approach. We first present a set of Java microbenchmarks that measure the performance
of standard UDF processing compared to the on-heap and off-heap offloading methods.
Furthermore, we evaluate our prototype on Apache Spark in several UDF scenarios.

4.1 Microbenchmarks

We conduct a set of Java microbenchmarks to get insights about the performance of the
standard approach and our introduced offloading methods.
Setup. We execute our benchmarks on a machine with an Intel(R) Xeon(R) E5530 CPU
(16 cores) with a clock rate of 2.40GHz and 20 GB of main memory, running Ubuntu 14.04.
For the benchmarks we use Java version 1.8 and Scala version 2.11 with the Hotspot VM
25.181-b13. We initialize the JVM with 10 GB memory. We use GCC to compile C code
to native libraries and provide the compilation flags -O3 -march=native -mtune=native,
which enable vectorization among other optimizations. We perform the microbenchmarks
using JMH8, a benchmarking library for Java. We fork each experiment three times, perform
ten warmup iterations and then execute the experiment five times. We report the average
execution time of five repetitions.
Offloading Approaches. To evaluate our offloading approaches, we implement UDFs of
two types, a euclidean distance function that is applied to two fields of every row, and an
aggregation function that sums all elements of all rows. For a fixed data size of 500MB
containing integers, we scale the number of rows and columns. For example, the 2 column
dataset has 62,500,000 rows, while the 10 column dataset has 12,500,000 rows.

We present the results of the two UDF microbenchmarks in Fig. 5. The standard UDF
processing method involves deserialization, processing and serialization on the JVM. The
off-heap UDF method involves only processing in C, while the on-heap method involves the

5 https://software.intel.com/en-us/mkl
6 http://www.netlib.org/blas/
7 Current Spark and Flink both support relational operations on serialized data, but not for UDFs
8 http://openjdk.java.net/projects/code-tools/jmh/

200 Haralampos Gavriilidis

Computation Offloading in JVM-based Dataflow Engines 7

Tuple2 Tuple4 Tuple6 Tuple8 Tuple10
0

1,000

2,000

3,000

Tuple Size

Ru
nt

im
e

(m
s)

standard UDF
off-heap UDF
on-heap UDF

(a) Euclidean distance UDF.

Tuple2 Tuple4 Tuple6 Tuple8 Tuple10
0

500

1,000

1,500

Tuple Size

Ru
nt

im
e

(m
s)

standard UDF
off-heap UDF
on-heap UDF

(b) Sum UDF.

Fig. 5: Standard UDF processing compared to Off-heap and On-Heap computation offloading.

standard serialization and deserializations on the JVM, processing in C and an additional
serialization step for the intermediate results, as described in Sect. 3. For the distance UDF,
we observe that the off-heap method outperforms the standard approach by up to a factor of
10x, for a dataset of two columns. The performance gap drops while increasing the column
size, since a larger column size means less created JVM objects, and hence less serialization
overhead. The on-heap method performs almost 1.5x worse than the standard method, since
it involves additional serialization operations for the intermediate result. We observe the
same results for the sum UDF. The performance gap between the off-heap and the standard
method is larger, a result possibly explained by faster aggregation processing in C.
Standard UDF Analysis. In order to explain the performance of the standard UDF
processing method, we microbenchmark all three involved operations in the distance
function: deserialization of the input, processing, and serialization of the output. The
results are shown in Fig. 6. We observe that for a dataset size of 500MB the performance
for processing a two-column dataset is 2x worse than the performance of processing a
ten-column dataset. The detailed results show that when the column number is increased,
the serialization and deserialization overhead is minimized, and the processing performance
is increased. When the number of columns is increased, the number of rows is decreased,
hence less objects are created and less serialization and deserialization overhead is created.
Nevertheless, for ten-column datasets, the execution time of serialization and deserialization
operations attribute to 80% of the overall UDF execution time.

4.2 Prototype Evaluation

We implement two UDFs using our on-heap offloading approach in Apache Spark, as
discussed in Sect. 3. We use two synthetic datasets that contain elements of type double.
For a fixed size of 5GB, the first dataset has 2 columns, while the second dataset has 10

Computation Offloading in JVM-based Dataflow Engines 201

8 Haralampos Gavriilidis

Tuple2 Tuple4 Tuple6 Tuple8 Tuple10
0

500

1,000

1,500

2,000

2,500

Iterations

Ru
nt

im
e

(m
s)

Serialization
Process UDF

Deserialization

Fig. 6: Detailed standard UDF performance.

0 10 20 30 40 50 60
0

100

200

300

400

500

Iterations

Ru
nt

im
e

(m
s)

Spark with Offloading
Spark

Fig. 7: Compute-heavy UDF in Spark

columns. In the prototype, we use a columnar format for data serialization.
Distance UDF. The first UDF, is the euclidean distance function described earlier. For
the two-column dataset, we apply the distance function on both columns, while for the
ten-column dataset we apply the distance function on two columns. Furthermore, for the
ten-column dataset, we apply the distance function on all ten fields, calculating the distance
between two five-dimensional points (for each row). For each input row, the UDF produces
an output row with an additional column, the result of the distance function. The results in
Fig. 8a show that the on-heap computation offloading approach (Spark with offloading) has
similar performance to the standard Spark UDF processing (Spark) only in the case of a
two-column dataset. For the ten-column dataset, the offloading approach performs up to 3x
worse than the standard method. The performance behavior is explained by the intermediate
serialization steps needed for the on-heap approach.
MinMax UDF. The second UDF, is an aggregation that finds the minimum and maximum
elements of a column. As in the previous experiments, we apply the aggregation UDF to
both columns of a two-column dataset, on two columns of a ten-column dataset, and on ten
columns of a ten-column dataset. The results are shown in Fig. 8b. The offloading approach
(Spark with offloading) outperforms the standard Spark UDF processing (Spark) by a factor
of 1.5x for the two column dataset, and by a factor of 1.3x for the ten column dataset when
the UDF references only two columns out of ten. When the UDF references all ten columns
of the ten-column dataset, the performance of the offloading approach is 4.5x worse than the
standard UDF processing. The result of the first two experiments shows that the offloading
is beneficial, despite the intermediate serialization overhead. For the experiment with the
ten-column dataset, we serialize only the two needed columns, this is why the two methods
have similar performance. Nevertheless, when all columns are referenced inside the UDF,
the serialization overhead is too high, and the offloading is not beneficial.
Compute-intensive UDF. In our last experiment, we evaluate our prototype for compute-
intensive UDFs, by applying a distance function on two columns of the two-column dataset,
within an iteration. To increase the UDF workload, we increase the number of iterations.

202 Haralampos Gavriilidis

Computation Offloading in JVM-based Dataflow Engines 9

We include a factor that changes in each iteration, to avoid potential compiler optimizations.
The results in Fig. 7 show that for a small workload, the performance between the two
approaches is the same, similarly to the previous experiments. However, when the workload
is increased, the performance of Spark with offloading gets a speedup of 2.5x.

Tuple2 2 Fields Tuple10 2Fields Tuple10 10 Fields
0

100

200

300

Tuple & Projection Size

Ru
nt

im
e

(m
s)

Spark
Spark with offloading

(a) Euclidean distance UDF

Tuple2 2 Fields Tuple10 2Fields Tuple10 10 Fields
0

50

100

150

Tuple & Projection Size

Ru
nt

im
e

(m
s)

Spark
Spark with offloading

(b) MinMax UDF

Fig. 8: Computation Offloading prototype evaluation.

4.3 Discussion

The results of our microbenchmarks show that serialization overhead is not negligible,
since it takes up to 80% of the execution time. Off-heap computation offloading is the most
performant approach, compared to the standard and the on-heap offloading approach, since
it does not involve any serialization operations. However, as discussed in Sect. 3 it can not
be implemented in current dataflow engines without altering system core elements. The
benchmarks of our prototype show that it is possible to achieve better performance than the
standard processing method, despite the serialization overhead of the on-heap approach.
This performance is achieved by serializing only necessary fields in the UDF and using a
columnar format for processing. We observe that the overhead of intermediate serialization
operations caused by the on-heap approach is negligible for compute-intensive UDFs, since
in that case computation offloading achieves a speedup of 2.5x.

5 Related Work

To enable native performance in dataflow engines, Essertel et al. propose Flare [Es18], a
code generation approach. Flare accelerates SparkSQL programs, by carrying out execution
and data readers in its own runtime, completely cutting of the Spark execution engine.
Rosenfeld et al. propose a similar approach, where SparkSQL programs are transformed to
database query plans and executed within a database engine [Ro17]. On the contrary, our

Computation Offloading in JVM-based Dataflow Engines 203

10 Haralampos Gavriilidis

approach does not completely cut off the execution from the dataflow engine runtime, but it
is used to offload specific parts of dataflow programs, e.g. UDFs.
Project Tungsten9 is an effort of Spark developers to enhance the platform with native
performance, by introducing binary processing, explicit memory management and code
generation. However, Project Tungsten is built on the JVM and does not use a separate
native runtime, as we propose in this paper.

6 Conclusion

We proposed an approach to offload computations from a JVM-based dataflow engine
to a native environment. To that end, we described two data exchange mechanisms for
computation offloading, which allow to process UDFs outside the JVM Heap, and to
exploit modern CPU characteristics. Our evaluation showed that computation offloading is
beneficial for compute-intensive UDFs and in certain cases for aggregation UDFs.

References

[Al14] Alexandrov, A. e. a.: The stratosphere platform for big data analytics. The VLDB
Journal 23/6, pp. 939–964, 2014.

[Cr15] Crotty, A. e. a.: Tupleware:"Big"Data, Big Analytics, Small Clusters. In: CIDR.
2015.

[Es18] Essertel, G. e. a.: Flare: Optimizing Apache Spark with Native Compilation for
Scale-Up Architectures and Medium-Size Data. In: 13th USENIX Symposium on
Operating Systems Design and Implementation. USENIX Association, pp. 799–
815, 2018.

[Ne11] Neumann, T.: Efficiently compiling efficient query plans for modern hardware.
Proceedings of the VLDB Endowment 4/9, pp. 539–550, 2011.

[Ng16] Nguyen, K. e. a.: Yak: A High-Performance Big-Data-Friendly Garbage Collector.
In: OSDI. Pp. 349–365, 2016.

[Ro17] Rosenfeld, V.; Mueller, R.; Tözün, P.; Özcan, F.: Processing Java UDFs in a
C++ environment. In: Proceedings of the 2017 Symposium on Cloud Computing.
ACM, pp. 419–431, 2017.

[Za12] Zaharia, M. e. a.: Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX, pp. 15–28, 2012.

9 https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

204 Haralampos Gavriilidis

cba

Herausgeber et al. (Hrsg.): BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 11

A Comparison of Distributed Stream Processing Systems for
Time Series Analysis

Melissa Gehring1, Marcela Charfuelan2, Volker Markl3

Abstract:

Given the vast number of data processing systems available today, in this paper, we aim to identify,
select, and evaluate systems to determine the one that is better suited to use in conducting time series
analysis. Published studies of performance are used to compare several open-source systems, and two
systems are further selected for qualitative comparison and evaluation regarding the development
of a time series analytics task. The main interest of this work lies in the investigation of the Ease of
development. As a test scenario, a discrete Kalman filter is implemented to predict the closing price of
stock market data in real-time. Basic functionality coverage is considered, and advanced functionality
is evaluated using several qualitative comparison criteria.

Keywords: Stream data; Stream processing; Time series analysis; Predictive analytics

1 Introduction

Today’s batch and stream processing systems possess vastly different characteristics and
are designed to tackle diverse classes of problems. Batch processing systems (BPS), such
as MapReduce-based systems, are well-suited for querying stored historical data (a.k.a.
data-at-rest). In BPS, data processing is efficient, and administration overhead is minimal
(relative to real-time processing systems [SG17]), but they cannot face the constraint of
real-time. In contrast, stream processing systems (SPS) are able to process data in real-time
(a.k.a. data-in-motion), which is necessary since streaming data is unbounded. Stream
processing is performed at the event, window, or micro-batch level [SG17].

Time series data (TSD) are comprised of a series of measurements (e.g., stock market
data, medical data, meteorological data [BKF17]), that are taken at a given time-scale (e.g.,
second, minute). Traditionally, time series management systems (TSMS) and time series
data bases (TSDB) have been used to process and store TSD, as discussed in recent surveys
(e.g., TSMS [JPT17], TSDB [BKF17]). The frameworks/systems analyzed in these surveys
offer querying and data storage capabilities and additionally support some data analytics
1 Technische Universität Berlin, FG DIMA / Fakultät IV, m.gehring@campus.tu-berlin.de
2 DFKI / Technische Universität Berlin, marcela.charfuelan@dfki.de
3 Technische Universität Berlin / DFKI, volker.markl@tu-berlin.de

cba doi:10.18420/btw2019-ws-21

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 205

https://creativecommons.org/licenses/by-sa/4.0/
m.gehring@campus.tu-berlin.de
marcela.charfuelan@dfki.de
volker.markl@tu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-21

12 Melissa Gehring, Marcela Charfuelan, Volker Markl

and may include stream processing capabilities. However, in general, stream processing
is not a requirement for TSMS and TSDB. Instead, these systems are designed to handle
historical TSD and are ill-suited for real-time processing. Additionally, the majority of these
systems are unable to perform advanced analytic tasks, such as prediction, forecasting and
similarity search. Recently, real-time SPS, capable of performing stream and batch analytics,
have emerged. Thus, we seek to conduct a practical evaluation of these state-of-the-art
systems for time series analysis. For our experiments, we implemented a discrete Kalman
filter to predict the closing stock market prices in real-time. In this paper, the focus is on the
examination of the Ease of development of the various implementation steps. Qualitative
criteria are defined in order to compare the implementation steps of the predictive task in a
streaming test scenario.

The paper is organized as follows. In Section 2 we discuss the selection and evaluation of
two open-source SPS for time series analysis using published studies of performance. The
qualitative comparison criteria are also defined within this Section. In Section 3 we describe
the test scenario and summarize the qualitative assessment that we underwent. In Section 4
we present our conclusions.

2 Comparison Methodology

2.1 Stream Processing Systems

Several criteria are available to characterize SPS. An active field of research is the
performance analysis, applied to different systems using quantitative measurements, such as
latency and throughput. In this paper, the latest versions of the one-at-a-time based SPS
Apache Storm4, Apache Flink5, Apache Samza6 and the microbatch based systems Storm
Trident7 and Spark Streaming of Apache Spark8, are compared utilizing several published
studies of performance [Wi16, KKR15, Ch16, Ka18]. In Table 1 the characteristics of
the previously-mentioned systems are summarized. According to the Yahoo Streaming
Benchmark [Ch16], Flink and Storm offer lower latencies, whereas Spark is able to handle
higher throughputs, while having somewhat higher latencies. This finding confirms the
common statement that there is a difference between micro-batch and one-at-a-time based
SPS. According to the Karimov et al. Benchmark [Ka18], (1) Spark is better suited to
overcome streams containing skewed data, (2) Flink and Spark are very robust to fluctuations
in the data arrival rate in aggregation workloads, (3) Flink is best at handling fluctuations
in the data arrival rate on join queries, (4) Flink provides the lowest average latency, (5)
Spark (with higher average latency) manages to bound latency best, and (6) Flink has higher
throughput with a low latency, in use-cases containing large windows.

4 http://storm.com
5 http://flink.com
6 http://samza.com
7 http://storm.com/trident
8 http://spark.com

206 Melissa Gehring, Marcela Charfuelan, Volker Markl

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 13

Storm Storm
Trident

Spark
Streaming

Flink Samza

Processing
model

one-at-a-time micro-batch micro-batch one-at-a-time one-at-a-time

Delivery
guarantee

at-least-once exactly-once exactly-once exactly-once at-least-once

Backpressure
mechanism

yes yes yes yes buffering
mechanism

Ordering
guarantees

no between
batches

between
batches

no within stream
partitions

Tab. 1: Comparison of stream processing systems adapted from [Wi16]

Choosing a processing model always means trading off between latency and throughput.
Latency must also be traded against other desirable properties, such as message delivery
guarantees and ease of development, as they increase the per data-item overhead (messaging
and state replication). Rich processing guarantees at the same time make a system more
reliable. Thus, a variety of characteristics can influence the selection of a suitable framework.
Although it is still challenging to select an appropriate stream processing system considering
performance issues and reliability, two frameworks provide great support. Apache Spark
and Apache Flink stand out to bring better performance, unified with the most advanced
features in comparison to Storm, Storm Trident and Samza.

Support for Storm Storm
Trident

Spark
Streaming

Flink Samza

Languages J, P, L, R J, S, C J, S, P J, S J
Event-time no no yes yes no
Watermark, allowed lateness, trigger no no partly yes no
Windows, joins, filter, aggregations, etc. no yes yes yes yes
Stream SQL no yes yes yes no

Tab. 2: Functionality across stream processing systems (J: Java, S: Scala, P: Python, L: Perl, R: Ruby,
C: Clojure)

Unfortunately, the evaluation criteria did not further analyze the Ease of development,
which for a beginner in working with SPS is an important property. The usability of
SPS can be increased, for example, by offering richer language support as well as the
availability of higher-level APIs with support for common functions, like windowing,
joins, filtering, aggregations, or stream SQL support. Furthermore, usability is enhanced if
advanced features, like event-time processing, watermarking, and triggers are offered. Table
2 summarizes key features commonly associated with the different SPS. Storm supports a
wide range of languages but does not provide a high level-API. Samza and Storm Trident
offer some advanced features like support for windowing, filtering, etc. but lack of event-time
support. Flink and Spark support these advanced features and also provide an API to use
SQL within streams. Storm Trident does as well, but a lack of event-time support and

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 207

14 Melissa Gehring, Marcela Charfuelan, Volker Markl

active support by the community [Ka18] exist. Spark took a big step forward by integrating
event-time support with Spark Structured Streaming Version 2.1.

Both Apache Spark and Apache Flink stand out, achieving higher performance and offering
the most advanced features. Thus, these two systems are selected for qualitative comparison.

2.2 Qualitative Criteria

Our selection of criteria is inspired by the work of Armstrong [Ar01], where various
quantitative and qualitative criteria are considered when selecting among various time
series forecasting methods. i) Ease in using available data, ii) Ease of use, iii) Ease of
implementation and iv) Flexibility are among the top ten criteria. These qualitative aspects
are affected by the selection of implementation framework. Therefore, in our test scenario,
we conduct our qualitative analysis on the basis of these criteria. The following measures
are defined for rating the first three criteria: Extent, Simplicity and Documentation. The
fourth criterion, Flexibility, is considered to evaluate the implementation of more advanced
functions in the prediction task. Yet, another measure, the Adaptability, is defined to rate
the systems regarding the criterion of Flexibility. Table 3 shows the various rating levels
defined for the measurements and their corresponding meaning.

Basic functions Advanced functions
Rat. Extent Simplicity Documentation Adaptability
++ Additional

features
available

Simple and under-
standable concept. Au-
tomated functionality.

Good access
and high
quality.

Adaptation integrable with
low user side implementa-
tion overhead

+ Function
and essen-
tial features
available

Clear concept. Rea-
sonable user side
implementation over-
head.

Access insuffi-
cient.

Adaptation integrable with
reasonable user side imple-
mentation overhead.

0 Function
available.

Concept is not clear or
disproportionate user
side implementation
overhead.

Mentioned in
documentation

Adaptation theoretically pos-
sible but disproportionate
implementation overhead.

- Function
not avail-
able

Function not available Documentation
not available

Adaptation not possible/ in-
tegrable.

Tab. 3: Criteria and Rating for qualitative comparison of Ease of Development in Spark and Flink

3 Test Scenario and Qualitative Comparison

Test Scenario Pipeline. In SPS, sources and sinks are typically employed. Data is consumed
from a source, then processed within the system before being sent to a sink. The pipeline
shown in Figure 1 is employed in the test scenario. Flink and Spark consume their data

208 Melissa Gehring, Marcela Charfuelan, Volker Markl

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 15

from Apache Kafka 9, which is a distributed streaming platform serving as a message
broker. A Kafka topic is created, and data is then sent to this topic, where it is persistently
stored. The SPS can subscribe to the topic and will then always directly get the newest
data published by Kafka in the particular topic. The prediction task in the test scenario
requires the implementation of various tasks or functions in several steps. Table 4 shows the
main steps organized in two groups (basic and advanced), the corresponding comparison
features and the qualitative measurements and ranking for each step. For visualization and
verification purposes, the pipeline will be extended by a persisting instance, i.e., the special
TSDB InfluxDB 10. InfluxDB can be used as source for Grafana 11, a modern time series
visualization tool.

Fig. 1: Stack for test scenario implementation and example of stock data visualization

Test Data. Stock market data time series will be used for the prediction task. The used
data set available at Kaggle12, contains data from the S&P 500 (i.e., Standard & Poor’s
500) index. The dataset contains historical data over a five-year period (2012-08-13 through
2017-08-11) across all current 500 companies listed on the S&P 500 index.

3.1 Qualitative Comparison

Step 1 - Setup. Setting up the pipeline is not challenging for either system. Although both
systems support several APIs for various kinds of data processing, batch and streaming,
Flink is more focused on streaming, which is also reflected in the documentation. In Spark
the user needs to take a deeper look to find the right documentation and information for
setting up the streaming environment.

9 http://kafka.com
10 http://influxdb.com
11 http://grafana.com
12 https://www.kaggle.com/

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 209

16 Melissa Gehring, Marcela Charfuelan, Volker Markl

Simplicity Documentation
Flink + Different libraries need to be in-

cluded either working in Java or Scala
++ Short and clear documentation. Easy to find
as directly provided in Download area.

Spark + Different libraries need to be in-
cluded, as wide range of libraries exist,
all offering interesting functions; there
is no centralized library.

+ Short and clear documentation. Harder ac-
cess due to spread of dependencies, they are
located in the documentation areas of different
APIs.

Step 2 - Time handling. Handling time is a very important aspect to consider in developing
streaming applications. Very often it is desired to process data using the event-time, the
time when the event occurred, instead of the processing-time, the time of the machine when
the data is processed. Although not all SPS provide support for this type of time processing,
both Flink and Spark do. Flink’s event-time support has been available for quite some time.
It is mature and further offers a wide range of additional features. Event-time support in
Spark is a drawback, since it is still a new feature. The integration of event-time support is
not in the Spark Streaming library, but rather is in the Spark Structured Streaming library.

Extent Simplicity Documentation
Flink ++ Wide range

of features avail-
able (watermark,
allowed lateness,
triggers)

+ Complex concept for event-
time support. The user needs
to define parts of the concept
(TimeStampExtractor) him-
self or can use predefined ones
(not automated).

++ Very clear and helpful doc-
umentation with examples and
detailed description and easy
to find.

Spark + Basic event-
time support
available and
watermark config-
urable.

+ Easy and understandable
concept, the user can easily
group by window due to sav-
ing event-time within columns,
but the system breaks (trans-
formation to other data format
is necessary)

0 Hard access due to lack of
remark about event-time sup-
port within Spark Streaming
documentation, just in Spark’s
Structured Streaming docu-
mentation (other library). Doc-
umented functions are then not
directly applicable since other
data structure has to be used.

Step 3 - Stream Source Connector. As Kafka is a widely adopted source for SPS it is used
to provide access to event streams. The integration is easy to realize within both systems.

Extent Simplicity Documentation
Flink ++ Wide range of

features available
(deserializer, off-
set control, etc.)

++ Easy and clear concept for
Kafka integration, especially
the stream creation (2 actions
for configuration, 1 for stream
creation as a DataStream).

++ Very clear and helpful doc-
umentation with examples and
detailed description and easy
to find.

Spark ++ Wide range of
features available
(deserializer, off-
set, etc.)

++ Easy and clear concept for
Kafka integration, especially
the configuration (1 action for
configuration, 1 complex ac-
tion for stream creation as a
DStream)

+ Clear and helpful documen-
tation but missing examples
and description for advanced
features. Confusing location of
documentation part.

210 Melissa Gehring, Marcela Charfuelan, Volker Markl

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 17

Step 4 - Preprocessing. The functions necessary to apply preprocessing are very basic ones
within a stream processing system, as the preprocessing is a step that always needs to be
applied. There is almost no difference between Flink and Spark in this step. The functions
make it possible to implement user-defined functions that can process custom data items.

Extent Simplicity Documentation
Flink ++ Very flexible. Ex-

pression and self de-
fined functions can be
used within transfor-
mation functions.

++ Easy concept, easy to use,
understandable application.
Just 1 action necessary for
integration of self defined
functions.

++ Good access. Detailed
documentation of concepts
with understandable exam-
ples and explanations.

Spark ++ Very flexible. Ex-
pression and functions
can be used within
transformation func-
tions.

++ Easy concept, easy to use,
understandable application.
Just 1 action necessary for
integration of self defined
functions.

+ Good access. Detailed
documentation of concepts
and understandable exam-
ples available, but missing
explanations of the exam-
ples.

Step 5 - Stream Processing. Stream processing operations are typically applied using
event-time. A basic operation is the implementation of sliding windows and transformations
afterwards. Within this step, the implementation of a moving window average is compared.
As the window is applied using event-time, Spark’s new Structured Streaming API needs
to be used, which makes operations on multidimensional data possible. Stream functions
are easy to implement, as SQL-based operations on streams are available. In Flink the
concept is clear, but implementations need to be done manually due to missing support of
multidimensional aggregations in predefined functions.

Extent Simplicity Documentation
Flink + No predefined function avail-

able for advanced features, in
form of multidimensional ag-
gregation on windows, but re-
alizable through UDFs. Sliding
window and event-time support
available.

+ High complexity of the
concept to implement UDFs.
2 actions necessary (1 im-
plementation of user defined
function and 1 for applica-
tion of user defined func-
tion).

++ Good access.
Detailed documen-
tation of concepts
with understandable
examples and expla-
nations.

Spark ++ Advanced features avail-
able. Aggregation of multidi-
mensional points on windows
realizable through SQL based ag-
gregations. Sliding window and
event-time support available.

++ Very easy and under-
standable concept due to
SQL based operations. 1
user action necessary for op-
eration.

++ Good access.
Detailed documen-
tation of concepts
with understandable
examples and expla-
nations.

Step 6 - Time Series Analysis. In a first step of the TSD analysis, a version of the discrete
Kalman filter is implemented in both systems. For simplicity, assumptions made by Welch
et al. [WB01] were used. The code is adapted to fit the use case in the form of processing
stock data in streaming fashion. In the second step of the TSD analysis, an online evaluation
is implemented. To do so, an error calculation has to be integrated in the Kalman filter
algorithm that compares the previous predicted value with the current actual value.

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 211

18 Melissa Gehring, Marcela Charfuelan, Volker Markl

Adapting to stock market use case Integrating error cal-
culation

Flink ++ Due to easy implementation as a function applicable as a
flatmap transformation on stream the adaptation to the use
case was easily realizable, just the input and output had to
be customized as well as the calculation to be using closing
price.

++ Integration without
any issues due to easy
implementation of the
algorithm as a flatmap
function.

Spark + The implementation of the Kalman Filter is using a more
complex concept. The data source needed to be adjusted
so that a DStream could be processed. Due to the stream
coming in as batches that adaptation resulted challenging.
Furthermore processing of stock data items had to be enabled,
as well as outputting predicted items. Calculation had to be
adjusted to work on closing price. These adaptations were
possible to realize without problem.

++ Easy integration of
error calculation into re-
turned object.

Step 7 - Evaluation. Two means of evaluation are considered, i.e., an online evaluation
during stream processing and another, conducted after collecting and extracting processed
streaming results. Both Flink and Spark, provide different possibilities to analyze data
resulting from the application. Both provide the functionality of applying SQL to the data
after transforming it to a new data format. The results of the queries were not possible to
extract, so further analysis was not possible. Another option tested was to apply aggregation
functions on the streams directly in Flink and on the RDDs in Spark. In Flink, the results
were calculated continuously on the entire stream; in Spark the calculation only considered
items within the RDD. Due to these problems, sinking the results to a .csv file was preferred.
This is possible in Flink, but not in Spark due to the partitions made for each RDD.

Perform evaluation
Flink + Wide range of possibilities to perform evaluation available: great support for evaluation

directly on stream of errors and export to csv easily possible. Challenging when
converting stream to a data set and trying to export the results achieved applying SQL.

Spark 0 Wide range of possibilities to perform evaluation available, but none of them could
be applied correctly due to problems handling the RDDs.

Step 8 - Visualization. To integrate the visualization using InfluxDB and Grafana a
connector is necessary. InfluxDB connectors exist for both Flink and Spark. The integration
of the connectors was analyzed according to their Adaptability, considering the integration
in general, the customization necessary to write stock data into the data base and the
possibility of adding other sinks to other streams (at various stages of TSD processing).
The connector available for Flink achieved very good results for all these criteria, Figure 1
shows a screenshot of this visualization. Unfortunately, the connector available for Spark
could not be integrated due to missing information and documentation.

Integration of visualization connector
Flink ++ Available connector provides high flexibility, easy adaptation to the use case, so that

custom data formats are accepted. Very easy handling and integration to the use case
(Just adding customized sink to DataStream).

Spark - No easy-to-integrate connector available.

212 Melissa Gehring, Marcela Charfuelan, Volker Markl

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 19

4 Conclusion

Table 4 summarizes the results of Section 3. Generally, both Flink and Spark, provide
qualitatively high basic functionality, necessary for the development of basic streaming
applications. When developing advanced applications for TSD, Flink appears to be better
suited than Spark, since the programming abstraction complexity is lower in Flink. Fur-
thermore, Spark requires the use of a wide range of frameworks to incorporate diverse
functionality and requires transformations across several APIs.

The DataStream API provided by Flink is straightforward and thin. Flink’s programming
abstractions for streaming are simple and ease the development within advanced tasks.
Spark’s Streaming API cannot directly be compared to Flink’s DataStream API, as the
essential event-time support is not integrated in the Spark Streaming API. A fair comparison
would be using Spark’s Structured Streaming API. Due to the relatively new API, many
advanced algorithms and implementations are not yet available for Spark Structured
Streaming from contributors. This was also an issue during the implementation of the test
scenario. Implementations of the Kalman filter were only available for Spark Streaming.

Step Criteria Flink Spark
1 - Setup Simplicity + +

Documentation ++ +
2 - Time Handling Extent ++ +

Simplicity + +
Documentation ++ 0

3 - Stream Source Connector Extent ++ ++
Simplicity ++ ++
Documentation ++ +

4 - Preprocessing Extent ++ ++
Simplicity ++ ++
Documentation ++ +

5 - Stream Processing Extent + ++
Simplicity + ++
Documentation ++ ++

Basic functions: 24 20
6a - Time Series Analysis - Adaptation to stock
market use case

Adaptability ++ +

6b - Time Series Analysis - Integrating error
calculation

Adaptability ++ ++

7 - Evaluation Adaptability + 0
8 - Visualization Adaptability ++ -
Advanced functions: 7 2∑

Total 31 22

Tab. 4: A qualitative comparison of a predictive analytics task between Flink and Spark.
Regarding the evaluation step, the functionality offered by Spark is less straightforward than
the functionality offered by Flink. Visualization using the widely adopted tool, Grafana, can
be easily integrated using Flink. Based on our analysis, it appears that integrating Flink with

A Comparison of Distributed Stream Processing Systems for Time Series Analysis 213

20 Melissa Gehring, Marcela Charfuelan, Volker Markl

Grafana for time series analysis is the preferred option for stream processing, monitoring,
and the visualization of data streams. In Spark, there is no easy connector yet available for
Grafana, despite the broad range of adopted tools. The focus of Spark does not lie on its
streaming functionality, but more on batch. Flink’s focus on streaming is remarkable in the
majority of the tasks tested within this work and therewith brings qualitative higher Ease of
development.

5 Acknowledgments

This work was supported by the German Federal Ministry of Economics and Technology
(BMWi) funded SePiA.Pro project, under grant FKZ: 01MD16013.

References
[Ar01] Armstrong, J. Scott: Selecting Forecasting Methods. In: Principles of Forecasting, vol-

ume 30, pp. 365–386. Springer US, 2001.

[BKF17] Bader, A.; Kopp, O.; Falkenthal, M.: Survey and Comparison of Open Source Time
Series Databases. In (Mitschang, Bernhard et al., eds): Datenbanksysteme für Business,
Technologie und Web (BTW2017) – Workshopband. volume P-266 of Lecture Notes in
Informatics (LNI). Gesellschaft für Informatik e.V. (GI), pp. 249–268, 2017.

[Ch16] Chintapalli, S.; Dagit, D.; Evans, B.; Farivar, R.; Graves, T.; Holderbaugh, M.; Liu, Z.;
Nusbaum, K.; Patil, K.; Peng, B. J.; Poulosky, P.: Benchmarking Streaming Computation
Engines: Storm, Flink and Spark Streaming. IEEE, pp. 1789–1792, 2016.

[JPT17] Jensen, S. K.; Pedersen, T. B.; Thomsen, C.: Time Series Management Systems: A Survey.
IEEE Trans. on Knowledge and Data Engineering, 29(11):2581–2600, November 2017.

[Ka18] Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V.: Bench-
marking Distributed Stream Data Processing Systems. CoRR, abs/1802.08496:12, 2018.

[KKR15] Kejariwal, A.; Kulkarni, S.; Ramasamy, K.: Real Time Analytics: Algorithms and Systems.
Proc. VLDB Endow., 8(12):2040–2041, August 2015.

[SG17] Saxena, S.; Gupta, S.: Practical real-time data processing and analytics: distributed
computing and event processing using Apache Spark, Flink, Storm, and Kafka. Packt,
2017. OCLC: 1008968663.

[WB01] Welch, G.; Bishop, G.: An Introduction to the Kalman Filter. Technical report, 08 2001.

[Wi16] Wingerath, W.; Gessert, F.; Friedrich, S.; Ritter, N.: Real-time stream processing for Big
Data. deGruyter, (58), August 2016.

214 Melissa Gehring, Marcela Charfuelan, Volker Markl

cbe

A. Heuer et al. (Hrsg.): BTW 2019 – Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Lock-free Data Structures for Data Stream Processing

Alexander Baumstark1

Abstract: The ever-growing amounts of data in the digital world require more and more computing
power to meet the requirements. Especially in the area of social media, sensor data processing or
Internet of Things, the data need to be handled on the fly during its creation. A common way to
handle these data, in form of endless data streams, is the data stream processing technology. The key
requirements for data stream processing are high throughput and low latency. These requirements
can be accomplished with the parallelization of operators and multithreading. However, in order to
realize a higher degree of parallelism, the efficient synchronization of threads is a necessity. This
work examines the design principles of lock-free data structures and how this synchronization method
can improve the performance of algorithms in data stream processing. For this purpose, lock-free
data structures are implemented for the data stream processing engine Pipefabric and compared with
current implementations. The result is an improvement for the tuple exchanging between threads and
a significant improvement for the symmetric hash join algorithm based on lock-free hash maps.

Keywords: Concurrent Data Structures, Lock-Freedom, Stream Processing, Parallelism

1 Introduction

This work investigates the design principles of lock-free data structures and examines
their potential use for data stream processing. The article from [SÇZ05] provide eight
requirements for (real-time) data stream processing. Three of these requirements are directly
dependent on the system architecture, the effectiveness of the used algorithms and the
performance. Stream processing requires algorithms that produce constant progress as a
minimum. Due to the fact that the data appears mostly in form of unbounded data streams
and high costs for storage operations, the algorithms must be able to process data on the fly.
Other requirements are stable and robust algorithms that are not prone to errors, because
high availability is a must-have within data stream processing. Modern approaches take
advantages of the multithreading paradigm to achieve this requirement, for instance, with
concurrent operations on partitioned streams. The key component of such stream processing
algorithms are concurrent data structures, for example, linked list data structures for the
stream partitioning, where selected elements of the original stream are stored. In order
to obtain consistency and a high degree of parallelism efficient synchronization methods
are needed. Conventional techniques of thread synchronization make use of blocking
1 TU Ilmenau, Databases and Information Systems Group, Helmholtzplatz 5, 98693 Ilmenau,

alexander.baumstark@tu-ilmenau.de

cba doi:10.18420/btw2019-ws-22

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 215

https://creativecommons.org/licenses/by-nc/3.0/
alexander.baumstark@tu-ilmenau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-22

2 Alexander Baumstark

mechanisms like locks and mutual exclusions (lock-based). The major disadvantage of these
methods is that they can suffer from problems like deadlocks, livelocks or priority inversion.
Since the critical sections of shared resources cannot be executed in parallel by multiple
threads, the possible degree of parallelism is decreased.

A different technique is thread synchronization without locks, called non-blocking syn-
chronization. Basically, there are three classes of non-blocking methods: obstruction-free,
lock-free and wait-free. The difference between these classes lies in the guarantee they
provide for the progress. In short, lock-free synchronization guarantees that at least one
thread makes progress, whereas wait-free makes sure that all threads do so. Obstruction-free
synchronization is the weakest class and can only guarantee that an isolated thread makes
progress. None of the mentioned problems of lock-based synchronization can occur with
non-blocking implementations. This can lead to a higher degree of parallelism which
may result in a performance gain. Certain modern database systems already use lock-free
algorithms in order attract with their achieved performance ([Re], [Me17]). The goal of this
work is to examine whether or not the benefits of lock-free synchronization are attainable
in data stream processing. The primary research questions of this work ([Ba18]) can be
summarized as follows: (1) What design principles exist for lock-free data structures? (2) For
which data structures does a lock-free design exist? (3) How does lock-free synchronization
affect the overall performance, especially for the use case data stream processing? Can
this method fulfill the requirement of low latency and high throughput? The data stream
processing engine Pipefabric2 is used for benchmarks, in order to give an answer to the
third research question.

To summarize, we make the following contributions:

1. We improved the tuple exchange algorithm in Pipefabric with lock-free synchroniza-
tion.

2. We proposed a lock-free hashmap design that supports multiple elements with
equivalent key, similar to the C++ unordered multimap structure.

3. We improved the scalability and performance of the symmetric hash join algorithm
in Pipefabric.

2 Design Principles of Lock-free Data Structures

The conventional way to synchronize data structures is to use locks and mutual exclusions.
Lock-free synchronization takes another approach and uses atomic operations, memory
barriers and fences to synchronize and guarantee consistency. Atomic operations are
indivisible and uninterruptible instructions [HP06]. These operations can be compared
with transactions from database systems. Transactions follow the ACID property [HR83],
which can be adapted to atomic operations. The ACID property guarantees that every

2 https://github.com/dbis-ilm/pipefabric

216 Alexander Baumstark

https://github.com/dbis-ilm/pipefabric

Lock-free Data Structures for Data Stream Processing 3

operation must be uninterruptible (atomicity) and that every operation from a consistent
state is followed by a consistent state too (consistency). Operations are executed concurrently
but the effect of these is the same as if the operations would be executed sequentially
(isolation). Each operation remains after it has committed (durability). Due to these
properties, synchronization can be done without the use of locks. There are two classes of
atomic operations: The first is the class of atomic read and write operations. The other class
is for complex atomic read-modify-write operations, like compare-and-swap (CAS)3 or
fetch-and-add.
CAS takes three arguments: a memory location, the expected value of the memory location
and a new value. Only if the value of the memory location matches with the expected
value, the new value will be stored in the memory location. If the compare-and-swap is
successfully executed, it returns true, otherwise false. The failure of a CAS operation means
that a thread changed the value in the interim, so the expected value does not match with
the value of the memory location. A common technique is to execute the CAS operation
(with refreshed expected values) within a loop until it is successful. [He91] has shown that
the consensus number of the CAS operation is unbounded with the consequence that CAS
can implement all other atomic operations.
Similar to the back-off strategies of network protocols that serve to limit the rate of
retransmission, back-off strategies can be used to limit the rate of failed CAS operations.
The reason for using a back-off strategy is that a high rate of successively failed CAS
operation causes unnecessary CPU time, which could be used by other threads to make
progress. Consequently, the use of a correct back-off strategy can increase the performance
of a lock-free data structure [Kh15]. An example is the elimination back-off strategy for a
lock-free stack [HSY04]. It is based on the following observation. If a pop operation follows
a push, the state of the stack does not change. Therefore, a pair of push and pop operations
can meet at a different location to exchange data, without performing actions on the stack.

Another problem in the context of CAS and lock-free synchronization is known as the ABA
problem. It is defined as a false-positive execution of a CAS-based operation through an
unobserved change of a memory location in the interim [DPS10]. A CAS operation cannot
consider a change from the value A to B and back to A. Therefore, the CAS operation
falsely executes its swap and returns a true as a result. It is clear that this behavior, caused
by the ABA problem, can lead to inconsistency and must be prevented. [MS96] described
a efficient solution to the ABA problem with tagged pointers. After each successful CAS
operation the tag of the pointer is incremented and each modification can be considered.
Other approaches use reference counters described by [Va95] or hazard pointers [Mi04].

3 Lock-free Implementations

Stream processing operations rely on concurrent data structures. One of the research
questions of this work is: For which data structures does a lock-free design exist at all? The

3 An equivalent instruction (pair) for Load/Store architectures is load-linked/store-conditional (LL/SC).

Lock-free Data Structures for Data Stream Processing 217

4 Alexander Baumstark

answer is simple: There are no real restrictions. Several thread-safe lock-free data structure
designs exist for almost all data structures. [Tr86] published a simple lock-free stack design.
It is assumed that this is the first published non-blocking implementation. Another classical
lock-free design that is implemented in a variety of libraries and systems, is known as
the (multi-producer, multi-consumer) Michael and Scott queue [MS96]. Single-producer
and single-consumer queues are widely implemented by multi-threading libraries, for
example, Intel’s Threading Building Blocks (TBB)4, Facebook Folly5 or by C++ Boost
Libraries6. These implementations are based on lock-free ringbuffer data structures and
achieve incredible fast execution performance.
Join operations in stream processing use hash maps to probe their entries against others to
find a match. A disadvantage in conventional concurrent implementation is, that the whole
hash map has to be locked to obtain consistency. Several lock-free designs exist for hash
maps, like [FLD13] based on multi-level arrays or [Mi02] based on linked lists, only to name
a few. [BP12] published a lock-free implementation of a B+-tree which is an alternative to
blocking lock-coupling techniques. The next section examines lock-free data structures in
the use case of the data stream processing engine Pipefabric.

4 Use Case: Data Stream Processing

As already mentioned, the key requirements for data stream processing are high throughput
and low latency. The goal of this section is to examine whether or not these requirements are
more attainable with lock-free synchronization. Due to the fact that lock-free synchronization
allows theoretically a higher degree of parallelism, it is expected that algorithms that rely on
this technique achieve better performance results than their equivalent blocking approaches.

4.1 Pipefabric

Pipefabric is a data stream processing engine, developed by the Database and Information
Systems Group at the TU Ilmenau. It is open source, written in C++, supports different
network protocols like ZeroMQ, MQTT or AMQP and can get tuples from Apache Kafka
servers or RabbitMQ. For multi-core machines there are several operations available in
order to enhance the stream processing. A partition operator can split the data streams, so
that each partitioned stream can be processed concurrently. Sub-stream can be merged into a
single-stream again. The supported window operations are the tumbling and sliding window.
Elements of data streams are represented in Pipefabric as a tuple data structure. These
tuples and their components can be processed with several operations. Another component
of Pipefabric is the topology, an interface for the data stream processing pipelines, similar
to the implementation from Apache Spark.

4 https://www.threadingbuildingblocks.org/

5 https://github.com/facebook/folly

6 https://www.boost.org/doc/libs/1_63_0/doc/html/lockfree.html

218 Alexander Baumstark

https://www.threadingbuildingblocks.org/
https://github.com/facebook/folly
https://www.boost.org/doc/libs/1_63_0/doc/html/lockfree.html

Lock-free Data Structures for Data Stream Processing 5

4.2 Benchmark System

For the benchmarks that are to be done in this section, an Intel Xeon Phi KNL 7210
processor is used with 64 cores and four threads for each core. The base frequency runs
on 1.3 GHz and can boost up to 1.5 GHz (turbo). Each core owns an L1 cache of 32kB.
This hardware setup allows to run a benchmark for high scalability and concurrency at
the same time. The Intel compiler version 17.0.6 is used because it offers better results
in benchmark scenarios, compared with gcc. Additionally, the code is compiled with the
supported AVX-512 instruction set, but without further code optimization that would take
full advantage of these instructions.

4.3 Tuple Exchanging

Sometimes data needs to be exchanged between two threads, for example, in exchanging
information of the status or tuples for partitioning. An approach to realize this is to implement
it with a buffer, with a single reader and writer. The underlying data structure of the current
implementation is the STL queue, protected with locks and condition variables. In the
first benchmark, the current queue data structure for tuple exchanging is compared with
equivalent lock-free variants from the C++ Boost libraries, Intel’s TBB and Facebook Folly.

For the first scenario, the producer and consumer has to process five million tuples/elements
in order to simulate an unbounded situation. In the second scenario, the maximum size
of the lock-free queues is reduced to the size 1024, in order to show results with realistic
parameters. A naive waiting back-off strategy is used in case of a full or empty queue.

Figure 1: SPSC queue benchmark: execution time, unbounded and bounded

The results in Figure 1 show clearly that the non-blocking queues outperform the lock-based
implementation from Pipefabric. Each thread in the blocking technique is executing its
operation alternately in a way that no real parallel execution is possible and the amount of
time that a thread waits for an unlock of the critical section is unused. The non-blocking
implementations use fast atomic load and store instructions, the Boost and Facebook Folly
implementations are even wait-free. Intel TBB’s fine-grained lock queue is in the medium

Lock-free Data Structures for Data Stream Processing 219

6 Alexander Baumstark

range in this benchmark. A slow consumer, like in the bounded situation, can decrease the
overall performance but is still faster than the blocking approach. It is recommended to
implement the Boost queue for the tuple exchange, because of its speed and the reason that
the Boost library is already used in Pipefabric. This benchmark shows clearly that lock-free
queues can improve the tuple exchanging procedure significantly. The next benchmark
examines in which way it is attainable in complex stream processing algorithms like the
symmetric hash join.

4.4 Symmetric Hash Join

A commonly used join algorithm in data stream processing is the symmetric hash join,
which is also available on relational database systems. The symmetric hash join algorithm
for stream processing continuously generates results while tuples from the streams arrive.
Figure 2 shows the idea of a symmetric hash join algorithm with two data streams sliced
into windows and joined after the algorithm into a single stream.

Figure 2: Symmetric hash join operation.

The symmetric hash join algorithm processes two input streams, denoted as left and right
input. After each arrival of a tuple, either on the left or the right input, it is inserted in the
corresponding hash map. In a next step the hash maps probe their entries against the others
for a match. Entries with no match are removed from the hash map. The gained entries with
a match are forwarded to the following operator as a single data stream.

For a symmetric hash join algorithm, two hash tables are mandatory for the left and right
stream elements. Another requirement is that multiple stream elements are mapped to the
same key. Therefore, the buckets of the hash map must be able to contain multiple elements,
and the probing must also iterate through all available elements in the bucket. The algorithm
is organized in three steps: (1) Insert the tuples in the corresponding hash table, or remove
them if they are outdated, (2) probe for possible join partner in the other hash table and (3)
the actual join of the tuples.
The implementation of the symmetric hash join algorithm in Pipefabric is based on the
STL data structure unordered_multimap. This structure is an STL container, that contains
key-value pairs, similar to the unordered_map structure but with the addition that elements
can have equivalent keys. The internal structure of the multimap is a hash map which
supports forward iterators with an average constant-time complexity. In order to guarantee
thread-safety in a concurrent execution, each operation of the data structure is protected
with a lock. The lock-free symmetric hash join is more challenging to realize. This relies on

220 Alexander Baumstark

Lock-free Data Structures for Data Stream Processing 7

the bucket structure, which allows that multiple values have the same hash key. A lock-free
hash map with this bucket property needs combined data structures for the hash map and
bucket structure. The following lock-free hash map and bucket implementation is based on
the lock-free linked list structure by [Ha01].

Figure 3: Lock-free hashmap supporting same key elements
A node in the hashmap list contains a key (k), pointer to the next node (n) and a pointer to the bucket

as value (b). The bucket node contains the actual value (Bval).

Each node of the list consists of a key, a value and a pointer to the next node. A key makes it
possible to distinguish between entries located at the same index. The hash map itself is an
array of n lists, where n is the size of the hash map with the hash function h(x) = x mod n.
In order to insert a new element, the insert operation computes the hash of the key to find
the corresponding list within the array. Then, the new element is inserted into the bucket
structure of the node with the corresponding key. Find hashes the key, iterates through the
corresponding list, compares each key and returns a pointer to the bucket if the key is found.
Additionally, the bucket structure is based on the same lock-free linked list structure with
the addition of an atomic size counter, that increments on each insertion with an atomic
fetch-and-add operation. A new element is inserted into the list with the current value of the
size counter as its key (see Figure 3).

Head and Tail pointers are used to iterate through all elements, by swinging to the next
element of the node. The general behavior of this lock-free design (named Lock-free/Linked
List in Figure 4) corresponds to the STL unordered multimap structure. Equivalent
implementations based on lock-free skip lists (named Lock-free/Skip List in Figure 4) and a
blocking implementation based on the unordered multimap from Intel TBB are used for
reference in the benchmark.

In the benchmark of Figure 4, two tuple generators publish tuples into the left and right
sliding window. The benchmark measures the execution time of the concurrent symmetric
hash join (with up to 256 threads) with constant distributed 10.000 tuples in total. The
buckets are preallocated in order to measure the relevant parts of the symmetric hash join.

The benchmark result given in Figure 4 shows clearly that these two approaches differ in
performance. When applying the execution with two threads, the blocking hash map is
slightly faster than the lock-free one. The reason for this lies in the implementation of the
lock-free hash map. A lock-free insert operation generally needs more instructions than
an equivalent lock-based implementation, because it operates within a loop with a CAS

Lock-free Data Structures for Data Stream Processing 221

8 Alexander Baumstark

Figure 4: Symmetric Hash Join Benchmark: Execution Time

instruction. An insert operation of a lock-free data structure needs possibly more attempts
to add an element into the lists, because CAS may fail, unlike the lock-based approach.

With the increasing number of threads the performance of the lock-based approach decreases
drastically. This observation is based on the fact that only one thread can access a critical
section. However, the lock-free implementation can guarantee that at least one thread
makes progress resulting in a higher degree of parallelism and throughput. A benefit of the
implementation based on singly linked lists is, that a constant number of stream elements is
processed in an approximately constant time. Another observation of this benchmark is,
that an optimized solution with fine-grained locks achieves the same or, in some situations,
even better performance results than a lock-free implementation. Due to the reason that this
design uses small critical sections, it achieves a similar degree of parallelism and throughput.
It should be mentioned that the lock-free implementations are not further optimized. With
additional lock-free techniques, back-off strategies and other optimizations even better
results are possible.
The reason for the poor performance of the skip list-based structure lies in the probabilistic
behavior: higher levels (express lanes) are created randomly. Consequently, the threads
can not take full advantage of these in the worst case. At higher thread numbers, this
implementation scales similar to the linked list structure, because the additional layers are
created by multiple threads. This approach is not recommended for practical usage and just
shown for reference, due to additional overhead for the higher layers.

5 Conclusion

The results of the benchmarks show that lock-free implementations can achieve similar
results and at higher thread numbers even better results than the lock-based implementations.
Pipefabric uses a blocking implementation of a concurrent queue in order to exchange tuples

222 Alexander Baumstark

Lock-free Data Structures for Data Stream Processing 9

between threads. Every modification on that queue can only be executed by one thread at a
time, which is the major disadvantage of blocking implementations. An equivalent lock-free
implementation allows that every thread can access the data structure simultaneously. This
can boost the tuple exchanging process up to a a tenth, compared to the blocking variant,
if the consumer is as fast as the producer. In case of a slow consumer, where the queue
is frequently full, the lock-free implementations are still significantly faster. The stream
processing can benefit from the higher degree of parallelism at the tuple exchanging, which
lead to a higher throughput for stream operations, for instance, window operations or joins.

Another significant performance boost can be achieved with a lock-free symmetric hash join
operation. The benchmark results have shown that the lock-free implementations are slower
at lower thread numbers but faster and scale very well at higher thread numbers. Reasons
for the results at lower thread numbers are the additional consistency checks before an
actual stream processing operation takes place. The implemented lock-free data structures
can also be used for other stream processing operations in order to improve the degree of
parallelism, for example, the scale join or for the window operations. However, another
observation is that optimized fine-grained locking methods achieve better results at lower
thread numbers, due to small critical sections and consequently more parallelism. Hence,
lock-free synchronization is not the so-called silver bullet in thread synchronization.

To summarize it all, lock-free designs can improve the performance of concurrent operations
and deliver scalable and robust algorithms, which are free from problems like deadlocks
and priority inversion. Thanks to these properties it is possible to achieve reliable latency
and throughput in data stream processing and exceed the performance of blocking designs.
This work has shown that lock-free implementation can fulfill the demands of data stream
processing algorithms.

References
[Ba18] Baumstark, A.: Lock-free Data Structures for Data Stream Processing, Bachelor’s Thesis,

TU Ilmenau, Aug. 17, 2018.
[BP12] Braginsky, A.; Petrank, E.: A lock-free B+ tree. In: Proceedings of the 24th ACM

symposium on Parallelism in algorithms and architectures - SPAA ’12. ACM Press, 2012.
[DPS10] Dechev, D.; Pirkelbauer, P.; Stroustrup, B.: Understanding and Effectively Preventing the

ABA Problem in Descriptor-Based Lock-Free Designs. In: 2010 13th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing.
IEEE, 2010.

[FLD13] Feldman, S.; LaBorde, P.; Dechev, D.: Concurrent multi-level arrays: Wait-free exten-
sible hash maps. In: 2013 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). IEEE, July 2013.

[Ha01] Harris, T. L.: A Pragmatic Implementation of Non-blocking Linked-lists. In: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 300–314, 2001.

[He91] Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 13/1, pp. 124–149, Jan. 1991.

Lock-free Data Structures for Data Stream Processing 223

10 Alexander Baumstark

[HP06] Hennessy, J. L.; Patterson, D. A.: Computer Architecture: A Quantitative Approach, 4th
Edition. Morgan Kaufmann, 2006, isbn: 0-12-370490-1.

[HR83] Haerder, T.; Reuter, A.: Principles of transaction-oriented database recovery. ACM
Computing Surveys 15/4, pp. 287–317, Dec. 1983.

[HSY04] Hendler, D.; Shavit, N.; Yerushalmi, L.: A scalable lock-free stack algorithm. In: Pro-
ceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and
architectures - SPAA ’04. ACM Press, 2004.

[Kh15] Khiszinsky, M.: Lock-Free Data Structures. The Evolution of a Stack, Feb. 24, 2015, url:
https://kukuruku.co/post/lock-free-data-structures-the-evolution-of-a-
stack/, visited on: 06/14/2018.

[Me17] MemSQL: How does MemSQL’s in-memory lock-free storage engine work?, 2017, url:
https://docs.memsql.com/introduction/latest/memsql-faq/#how-does-memsql-
s-in-memory-lock-free-storage-engine-work, visited on: 08/04/2018.

[Mi02] Michael, M. M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and
architectures - SPAA ’02. ACM Press, 2002.

[Mi04] Michael, M.: Hazard pointers: safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems Record 15/6, pp. 491–504, 2004.

[MS96] Michael, M. M.; Scott, M. L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing - PODC ’96. ACM Press, 1996.

[Re] RethinkDB: How are concurrent queries handled?, url: https://www.rethinkdb.com/
docs/architecture/, visited on: 08/04/2018.

[SÇZ05] Stonebraker, M.; Çetintemel, U.; Zdonik, S.: The 8 requirements of real-time stream
processing. ACM SIGMOD Record 34/4, pp. 42–47, Dec. 2005.

[Tr86] Treiber, R. K.: Systems programming: Coping with parallelism. IBM Research Center,
1986.

[Va95] Valois, J. D.: Lock-free linked lists using compare-and-swap. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing - PODC ’95.
ACM Press, 1995.

224 Alexander Baumstark

https://kukuruku.co/post/lock-free-data-structures-the-evolution-of-a-stack/
https://kukuruku.co/post/lock-free-data-structures-the-evolution-of-a-stack/
https://docs.memsql.com/introduction/latest/memsql-faq/#how-does-memsql-s-in-memory-lock-free-storage-engine-work
https://docs.memsql.com/introduction/latest/memsql-faq/#how-does-memsql-s-in-memory-lock-free-storage-engine-work
https://www.rethinkdb.com/docs/architecture/
https://www.rethinkdb.com/docs/architecture/

cba

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

An Actor Database System for Akka

Sebastian Schmidl, Frederic Schneider, Thorsten Papenbrock1

Abstract: System architectures for data-centric applications are commonly comprised of two tiers:
An application tier and a data tier. The fact that these tiers do not typically share a common format for
data is referred to as object-relational impedance mismatch. To mitigate this, we develop an actor
database system that enables the implementation of application logic into the data storage runtime. The
actor model also allows for easy distribution of both data and computation across multiple nodes in a
cluster. More specifically, we propose the concept of domain actors that provide a type-safe, SQL-like
interface to develop the actors of our database system and the concept of Functors to build queries
retrieving data contained in multiple actor instances. Our experiments demonstrate the feasibility of
encapsulating data into domain actors by evaluating their memory overhead and performance. We also
discuss how our proposed actor database system framework solves some of the challenges that arise
from the design of distributed databases such as data partitioning, failure handling, and concurrent
query processing.

Keywords: Actor Model; Database System; Akka; Distributed Computing; Parallelization

1 Introduction

Today’s applications need to process data at ever growing rates. Regardless of its origin
and kind, data is ever growing and needs to be stored and queried. Cluster or cloud
deployments and multi-core hardware architectures allow scaling application logic in terms
of computational power. Traditional data management systems, however, are at risk of
becoming the bottleneck in data-centric software systems, because the separation into data
and application tier costs performance, impacts code maintainability, and increases error
susceptibility.

The performance costs are due to the fact that relational database management system
(RDBMS) model their data in terms of relations while applications usually model the
data as objects. The translation of relations into objects and vise versa is known as the
object-relational impedance mismatch and requires some additional effort. The use of
object-relational mapping (ORM) tools, such as Hibernate for Java or Active Record for
Ruby on Rails, is a convenient yet expensive approach to provide a middle tier for the
translation. Some key-value stores solve the impedance mismatch more elegantly, but they
suffer from worse join and aggregation costs. Furthermore, code maintainability decreases
1 Hasso Plattner Institut, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, {sebastian.schmidl,

frederic.schneider,thorsten.papenbrock}@student.hpi.de

cba doi:10.18420/btw2019-ws-23

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 225

https://creativecommons.org/licenses/by-sa/4.0/
{sebastian.schmidl,frederic.schneider,thorsten.papenbrock}@student.hpi.de
{sebastian.schmidl,frederic.schneider,thorsten.papenbrock}@student.hpi.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-23

2 Frederic Schneider, Sebastian Schmidl, Thorsten Papenbrock

when stored procedures are being used to push application logic closer to the data, i.e., into
the data tier for performance reasons, and the error susceptibility increases, because large,
monolithic RDBMSs suffer from hand-crafted, non-standardized, and inconsistent attempts
to fault-tolerance, parallelization, data encapsulation, workload distribution, and replication.
The actor programming model, on the contrary, offers an effective solution for all these
challenges.

Using the actor programming model to fuse application and data tier is a concept originally
proposed by Shah; Salles [SS17a] and tested on the Orleans actor framework. The authors
call for a new paradigm by designing a scalable data storage solution using the actor model.
The core primitive in this model are actors, which are objects comprised of state and
behavior that execute computational tasks concurrently. Individual actors communicate with
each other exclusively via asynchronous message passing. Incoming messages are stored in
a mailbox allowing for the separate and independent processing of each message. An actor’s
internal state is only available to said actor, which encourages a shared-nothing system
architecture. The self-contained nature of actors and the fact that actors provide a lock-free
concurrency model, allows for naturally scaling out applications and systems [Ve15].

We build on this idea and present an application development framework for actor-based
data-centric applications. In contrast to Shah; Salles [SS17a], our actor database system
targets the Akka actor framework that offers different mechanisms for fault tolerance and
actor lifecycles than Orleans. In detail, we make the following contributions: We introduce
domain actors (Dactors) to model application data in an Akka-based actor database system.
Similarly to the work of Shah; Salles on reactors [SS17b], Dactors encapsulate application
data and logic. Since these actors are not part of a dedicated database runtime, but are defined
using the application framework, data objects share the same representation throughout
business logic and data storage. This approach bridges the aforementioned impedance
mismatch between data and application logic tier. In contrast to reactors, Dactors are
not relational entities, but employ relational structures internally. Dactor state can be
manipulated via an SQL-like interface. To define application logic relying on data contained
within multiple Dactors, we provide the concept of Functors, which make the usage of
asynchronous and concurrent computations explicit.

To our knowledge, we present the first implementation of this concept using the Akka
framework. Comparable approaches are discussed in Sect. 2. In Sect. 3, we outline our
concept for an actor database system in more detail, before presenting the results of our
experimental evaluation using our framework in Sect. 4. We offer a concluding statement
about this and future work in Sect. 5.

2 Related Work

The actor model that we introduced in the previous section has been implemented as libraries
for various programming languages. The most popular implementations are Erlang’s in-build

226 Sebastian Schmidl, Frederic Schneider, Thorsten Papenbrock

An Actor Database System for Akka 3

actors, the Orleans framework for .NET, and the Akka framework for Java [Ar07; Be14;
Li18a]. Although most research in the area of actor-based database systems targets the
Orleans framework, Akka is probably the most widely used actor model implementation –
not least because of the popularity of Java and the fact that it is used in frameworks such
as Apache Spark and Apache Flink. For this reason and because Akka differs in various
aspects from Orleans, we focus on this framework in our research.

Despite their popularity for building distributed applications, all current actor programming
frameworks lack database-like state management capabilities, specifically for data-centric
applications. The developer has to decide how to handle state persistence and how to
satisfy failure, replication, and consistency requirements of an application – the actor model
implementations neither provide atomicity nor consistency guarantees for state across actors.
Shah; Salles [SS17a] therefore stated the need for state management in actor systems and
proposed to integrate database functionality into the actor model. The authors postulate that
Actor Database Systems should be designed as a logical distributed runtime with own state
management guarantees. More specifically, their manifesto specifies four tenets that define
an Actor Database System [SS17a]:

Tenet 1 Modularity and encapsulation by a logical actor construct
Tenet 2 Asynchronous, nested function shipping
Tenet 3 Transaction and declarative querying functionality
Tenet 4 Security, monitoring, administration and auditability

Our actor database system (currently) covers the first two of these four tenets: For tenet 1, we
use actors to achieve a modular logical model for data encapsulation. Dactor instances are
in-memory storekeepers for application data. They satisfy the actor definition and support
high modularity. For tenet 2, Dactors provide a model for the concurrent computation of
predefined functionality that enforces locality of data accesses. All communication between
Dactors is asynchronous to leverage the advantages of increasingly parallel hardware. Our
concept of Functors allows for the definition of functionality using multiple actors’ data. To
meet tenet 3, Functors and Dactor behavior can be defined in a declarative way. Due to
their single-threaded computation model, Dactors basically enforce internal consistency
by default. In principle, Functors also enable the implementation of further transaction
protocols to ensure inter-Dactor consistency guarantees.

In contrast to the actor database system prototype introduced in [SS17a], we developed our
prototype using the Scala programming language and the Akka framework (instead of .NET
and Orleans). In contrast to Orleans and its convenient virtual actors, Akka offers more
control over an actor’s lifecycle, has a more explicit failure handling, and models actors in
hierarchies – aspects that enable more fine-grained control over the system but also demand
for more thorough architectural system design decisions.

Most related research in the field of actor database systems has been presented in conjunction
with the Orleans framework and the Erlang programming language [Be17; EB16; SS17b].

An Actor Database System for Akka 227

4 Frederic Schneider, Sebastian Schmidl, Thorsten Papenbrock

Biokoda [Bi18] takes another approach and encapsulates a full relational SQL database
inside an actor. Cardin [Ca17] uses actors to build a scalable key-value store and others use
the actor model to build soft caching layers and cloud applications for various purposes [Er18;
Li18b; NE18].

3 Domain Actor Database Framework

Our actor databases system consists of two building blocks: domain actors and Functors.
These two concepts allow for the definition of application data within the application itself.
Since both are based on actor model principles, they make the database system modular,
cloud-ready, and scalable. In this section, we introduce both domain actors and Functors.

3.1 Domain Actors – Encapsulation of Data

Similar to Shah; Salles [SS17b], we introduce a special type of actor, called Dactor, that acts
as an application-defined scaling unit. Dactors can be used to model application-domain
objects and encapsulate the object’s state and application logic in an actor. Using actors for
this enforces technical encapsulation of state access due to the purely private state in actors
and the need of explicit asynchronous messaging between the actors. The encapsulation
also makes it easier to reason about state changes, bugs, and other failures, as only code
within the Dactor can change the corresponding state.

In-memory data contained within a Dactor instance is managed in a data structure called
relation. One Dactor can contain multiple relations. A relation is, similarly to a table in the
relational database model, defined as a multiset of tuples following a predefined schema.
Relations provide an SQL-like interface to query and manipulate the contained data, so
known and proven syntax and semantics can be used to define Dactor-behavior. Relations
form a typed, Dactor-internal data model. Using Dactors to implement a database leads to a
modeling approach that is different to Entity-relationship modeling. The following example
discusses the conceptual differences between the two in more detail.

We consider the example of a web application with information on movies similar to
the imdb.com or rottentomatoes.com websites. A standard query for those websites is to
display a film with its description and cast. A traditional data layout might be comprised
of two entities: Film containing the film’s ID, title, description and release date and Actor
containing the actor’s ID and name. Those two entities might be in a N-to-M relation (Cast)
with an attribute showing the actor’s role in the film. In contrast to the relational model, our
model, shown in Fig. 1a, consists of one Dactor type and two relations and is denormalized.
The information contained in the Actor entity is distributed across the Cast relations. This
allows us to answer the standard queries from one single actor instance without needing to
join the answers from different, possibly physically distributed Dactor instances.

228 Sebastian Schmidl, Frederic Schneider, Thorsten Papenbrock

An Actor Database System for Akka 5

This approach to layout an application’s data results in much smaller data sizes per Dactor
compared to typical database tables and enables many business-logic-driven approaches to
scaling, data partitioning, and caching. The trade-off, however, is a large number of Dactor
instances and a (partially) denormalized schema.

Film(id: DactorId): Dactor

FilmInfo: SingleRowRelation

title : String
description : String
release : ZonedDateTime

Cast: Relation

actor id : DactorId
actor name : String
role name : String

(a) Graphical representation of the Film Dactor
type definition.

class Film(id: DactorId) extends Dactor(id) {
override protected val relations = {
Film.Info -> SingleRowRelation(Film.Info),
Film.Cast -> RowRelation(Film.Cast)

}
override def receive: Receive = //Dactor behavior

}
object Film {
object FilmInfo extends RelationDef {
val title = ColumnDef[String]("title")
val description = ColumnDef[String]("description")
val release = ColumnDef[ZonedDateTime]("release")

}
object Cast extends RelationDef {
val actorId = ColumnDef[DactorId]("actor_id")
val name = ColumnDef[String]("actor_name")
val rolename = ColumnDef[String]("role_name")

}
}

(b) Example code using our framework.

Fig. 1: Film Dactor type definition with two relations from the example application.

As Dactors not only contain data, but also the corresponding domain logic, computation is
executed concurrently. Actors provide single-threaded semantics, which makes enforcing
constraints on data stored inside one Dactor easy. While state querying and modification
within Dactors is possible in a declarative way, the application developer can explicitly
define the communication across all kinds of actors via asynchronous messages. The explicit
messaging differentiates Dactors from Shah; Salles [SS17b]’s reactors, as reactors can be
used as relational entities and hide the message passing from the developer.

To illustrate the definition of a Dactor in code, we show the definition of Film’s data model
in Fig. 1b. Developers can model the application’s domain objects by defining Dactor types
as subclasses of the framework-provided Dactor class in a declarative way. Instances of such
user-defined Dactor types are managed by the framework and are available for messaging in
a consistent namespace. Using the column’s predefined data types, all functions support
compile-time type-safety. Due to the Dactor system sharing the application’s runtime and
programming environment, these data or object types are equal to the types handled in any
application logic. Thus, this approach helps eliminate the impedance mismatch between
application logic and data tier with regard to handled data types and object (de-)serialization.

3.2 Functors – Encapsulation of Queries

Dactors can answer queries via explicit, asynchronous messaging, i.e., they answer a query
with their local data. Sometimes, however, queries need be answered by several actors. In

An Actor Database System for Akka 229

6 Frederic Schneider, Sebastian Schmidl, Thorsten Papenbrock

such cases, it makes sense to encapsulate the processing in a new, short-living actor that we
call Functor. Functors are the framework’s concepts that enable inter-Dactor communication
and computations. They communicate with (usually multiple) Dactors, track the completion
of a query, handle the state of pending requests, and resolve failure cases. Every actor can
create a new Functor to encapsulate multiple requests to Dactors. The Functor handles the
message processing and sends the final result or a failure message back to its creator. Since
all Akka actors live in hierarchical parent-child relationships, Functors are always created
by an actor as a child. This Akka-specific hierarchical relationship enables notifying the
calling actor even in case of unforeseen crashes of the Functor themselves, which in turn
allows to trigger error handling, e.g. retrying the Functor execution. In our actor database
system, we consider three messaging patterns for inter-Dactor communication, which are
shown in Fig. 2. These patterns are provided as messaging primitives by the framework and
can be combined to create more complex message flows and computational models:

Dactor A Dactor B Dactor C

Requests

Request

Response

Response

(a) Cascading Computation

Dactor A SeqFunctor Dactor B Dactor C

create

Request

Response

Request

Response

result

(b) Sequential Computation

Dactor A ConFunctor Dactor B Dactor C

create

Requests

Response

Response

result

(c) Concurrent Computation

Fig. 2: Inter-Dactor communication patterns. Gray bars indicate that an actor holds state that is related
to the showed message flow.

Cascading Computation is a pattern where a high-level message to an initial Dactor
(Dactor A) triggers successive messages to other Dactors, which are hidden from the original
requester. Following Dactors can also trigger further messages themselves. As one can see
in Fig. 2a, this pattern is comparable to function calls in Object-oriented Programming. But
contrary to simple function calls, messages in this pattern are sent asynchronously. This
means that the requesting Dactor has to manage the state of pending responses. This clutters
the domain logic in the Dactor and leads to complex and error-prone code. If used sparsely,
this pattern supports separation of concerns and the tell-don’t-ask paradigm.

Sequential Computation is used for queries that consist of consecutive steps, where
each step depends on the previous step’s result, such as filter chains. This pattern can be
implemented via the aforementioned Functors. Using a Functor to process the consecutive
steps of the computational chain relieves Dactor A from dealing with intermediate state,
because it is managed by the Functor. Each Functor deals with only one request-response
pair at a time, which leads to simple state and processing logic for the Functor itself.

230 Sebastian Schmidl, Frederic Schneider, Thorsten Papenbrock

An Actor Database System for Akka 7

Concurrent Computation is a another messaging pattern based on Functors to encapsulate
the processing of multiple request-response pairs. The concurrent Functor sends messages
to several Dactors in parallel and collects the results when they are finished to forward
them to its creator. It allows for highly parallelized computations as all involved Dactors are
messaged at the same time and calculate their responses concurrently.

In summary, explicit message handling in Dactors is used to implement the cascading
communication pattern; sequential and concurrent Functors are the framework’s concepts
to enable inter-Dactor communication and computations. Returning to the web application
example, we now want to add a new film to the database using the Functor concept. This
involves changes to a new Film and the corresponding Studio Dactor instances. We can
combine the concurrent and sequential Functors to implement this functionality, which is
displayed in Fig. 3. Both sequential Functors are comprised of two subsequent steps: They
retrieve information from one Dactor to update the other one. They are independent of each
other, so they can be executed in parallel, which is done by using the concurrent Functor. It
only sends a successful response to its caller after both sequential Functors have sent their
responses to the concurrent Functor.

Top Level
Actor / Dactor

Concurrent
Functor

Sequential
Functor

Sequential
Functor

Film
(Dactor)

getInfo

addStudio

Studio
(Dactor)

addFilm

getInfo

1

2

1

2

supervision supervision

supervision

Fig. 3: Component diagram indicating the message flow through Functor objects and their supervision
by the calling actor. Arrow and dashed arrow pairs indicate corresponding request and response
messages. The outgoing requests of each sequential Functor are numbered to indicate their order.

3.3 System Details

Data partitioning in an actor database system differs fundamentally from common parti-
tioning techniques used in relational databases. While large tables are typically partitioned
based on a specific column’s value or the hash thereof, our framework provides Dactors as
entities for data encapsulation and partitioning. Dactors can be provisioned across multiple
virtual runtimes and physical machines, because every Dactor instance is independent of
the others and the only mean of communication is message passing. As such, they provide
flexible, fine-grained data partitioning based on application needs.

An Actor Database System for Akka 231

8 Frederic Schneider, Sebastian Schmidl, Thorsten Papenbrock

The distributed nature of the database system introduces the new problem of partition or
actor discovery. The framework maintains a unified namespace, in which each Dactor
instance is identified by its Dactor type and a unique ID. In fact, querying a specific Dactor
just requires obtaining the messaging address from the name-service and sending a message
to it. In case of a multi-node deployment, this is complemented by Akka’s Cluster Sharding
component, which routes the messages to the right physical host.

Finally, failure handling, especially with regard to computations relying on multiple Dactors’
data, requires careful monitoring due to Dactor distribution. Building on Akka’s parent-child
supervision concept, our framework allows for transparent failure handling configurations.
Failures can be handled within Dactors if appropriate. In case of multi-Dactor queries a
fail-fast approach is chosen to allow calling actors to react to exceptions in a timely manner.

4 Performance and Memory Overhead Experiments

We present a short evaluation of the framework implementation with regard to query
performance and the memory overhead introduced by storing data in possibly hundreds of
thousands of Dactors, each storing only a relatively small amount of data respectively. All
tests were executed on a single consumer computer fitted with an Intel Core i5-7600K CPU
running at 3.8 GHz and 16 GB of RAM.

We performed experiments using an exemplary actor database system, which is modeled
based on a real-world scenario. It consists of four different Dactor types, each containing one
to three relations. The data stored in one Dactor ranges from seven to about 700 kilobytes
depending on its type. We generated four different datasets emulating the scaling of the
system by increasing the number of Dactor-instances and keeping the data size stored in
one Dactor nearly constant. The datasets include various primitive and complex data types
and are distributed across Dactors and relations. The dataset sizes are reported in Tab. 1.

For all runtime performance experiments the median runtime of N = 1000 concurrently
executed queries are reported. A point-query for data contained in a single instance of a
Dactor object presents a response time latency of 22 ms. A concurrent insert of related data
points into two Dactor objects, managed by a concurrent functor ensuring a consistency
constraint, runs 111 ms. For each dataset we performed three different tests in order to
evaluate the memory overhead introduced by encapsulating the system’s data in a large
number of Dactors and relations:

Single string Convert all data into its String representation and load it as a single big
String into memory. This test serves as baseline for the other tests.

Relations Load the data into their respective Relations, preserving the type information
and using the in-memory data storage objects from our framework.

Framework Use the full-fledged framework to load the data into memory. This approach
stores the data distributed across Dactors in Relation objects.

232 Sebastian Schmidl, Frederic Schneider, Thorsten Papenbrock

An Actor Database System for Akka 9

To obtain the used memory of the objects in our test approaches, we used VisualVM2 to
create heap dumps. After the data was completely loaded into memory, we triggered a
garbage collection run and created a heap dump. VisualVM is able to compute the retained
sizes of object hierarchies in those dumps. This allowed us to investigate the memory usage
of selected objects and their members in detail. We report the results in Tab. 1.

Dataset Disk size # Dactors Heap size Overhead /
Single string Relations Framework Dactor

D1 10 MB 829 11 MB 28 MB 29 MB 526 B
D2 25 MB 2 578 18 MB 43 MB 44 MB 539 B
D3 50 MB 4 373 47 MB 116 MB 119 MB 532 B
D4 100 MB 8 618 101 MB 233 MB 237 MB 534 B

Tab. 1: Used heap size of our three different methods to load data into memory and the memory
overhead of Dactors compared across the four datasets.

If the data is loaded into memory as a single big String object, it takes up around the same
amount of heap as the dataset is big. Storing the data in Relations introduces a overhead of
about 150%. Even for the smallest dataset the data is split up across thousands of relations,
which each use a two dimensional Array to store the individual values. In addition to that,
relations also store metadata about the contained data, such as column names and data
types. Using the full framework with Dactors does not introduce much additional memory
overhead. On average, using a Dactor only needs an additional 533 B more.

Let us assume that we have a 1 TB database and we chose to store 1 MB per Dactor. This
requires the actor database to instantiate about one million Dactors. Using the average
overhead of 550 B per Dactor, this would yield a relative memory overhead of only 0.05 %.
Doing the same thought experiment with storing 10 MB per Dactor, results in about 100 000
Dactors and reduces the relative memory overhead to 0.005%.

5 Conclusion

In our research, we study the question how database features can be incorporated into the
actor programming model. This work presents a proof-of-concept implementation of an actor
database framework, which enables developers to declaratively define a data model using
Dactors. Dactors model application-domain objects by encapsulating both the object’s state
and its application logic. The framework provides a shared, distributed runtime for database
functionality and application logic, mitigating the object-relational impedance mismatch
between data and business logic tier. The introduced Functor concept, which are temporary
actors that manage multi-Dactor queries, provides a transparent computation model and
failure handling capabilities. First experiments with our Akka-based actor database system

2 https://visualvm.github.io/

An Actor Database System for Akka 233

https://visualvm.github.io/

10 Frederic Schneider, Sebastian Schmidl, Thorsten Papenbrock

show that the memory overhead introduced by using actors for data management is low.
Hence, the approach is feasible and pays off especially if large amounts of data need to
be stored for highly concurrent data manipulation workloads. As future work, we aim to
develop inter-Dactor consistency guarantees by extending Functors with a rollback and, e.g.,
a two-phase commit protocol implementation.

References

[Ar07] Armstrong, J.: A History of Erlang. In: Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages. Pp. 6-1–6-26, 2007.

[Be14] Bernstein, P. A.; Bykov, S.; Geller, A.; Kliot, G.; Thelin, J.: Orleans: Distributed
Virtual Actors for Programmability and Scalability, tech. rep., Microsoft Research,
2014.

[Be17] Bernstein, P. A.; Dashti, M.; Kiefer, T.; Maier, D.: Indexing in an Actor-Oriented
Database. In: Proceedings of the Conference on Innovative Data Systems Research
(CIDR). 2017.

[Bi18] Biokoda: ActorDB – 1. About, 2018, url: http://www.actordb.com/docs-
about.html, visited on: 08/16/2018.

[Ca17] Cardin, R.: Actorbase, or "the Persistence Chaos", 2017, url: https://dzone.
com/articles/actorbase-or-quotthe-persistence-chaosquot, visited on:
08/18/2018.

[EB16] Eldeeb, T.; Bernstein, P.: Transactions for Distributed Actors in the Cloud,
tech. rep., Microsoft Research, 2016.

[Er18] Erlang Solutions Ltd: Case Studies & Insights, 2018, url: https://www.erlang-
solutions.com/resources/case-studies.html, visited on: 08/17/2018.

[Li18a] Lightbend, Inc.: Akka, 2018, url: https://akka.io/, visited on: 08/15/2018.
[Li18b] Lightbend, Inc.: Lightbend Case Studies, 2018, url: https://www.lightbend.

com/case-studies#filter:akka, visited on: 08/17/2018.
[NE18] .NET Foundation: Who Is Using Orleans?, 2018, url: https://dotnet.github.

io/orleans/Community/Who-Is-Using-Orleans.html, visited on: 08/17/2018.
[SS17a] Shah, V.; Salles, M. V.: Actor Database Systems: A Manifesto. CoRR

abs/1707.06507/, 2017.
[SS17b] Shah, V.; Salles, M. V.: Reactors: A Case for Predictable, Virtualized Actor

Database Systems. In: Proceedings of the International Conference on Manage-
ment of Data (COMAD). Pp. 259–274, 2017.

[Ve15] Vernon, V.: Reactive Messaging Patterns with the Actor Model: Applications
and Integration in Scala and Akka. Pearson Education, 2015.

234 Sebastian Schmidl, Frederic Schneider, Thorsten Papenbrock

http://www.actordb.com/docs-about.html
http://www.actordb.com/docs-about.html
https://dzone.com/articles/actorbase-or-quotthe-persistence-chaosquot
https://dzone.com/articles/actorbase-or-quotthe-persistence-chaosquot
https://www.erlang-solutions.com/resources/case-studies.html
https://www.erlang-solutions.com/resources/case-studies.html
https://akka.io/
https://www.lightbend.com/case-studies#filter:akka
https://www.lightbend.com/case-studies#filter:akka
https://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html
https://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html

cba

Herausgeber et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 1

PgCuckoo — Injecting Physical Plans into PostgreSQL

Denis Hirn1

Abstract: Plan forcing is the most capable plan hinting that a database system can implement. It
allows the specification of almost every aspect of an execution plan. The open source database system
PostgreSQL does not implement any plan hints by default. We will show how an extension can be
used to provide plan forcing for PostgreSQL. This extension allows to use the query executor directly
and independently of SQL. We sketch some of the interesting use case scenarios for plan forcing in
PostgreSQL.

Keywords: PostgreSQL; Physical Algebra; Plan Tree Execution; Query Unnesting

1 Plan Forcing
High-level declarative query languages are used to access data stored in a RDBMS. The
declarative nature of SQL requires a RDBMS to derive an efficient query evaluation strategy
on its own, largely without user guidance. Two key components of the evaluation mechanism
of a SQL DBMS are the query optimizer and the query execution engine. The query
optimizer is responsible for generating the input for the execution engine. It takes a parsed
representation of a SQL query as input and generates an efficient execution plan for the given
SQL query from the space of possible execution plans. This is a nontrivial task because
there can be a large number of possible operator trees for a given SQL query [Ch98].

PostgreSQL uses a disk-aware cost model which combines CPU and I/O costs with certain
weights. The cost of a query plan equals the summarized costs of all operators [Le15,
5.1 The PostgreSQL Cost Model]. Using cardinality estimates as its principal input, the
query optimizer relies on the cost model to choose the cheapest option from semantically
equivalent plan alternatives. Theoretically, as long as the cardinality estimates and the cost
models are accurate, this architecture obtains the optimal query plan. In reality, cardinality
estimates are usually computed based on simplifying assumptions like uniformity and
independence. For real-world data sets, these assumptions are frequently wrong, which may
lead to sub-optimal and sometimes disastrous plans [Le15, 1. Introduction].

Plan forcing allows to design and compile physical plans directly — there is no SQL or SQL
compilation involved. PostgreSQL is well suited for such a far-reaching modification, because
it is open source and widely known for its extensibility. Several interesting applications
result from the complete control over execution plans provided by plan forcing.
1 University of Tübingen, Department of Computer Science, denis.hirn@uni-tuebingen.de

cba doi:10.18420/btw2019-ws-24

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 235

https://creativecommons.org/licenses/by-sa/4.0/
denis.hirn@uni-tuebingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-24

2 Denis Hirn

• The planner is one of the most complex modules of PostgreSQL. This complexity
can make it hard to determine whether a new feature or a change to the optimization
process may improve query execution performance. Instead of investing time in
changing the optimization process, plan forcing can be used to explore portions of the
query plan space that the planner is unable to enter on its own. Planner functionality
that is not available can be simulated this way. In Section 2.1 we will discuss how
the textual representation of a plan can be used to alter or create a completely new
execution plan. This way, we can manually apply a particular optimization to multiple
sample plans to assess the impact on execution performance. Usually it is very hard
to construct a plan from scratch, but this process can be simplified significantly, as
we will explain in Section 3.2.

• There are plenty of applications that use PostgreSQL’s stable execution engine as
backend, e.g. for foreign frontend languages. Although some of these tools generate
logical or physical algebra internally, intermediate SQL code generation is required
because they cannot feed their plans directly into PostgreSQL. Plan forcing can be
used to omit this intermediate SQL code and use physical plans instead.

• PostgreSQL’s query optimizer is conservative and does not support (advanced)
algebraic rewriting of plans. Plan forcing allows to externalize system-internal query
processing steps. An application of algebraic rewriting is unnesting of correlated
subqueries as will be explained in Section 3.1. Query unnesting can improve the
execution performance significantly but PostgreSQL’s planner cannot de-correlate
queries in general. Instead of integrating this optimization into PostgreSQL, we can
utilize external tools to perform algebraic rewriting. Plan forcing is then used to
execute the rewritten plan.

• We can use plan forcing in combination with PostgreSQL’s planner by using plan
fragments as a part of regular queries. Figure 4 shows how we can incorporate
multiple occurrences of the table-valued function plan_execute to “stitch together”
a plan. But if we use plan forcing for an entire plan we omit PostgreSQL’s planner
completely, as shown in Figure 3.

2 Physical Plan Injection in PostgreSQL

The logical basis of a RDBMS is usually an extended version of the relational algebra, as
proposed by Edgar F. Codd [Co70]. An implementation of relational algebra operations
is called physical algebra. In general, there is no bijective mapping between a SQL query
and physical operators because non-trivial SQL queries can be evaluated by numerous
semantically identical plans, i.e. constellations of physical operators.

PostgreSQL performs several steps to transform a SQL query from the textual representation
into a plan tree. The first step involves to parse the query, which generates the parse tree.
Following this, the analyzer performs a semantic analysis of the parse tree and creates a

236 Denis Hirn

PgCuckoo 3

new representation called query tree. The planner uses the query tree to generate the most
efficient plan tree. In the end, the executor evaluates the plan tree. The plan tree is based
on a set of data type definitions that represent expressions over the physical algebra. This
tree structure serves as the input for the executor. Each node of the tree specifies a physical
operator and contains any information needed for its evaluation. These steps are illustrated
in Figure 1.

The parse and analyze modules construct context information in addition to the parse- and
query tree. This information is important for the type inference performed in the analyze
phase and for the optimization process. The executor does not require any information
besides the plan tree of a query, however. This is an important property, because it implies
that we can safely skip the parse, analyze and optimization phase without affecting the
executor.

To use the PostgreSQL executor independently of SQL, an interface that allows to import,
export, and execute plan trees is required. PostgreSQL offers nothing along these lines
by default. Still, an extension can be used to implement such an interface. A C language
extension can access internal functions and modify the overall behavior of the system
[DD03].

SQL Query
string

Parser

parse tree

Analyzer

query tree

Planner

plan tree

Executor

User

Fig. 1: PostgreSQL performs the same transformation steps for each received SQL query. Each module
generates a new data structure ultimately resulting in a plan tree.

2.1 Plan Tree Printing and Parsing

The PostgreSQL-internal module defined in the file outfuncs.c can be used to serialize a
plan tree into a human readable textual representation. The module defines the function
char* nodeToString(const Node* obj) which takes a plan tree as input and generates the
corresponding textual representation. Every node that can appear in a plan tree is associated
with an output function.

PgCuckoo — Injecting Physical Plans into PostgreSQL 237

4 Denis Hirn

In addition to the output function, every node must have an input function in the file
read.c. The function Node* stringToNode(char* str) implements the deserialization of
the textual representation and generates the corresponding internal node. The following
applies: stringToNode(nodeToString(node)) ≡ node.

However, the stringToNode function does not perform any sanity checks. This is problematic
because the textual representation of a faulty plan will be parsed unnoticed as long as the
syntax is correct. Normally, the stringToNode function is only used internally. Therefore,
an error-free input is expected and no error messages are provided if the parsing fails.

The PostgreSQL executor relies on the planner to create error-free plans. There are several
Assert statements implemented for each operator to support the development process, but
they are disabled by default. Therefore, the executor is highly prone to errors in the plan
tree structure.

It is possible to deserialize an arbitrary execution plan by using stringToNode, but it is
extremely hard to develop or modify such a plan without assistance. A user would have
to know and supply every field of any node in the correct ordering and format. It is very
difficult to do this without making mistakes. Since we are about to assemble plans on
our own, this places the burden on us to construct plans that are consistent and, in fact,
executable at all. Below, we describe how to aid users in generating such correct plans.
{PLANNEDSTMT

:commandType 1
:parallelModeNeeded false
:planTree

{LIMIT
:parallel_aware false
:parallel_safe false
:plan_node_id 0
:targetlist [...]
}

:nParamExec 0
}

typedef struct PlannedStmt
{
CmdType commandType;
...
bool parallelModeNeeded;
struct Plan *planTree;
int nParamExec;

} PlannedStmt;

Fig. 2: This shows a heavily truncated snippet of what the nodeToString function produces (left). On
the right, we show how the corresponding data structure of a plan looks like.

2.2 Execution of Custom Plan Trees

PostgreSQL is designed to execute SQL queries. To our knowledge, there is no “side
entrance” that allows the execution of plan trees directly. As mentioned, the stages before the
executor are not required for the execution of a plan tree. PostgreSQL implements several
methods to execute a query, using the SPI (Server Programming Interface) for example, but
none of these functions bypass the steps prior to the executor.

Instead of writing a custom execution method from scratch, the extensive set of hooks
provided by PostgreSQL can be used to inject a physical plan tree into the executor. Each
hook consists of a global function pointer that allows to modify or replace the behavior of a

238 Denis Hirn

PgCuckoo 5

module. Recompilation of core code is not required. A hook can be enabled and disabled by
setting a global variable at run time of PostgreSQL.

We use the planner_hook to implement the execution of arbitrary plan trees. The
planner_hook allows to replace the standard_planner with another function (see Listing 1).
Plan forcing can be implemented by using a planner that ignores any input and, instead,
return an execution plan that we have assembled on our own. Using the planner_hook

we can avoid to deal with low-level error- and memory management, because the same
execution methods as usual can be used.

PlannedStmt *
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{

PlannedStmt *result;

if (planner_hook)
result = (*planner_hook) (parse, cursorOptions, boundParams);

else
result = standard_planner(parse, cursorOptions, boundParams);

return result;
}

Listing 1: Entry point of the query optimizer [Gr18b, planner.c, 255-265]

The injection can now be done easily. After parsing an execution plan using the stringToNode
function, SPI can be used to issue an arbitrary dummy query (e.g., SELECT NULL) while
the planner_hook is enabled. PostgreSQL will parse, analyze and rewrite this query as
usual. After the analyze module, the query tree is passed on to the planner. Usually,
the standard_planner would now generate a plan tree for this query. But because the
planner_hook is enabled, our custom planner is used instead. As explained earlier, this
planner statically returns the previously parsed plan tree. This plan is evaluated by the
executor accordingly. The injection is complete at this point. Figure 3 shows how the
injection modifies the query pipeline.

3 Plan Forcing Applications

Now that we may lay “plan eggs into PostgreSQL’s nest”, a variety of interesting use cases
open up. We sketch a few of these below.

3.1 Unnesting of Correlated Subqueries

Unnesting of correlated subqueries can greatly speed up query processing, but the majority
of existing RDBMS cannot de-correlate queries in the general case. Thomas Neumann
and Alfons Kemper provide a generic approach for unnesting arbitrary queries based on

PgCuckoo — Injecting Physical Plans into PostgreSQL 239

6 Denis Hirn

SQL Query

string

Parser

parse tree

Analyzer

query tree
Planner

Hook
plan tree

Executor

Physical Plan

string

stringToNode

Fig. 3: Modified query pipeline that plan forcing implements. Modules shown in grey are active during
normal SQL query processing but serve no function during plan forcing.

algebraic representations of a query with correlated subqueries [NK15]. As far as we know,
this approach has not been implemented in any RDBMS besides HyPer [Ne11a].

The unnesting is performed using a rule system which implements algebraic rewriting of
logical execution plans. The planner of the RDBMS HyPer uses their generic unnesting
approach and is therefore able to unnest arbitrary queries whereas PostgreSQL in general is
not. PostgreSQL’s resulting performance disadvantage can be significant.

For PostgreSQL, there is no immediate way to use Neumann and Kemper’s rule system.
Ideally, the PostgreSQL developers would integrate this rule system directly with the
optimization process of the planner. This would improve the performance of nested queries
for all users. Because it is not clear if and when this planner feature will be implemented,
we may instead use plan forcing to implement this. All that is left to do then, is the
implementation of the rule system. This rewriting step can be implemented as a C language
extension. In this case, the plan would stay inside the database system. Another option is
to use the textual representation of a plan tree and rely on external tooling to implement
the unnesting. Generally, such externalization of formerly strictly system-internal query
processing steps is one of the most interesting aspects of the presented work.

Neumann and Kemper used two nested SQL queries Q1 and Q2 to compare the unnesting
capabilities of various RDBMS, including PostgreSQL 9.1 and HyPer. They have been able
to show that their rule system is able to produce unnested versions of these queries. The
impact of their unnesting approach on PostgreSQL is not clear yet. However, instead of using
a SQL query as input, we can now use plan forcing to execute the unnested plans of Q1 and

240 Denis Hirn

PgCuckoo 7

Q2 to determine the impact of unnesting for PostgreSQL. In effect, we use plan forcing to
simulate a PostgreSQL kernel that is equipped with HyPer’s sophisticated unnesting strategy.
Among other lessons learned, this simulation can be used to decide whether far-reaching
changes to PostgreSQL’s current unnesting procedure are worth the effort.

Just as Neumann and Kemper have, we used 1, 000 student and 10, 000 exam tuples as test
data. We then reproduced their experiment for Q1 and Q2 using PostgreSQL 10. The nested
version of Q1 had a run time of 3926.69 ms whereas the decorrelated formulation could
be executed in just 47.77 ms. PostgreSQL 10 took 17, 199.45 ms to execute Q2 without
unnesting and 3, 745.55 ms with unnesting. The performance improvement matches those
observed by Neumann and Kemper and therefore further supports the idea “that a system
should be able to unnest arbitrary queries” [NK15].

3.2 Experimentation with Execution Plans

Plan forcing makes experimentation with execution plans possible because it can touch
every aspect of a plan. This is interesting for research and educational purposes. Usually
there is no way to locally control the behavior of the planner.

The plan tree data structure contains all information that the executor might need to evaluate
a query. This makes these structures verbose and thus hard to construct from scratch.
Normally, the user would not care about much of this information because the RDBMS
automatically determines the required information based on the SQL query. We have to
determine this information manually to construct a custom execution plan.

The complexity of the plan tree makes it extremely challenging to construct plan trees
without assistance. We have developed a Haskell library that supports the creation of artificial
execution plans. Based on two domain-specific-languages, we designed an inference rule
system that uses the PostgreSQL catalog tables and the tree structure of the input to infer a
multitude of gory plan details.

• PostgreSQL uses object identifiers (OIDs) as primary keys for various system tables.
These OIDs are represented using an unsigned four-byte integer [Gr18a, 8.18 Object
Identifier Types]. A plan tree consists of dozens of parameters that use OIDs to
reference entries of the system tables. The inference rule system allows to use names
such as “sum” or “int4” rather than the raw numeric value of the corresponding OID.
This removes the necessity to memorize or lookup OIDs required for a plan. Also
it adds a layer of abstraction to function and operator application, as they can be
overloaded.

• Plan trees are a strongly typed data structure which means that every sub-expression
must be annotated with a type. When provided with SQL queries, most of the required
typing is achieved by the analyze module. The sophisticated type system allows to

PgCuckoo — Injecting Physical Plans into PostgreSQL 241

8 Denis Hirn

skip explicit type annotations in SQL queries most of the time. This property is lost
when an execution plan is constructed manually, however.
Using the same information from the system tables as the analyze module, our
Haskell library implements a type system for the user input language. The type system
serves multiple purposes in the inference rule system. First, it allows to infer type
information almost completely. The only exception is the construction of constant
values, which still requires explicit type annotations. Second, it is used to choose
the correct alternative of possibly overloaded functions and operators, based on the
number of arguments and their types.

These inferences ease plan construction notably, considering the fact that there are about
500 types, 800 operators, and 3000 functions in a fresh PostgreSQL 10.4 instance. Also
semantical correctness can be guaranteed as it eliminates a potential source of error.

Another option we immediately get is to use plan trees as part of regular queries. Our
PostgreSQL extension provides the table-valued SQL function plan_execute that expects
an execution plan as input and returns the rows generated by this plan. Figure 4 shows how
we can use this function to compose multiple plans into a single query. Queries that contain
such rendered plans pass through the query pipeline as usual, but the sub plan encapsulated
by the table-valued function is protected from any alterations by PostgreSQL.
SELECT a, b, a+b
FROM plan_execute(’{PLANNEDSTMT

:commandType 1 [...]
:planTree {SEQSCAN [...]}
:rtable ({RTE [...] :rtekind 0 :relid 90138 :relkind r [...])
[...]

}’) AS tbl(a INT, b INT),
plan_execute(’{PLANNEDSTMT

:commandType 1 [...]
:planTree

{AGG [...]
:lefttree {SEQSCAN [...]}
:righttree <> [...]}

:rtable ({RTE [...] :rtekind 0 :relid 90138 :relkind r [...]})
[...]

}’) AS agg(min INT)
WHERE a > min;

Fig. 4: Multiple occurrences of table-valued function plan_execute may be used to “stitch together”
plan fragments as the users sees fit.

3.3 Plan Caching

We can turn a database system into its own plan cache, by storing the textual representation of
execution plans in a table. This is an immediate result of this plan forcing approach. Instead
of statically returning a plan tree, a different planner is required, that performs a lookup
in a plan cache table. If this lookup returns a result, we can omit the standard_planner.

242 Denis Hirn

PgCuckoo 9

Otherwise, the caching planner has to call the standard_planner and add the generated
plan into the cache table. Based on the mentioned Haskell library, we additionally have the
option to prime the cache with execution plans that the original PostgreSQL query optimizer
never would have considered on its own.

4 Related Work

Some RDBMSs such as Oracle, MariaDB and SQL Server natively support optimizer hints
that can be used with SQL statements to alter execution plans. “Hints let you make decisions
usually made by the optimizer. Hints provide a mechanism to instruct the optimizer to
choose a certain query execution plan based on the specific criteria. For example, you might
know that a certain index is more selective for certain queries. Based on this information,
you might be able to choose a more efficient plan than the optimizer” [Or18, 16 Using
Optimizer Hints].

Plan forcing is comparable to optimizer hints, but their expressive strength is noticeably
weaker. While optimizer hints, for instance, allow to choose a certain join algorithm locally,
they can not be used to create artificial plan trees. The planner and a SQL query is still
required to generate a certain plan.

“Appropriate use of the right hint on the right query can improve query performance. The
exact same hint used on another query can create more problems than it solves, radically
slowing your query and leading to serve blocking and timeouts in your application [Ne11b,
p. 177]. While query hints allow you to control the behavior of the optimizer, it doesn’t
mean your choices are necessarily better than the optimizer’s choices. [. . .] Also, remember
that a hint applied today may work well but, over time, as data and statistics shift, the hint
may no longer work as expected [Ne11b, p. 181].”

SQL Server 2005 introduced the USE PLAN query hint. This allows to specify an entire
execution plan as a target to be used to optimize a query. The USE PLAN hint can force most
of the specified plan properties, including the tree structure, join order, join algorithms,
aggregations, sorting, unions, and index operations like scans [Ne11b, pp. 248-250]. This
approach is similar to ours, as it allows the execution of a serialized plan tree. However, plan
forcing in SQL Server still requires a SQL query and it is required that the plan tree can
be produced by the optimizer’s normal search strategy [Pa05]. These restrictions prevent
SQL Server from crashing when an invalid plan tree is encountered. This is not the case for
PostgreSQL. Invalid plan trees can crash the database server which results in a restart of the
service.

The pg_plan_advsr extension is another interesting use case of the planner_hook. This
extension implements a feedback loop from the executor to the planner which is used to
auto-tune plans. Normally, no run-time information of plans is fed back into the planner in
order to self optimize. By repeatedly feeding back the information about the actual execution

PgCuckoo — Injecting Physical Plans into PostgreSQL 243

10 Denis Hirn

of a plan, the error in estimation of row counts can be corrected. That affects the planning
process and the resulting plan [Ya18].

5 Closing Thoughts

We were able to add plan forcing to PostgreSQL by using a C language extension and
standard features such as the planner_hook. This demonstrates impressively how far the
envelop of PostgreSQL extensibility can be pushed. Further investigations into the various
application opportunities of plan forcing will be required. An important module we are
currently working on is another Haskell library that abstracts physical into logical algebra
plans. One application of this library will be algebraic rewriting. More specifically, we want
to use it to implement Neumann and Kemper’s unnesting rule system for PostgreSQL, as
described in Section 3.2.

References
[Ch98] Chaudhuri, S.: An Overview of Query Optimization in Relational Systems. In: Proceedings

of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. PODS ’98, ACM, Seattle, Washington, USA, pp. 34–43, 1998, isbn:
0-89791-996-3, url: http://doi.acm.org/10.1145/275487.275492.

[Co70] Codd, E. F.: A Relational Model of Data for Large Shared Data Banks -. Freuburg i.B.,
1970.

[DD03] Douglas, K.; Douglas, S.: PostgreSQL - A Comprehensive Guide to Building, Programming,
and Administering PostgresSQL Databases. Sams Publishing, Indianapolis, Indiana, 2003,
isbn: 978-0-735-71257-7.

[Gr18a] Group, T. P. G. D.: PostgreSQL 10 Documentation, 2018, url: http://www.postgresql.
org/docs/10/static/index.html, visited on: 06/25/2018.

[Gr18b] Group, T. P. G. D.: PostgreSQL 10 Source Code, 2018, url: https://www.postgresql.
org/ftp/source/v10.0/, visited on: 06/25/2018.

[Le15] Leis, V.; Gubichev, A.; Mirchev, A.; Boncz, P.; Kemper, A.; Neumann, T.: How Good
Are Query Optimizers, Really? Proc. VLDB Endow. 9/3, pp. 204–215, Nov. 2015, issn:
2150-8097, url: http://dx.doi.org/10.14778/2850583.2850594.

[Ne11a] Neumann, T.: Efficiently Compiling Efficient Query Plans for Modern Hardware. Proc.
VLDB Endow. 4/9, pp. 539–550, June 2011, issn: 2150-8097, url: http://dx.doi.org/
10.14778/2002938.2002940.

[Ne11b] Nevarez, B.: Inside the SQL Server Query Optimizer -. Red Gate Books, 2011, isbn:
978-1-906-43460-1.

[NK15] Neumann, T.; Kemper, A.: Unnesting Arbitrary Queries. In: BTW. Vol. 241. LNI, GI,
pp. 383–402, 2015.

[Or18] Oracle: Oracle Database Online Documentation, 2018, url: https://docs.oracle.com/
cd/B19306_01/server.102/b14211/hintsref.htm#i8327, visited on: 06/25/2018.

[Pa05] Patel, B. A.: Forcing Query Plans, 2005, url: https://technet.microsoft.com/en-
us/library/cc917694.aspx, visited on: 06/25/2018.

[Ya18] Yamada, T.: Auto Plan Tuning using Feedback Loop, 2018, url: https://www.postgresql.
eu/events/pgconfeu2018/schedule/session/2132- auto- plan- tuning- using-
feedback-loop/, visited on: 10/31/2018.

244 Denis Hirn

http://doi.acm.org/10.1145/275487.275492
http://www.postgresql.org/docs/10/static/index.html
http://www.postgresql.org/docs/10/static/index.html
https://www.postgresql.org/ftp/source/v10.0/
https://www.postgresql.org/ftp/source/v10.0/
http://dx.doi.org/10.14778/2850583.2850594
http://dx.doi.org/10.14778/2002938.2002940
http://dx.doi.org/10.14778/2002938.2002940
https://docs.oracle.com/cd/B19306_01/server.102/b14211/hintsref.htm#i8327
https://docs.oracle.com/cd/B19306_01/server.102/b14211/hintsref.htm#i8327
https://technet.microsoft.com/en-us/library/cc917694.aspx
https://technet.microsoft.com/en-us/library/cc917694.aspx
https://www.postgresql.eu/events/pgconfeu2018/schedule/session/2132-auto-plan-tuning-using-feedback-loop/
https://www.postgresql.eu/events/pgconfeu2018/schedule/session/2132-auto-plan-tuning-using-feedback-loop/
https://www.postgresql.eu/events/pgconfeu2018/schedule/session/2132-auto-plan-tuning-using-feedback-loop/

cba

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Policy-based Authentication and Authorization based on the
Layered Privacy Language

Sebastian Wilhelm1, Armin Gerl2

Abstract: In 2018 the General Data Protection Regulation (GDPR) has been enforced providing
a new legal framework with rules and regulations for processing personal data. The requirement
for distinguishing between purposes has been introduced, leading to the necessity of adapting
existing authentication and authorization processes. We introduce a detailed authentication and
authorization extension, which is able to verify requests on personal data based on the Layered Privacy
Language (LPL). This extension is evaluated in the form of a benchmark, utilizing the Policy-based
De-identification, to demonstrating its efficiency and suitability for data-warehouses.

Keywords: Access Control, GDPR, Privacy, Privacy Language

1 Introduction

The General Data Protection Regulation (GDPR) has been enforced in Europe since May
25th 2018 constituting Privacy by Design and Privacy by Default for all technical systems
[Co16, Art. 25]. Hereby, processing of personal data, which also includes storage of personal
data in databases and data-warehouses, requires either a legal basis or consent [Co16, Art.
6]. Furthermore, several conditions for consent have to be fulfilled, including the necessity
of the Controller demonstrating that the Data Subject consented. Consent has to be given
freely, or consent has to be differentiated according to the purposes of processing [Co16,
Art. 7, Recital 32]. Therefore, common authentication and authorization processes have to
be adapted and extended to allow a purpose-based processing of personal data to comply
with the GDPR. The Layered Privacy Language (LPL) in combination with its overarching
privacy framework intends to comply with the requirements of the GDPR to enforce privacy
policies ’from consent to processing’ [Ge18b].

The focus of this work lies in the detailing of the extension of authentication and authorization
by introducing purpose- and data-based authorization based on LPL as well as its evaluation.
The evaluation considers the scalability of this extension utilizing a benchmark.
1 Deggendorf Institute of Technology, Technology Campus Grafenau, Hauptstraße 3, D-94481 Grafenau sebastian.

wilhelm@th-deg.de
2 University of Passau, Chair of Distributed Information Systems, Innstraße 41, D-94032 Passau, armin.gerl@uni-

passau.de

cba doi:10.18420/btw2019-ws-25

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 245

https://creativecommons.org/licenses/by-sa/4.0/
sebastian.wilhelm@th-deg.de
sebastian.wilhelm@th-deg.de
armin.gerl@uni-passau.de
armin.gerl@uni-passau.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-25

2 Sebastian Wilhelm, Armin Gerl

In the following, we will give an introduction of relevant elements of LPL in section 2.
Section 3 details the authentication and authorization processes of LPL introducing purpose-
and data-based authorization, which will be evaluated in section 4. Related work is presented
in section 5. Lastly, the work is concluded and future work is outlined in section 6.

2 Layered Privacy Language (LPL)
The Layered Privacy Language (LPL) is a domain specific language, designed to model
legal privacy policies [Ge18b]. In the following, we will detail only the relevant elements
for the scope of this paper. We also want to point out, that we will not consider the UI
Extension [Ge18a] or Art. 12-14 GDPR Extension [GP18].

The root element of LPL is the LayeredPrivacyPolicy-element lpp, which has a set of
Purpose-elements p, a DataSource-element ds, as well as several attributes which are not
relevant for the scope of this work. Hereby, the DataSource-element denotes either the Data
Subject or another legal entity (e.g. a Controller) providing the data. A Purpose-element
further describes a set of DataRecipient-elements dr as well as a set of Data-elements d,
further elements and attributes are omitted for the sake of this work.

Based on LPL an overarching privacy framework is developed, which is intended to provide
both a user interface to inform the user on the privacy policy as well as the enforcement of
the policy. In general, the life-cycle of LPL consists of six steps. It starts with the Creation
step, in which the responsible data protection officer creates the LPL privacy policy. This
policy is then presented to the Data Subject during the Negotiation step, in which the
Data Subject can personalize it and eventually decides to accept or give consent to the
personalized privacy policy or not. If the privacy policy is accepted or consented to, then
the privacy policy will be validated and information about the Data Subject and its personal
data will be added during the Pre-Processing before it is stored along with the regular data
during Storage. During the Transfer step, data may be transferred to third parties under a
negotiated policy, to which then the original privacy policy will be added. Lastly, the stored
data will be processed during the Usage step, which will be the main focus in this work.

Hereby, the Policy-based De-identification process will be applied on each request for data
processing, whereas data will be de-identified as necessary, when the requesting entity is
authenticated and authorized to process the data for the specified purposes. The processes
for authentication and authorization are the focus of this work and will be detailed in the
following in the context of the Policy-based De-identification.

3 Policy-based De-Identification
A request on the Policy-based De-identification generally takes the form of the following
tuple:

request = (user Identi f ier, credential, P̂, D̂, D̂S)

246 Sebastian Wilhelm, Armin Gerl

Policy-based Authentication and Authorization based on LPL 3

Where userIdentifier is the unique identifier of the requesting user (e.g. username), credential
the credential of the user for authentication (e.g. password), P̂ the set of all requested
Purposes, D̂ the set of all requested Data and D̂S the set of all requested DataSources.

LPL now defines four steps for this process of inspecting which Data the Data Recipient is
allowed to request:

1. Entity-Authentication. Verify the authenticity of the requesting entity.

2. Purpose-Authorization. Get all Child-Purposes P̂child of the requested Purposes
̂Prequested and consider which Purposes are relevant.

3. Entity-Authorization. Verify if the requesting entity (Data Recipient) is authorized
to request the Purposes ̂Prequested (or P̂child).

4. Data-Authorization. Verify whether it is allowed to request the requested Data D̂ of
the requested Data Sources D̂S with the authorized Purposes ̂Pauthorized .

The result of the de-identification process can be described as follows:

resultset = (ŜD); SD = (dataSource, D̂P); DP = (data, P̂result)

Where dataSource is a DataSource-element, data a requested and authorized Data-element,
and P̂result is the set of all relevant Purposes for a specific Data-element for a specific Data
Source-element which are authorized. DP maps all relevant Purposes to a Data-element
and SD maps this Data-Purpose Maps to a specific Data Source-element. The four steps of
the Policy-based De-identification will be detailed in the following.

3.1 Entity-Authentication

The Entity-Authentication process has the task of verifying the identity of a Data Recipient.
It will be inspected if the requesting entity is known3. Then the entity authentication
will be conducted, based on the configured authentication method. A request on the
Entity-Authentication has generally the form of the following tuple:

request = (user Identi f ier, credential)

The module verifies if the handed userIdentifier and the credential belongs together. Some
different authentication methods are possible (e.g. hashed passwords or OAuth). The result
of Entity-Authentication is the authenticated DataRecipient-element drauth .

3 Basically, an entity is stored in the data-storage (e.g. database). But there can be some special cases when entities
are known but not stored in the data-storage (e.g. for some API-keys)

Policy-based Authentication and Authorization 247

4 Sebastian Wilhelm, Armin Gerl

3.2 Purpose-Authorization

The Purpose-Authorization process has the task of gathering all authorized Purposes
for a specific request. Each Purpose p can have Child-Purposes P̂child. Contrary to the
original definition in [Ge18b], it will be allowed that a Child-Purpose inherits from two (or
more) Parent-Purposes. This change in definition should provide the framework with more
flexibility. It is important, that no cycles in the definition of the Purposes exists.

A Purpose p is relevant for a DataSource-element ds if it (or one of its Parent-Purposes) is
part of the privacy policy of the Data Source. If a Purpose is mentioned in at least one of
the requested DataSource-elements DS, it is relevant for the current request. A request on
Purpose-Authorization has generally the form of the following tuple:

request = (̂Prequested, ̂DSrequested)

Where ̂Prequested is the set of all requested Purpose-elements and ̂DSrequested is the set
of all requested DataSource-elements. The module initially receives all inherited child
Purpose-elements P̂child of the requested Purpose-elements ̂Prequested and then maps to
each of the inherited child Purpose-elements Pchild all DataSource-elements for which this
specific Purpose-element is relevant. Finally, all elements from P̂child , which do not have
mapped any DataSource-elements, will be removed. The result of the Purpose-Authorization
can be described as follows:

resultset = (P̂D); PD = (p, Ê)

Where p is the Purpose-element and Ê is the set of DataSource-elements for which the
corresponding Purpose-element is relevant.

3.3 Entity-Authorization

The Entity-Authorization process verifies whether a DataRecipient dr is authorized for
requesting a set of Purposes P̂. Each Entity e can have Child-Entities Êchild . So, the Entity e
can inherit the rights for requesting Purposes from its Child-Entities Êchild . It is important,
that no cycles in the definition of the Entities exists.

A DataRecipient dr is allowed to request a specific Purpose p if the DataRecipient dr or
at least one of its children D̂Rchild is authorized for using the Purpose p. A request on
Entity-Authorization has generally the form of the following tuple:

request = (dr, ̂Prelevant, ̂Prequested)

248 Sebastian Wilhelm, Armin Gerl

Policy-based Authentication and Authorization based on LPL 5

Where dr is the DataRecipient, ̂Prelevant is the set of all relevant Purposes and ̂Prequested 4

is the set of all requested Purposes. The result of Entity-Authorization is a set of all relevant
Purposes for which the Data Recipient is authorized.

3.4 Data-Authorization

Data-Authorization verifies whether it is allowed to request the Data D̂ of the DataSource-
elements D̂S with the authorized Purposes P̂aut . For each Purpose p it is defined which
Data elements D̂ are allowed to be requested for the Purpose p and for each Data Source ds
Purposes are defined to be used. The result of Purpose-Authorization has already mapped
each requested DataSource-element D̂S to its relevant Purposes. The Data-Authorization
now has to reorder the map and get for each requested DataSource ds and each requested
Data element d a set of possible Purposes. A request on Data-Authorization has generally
the form of the following tuple:

request = (D̂, D̂S, P̂aut)

Where D̂ is the set of all requested Data, D̂S is the set of all requested DataSources and
P̂aut ist the set of all authorized Purposes. Basically, the module reorder the data D̂, D̂S
and P̂aut so that they are in the form of the resultset. Some different configurations of
Data-Authorization are possible (e.g. return only data which are permitted for all requested
Data Source elements). The result of the Data-Authorization can be described as follows:

resultset = (ŜDP); SDP = (ds, D̂P); DP = (d, P̂)

Where p is the Purpose-element, ds the DataSource-element, d the Data-element and Ê the
set of entities for which the corresponding Purpose-element is relevant.

4 Benchmark-Evaluation

We implemented the steps Entity-Authentication, Purpose-Authorization, Entity-
Authorization and Data-Authorization on the basis of section 3 in JAVA and verified
the functionality with unit tests, to measure the execution times of the individual steps
depending on the input variables (e.g. number of purposes) to determine the efficiency of the
Policy-based De-identification. It is not the goal to be able to calculate the detailed execution
times of specific requests on a dataset with specific parameters rather it is important for
using the Layered Privacy Language on data-warehouses to ensure that the concept is
scaleable. In this section, execution times are analyzed, time intensive processes and method
are to be found and if necessary and possible, improved or possible improvements found.

4 ̂Prequested will be needed for a specific system configuration where will be considered if the permission on
at least on of the requested Purposes ̂Prequested is missing.

Policy-based Authentication and Authorization 249

6 Sebastian Wilhelm, Armin Gerl

The execution time of a request basically depends on the system-configuration (e.g. type of
entity authentication), the amount and dependencies of the data in the data-storage (e.g.
number of possible Data Subjects) and the amount of the requested Data Sources, Data and
Purposes. The goal is now to measure and compare the execution times of the individual
steps while varying the individual parameters. For this purpose, it is necessary to implement
a Benchmark Test Suite which tests all possible system configurations by entering the
parameters for the data store and the requested data and then saves the individual execution
times. For this the Mockito framework is used, to mock the interface to the persistence layer.
Specifically, we determine the parameters in Tab. 1.

PurposeAmount: Amount of different Purposes, which are predetermined.
PurposeBranchning: Degree of branching of the Purposes with each other.
DataSourceNumber: Amount of different entities to which Data are stored.
PurposePerLpp: Amount of Purposes for which a single entity has consented to.
DataNumber: Value determining the amount of Data elements.
DataPerPurpose: Value determining the amount of Data elements which can be

requested with a single, specific Purpose.
DataRecipientAmount: Amount of entities which are authorized to request data.
RecipientBranching: Degree of branching of the Data Recipients.
PurposePerRecipient: Amount of Purposes for which a single Data Recipient is authorized.
RequestedPurposes: Amount of requested Purposes.
RequestedData: Amount of different requested Data elements.
RequestedDataSource: Amount of requested Data Sources.

Tab. 1: Configuration parameters for benchmark evaluation.

The Benchmark Test Suite first mocks the complete data store5 of the system depending
on the configuration parameters. From this mocked objects, data (Purposes, Data, Data
Sources) are determined, again depending on the configuration parameters, which should be
used for a request to the system. This request then will be executed for every possible system
configuration, measuring how much time each step will take. Finally, all measurements are
stored in a separate, external database. All tests were executed on a MacBook Pro (13 inch,
Mid 2012) with the operating system macOS High Sierra (10.13.3), a 2,5 GHz Intel Core i5
processor and 16 GB 1600 MHz DDR3 random access memory.

The measurements were analyzed by comparing the change of the execution times by
varying one single configuration parameter at a time. Tab. 2 shows an example of such
values. With this (and further) measurements it was possible to approximate algorithms to
determine a dependency on the varied configuration parameter.

It can be observed that Entity-Authentication is affected by DataRecipientAmount, Purpose-
Authorization is affected by PurposeAmount, DataSourceNumber, PurposePerLPP, Request-
edPurposes and RequestedDataSource, Entity-Authorization is affected by PurposeAmount,
DataSourceNumber, PurposePerLPP and DataRecipientAmount, Data-Authorization is af-

5 The persistence-layer of the system, holing the relevant user and meta data for the Layered Privacy Language.

250 Sebastian Wilhelm, Armin Gerl

Policy-based Authentication and Authorization based on LPL 7

RequestedDataSource 1 100 250 500 1000

Entity Authentication 0.38 0.38 0.5 0.41 0.37
Purpose Authorization 110.76 251.21 494.89 878.67 1675.47
Entity Authorization 1,59 1.84 1.82 1.89 1.88
Data Authorization 0.77 0.72 0.85 0.73 0.68
Total 113.6 254.25 498.16 881.84 1678.51

Tab. 2: Measured execution time in ms of the individual steps on varying the RequestedDataSource.

Entity-
Authentication

Purpose-
Authorization

Entity-
Authorization

Data-
Authorization

PurposeAmount X X
PurposeBranching
DataSourceNumber X X
PurposePerLpp X X
DataNumber X
DataPerPurpose X
DataRecipientAmount X X
RecipientBranching
RequestedPurposes X X
RequestedData X
RequestedDataSource X

Tab. 3: Relevance of the individual benchmark test parameters to the different steps.

Policy-based Authentication and Authorization 251

8 Sebastian Wilhelm, Armin Gerl

fected by DataNumber, DataPerPurpose, RequestedPurposes and RequestedData (seeTab.
3). In summary, it could be observed that each of the benchmark parameters has at a
maximum a linear effect on the execution time of the steps. This ensures scalability.

However, the parameters DataSourceNumber, RequestedPurposes and RequestedData-
Sources are noteworthy since they already have an execution time >100ms in some tested
scenarios. Which is unacceptable for a system that is intended to work in real-time, therefore
further investigation research was executed.

In the following, the parameter RequestedDataSources is exemplary further analyzed.The
measured values of the benchmark evaluation indicate the RequestedDataSource parameter
has a direct, linear effect on the execution time of Purpose Authorization.

tpurposeAuthorization =1, 5708ms ∗ RequestedDataSources + 100.69ms

The value RequestedDataSources determines the number of DataSource-elements from
which data should be queried. A request of 10.000 elements and even bigger numbers are
normal in data-warehouse scenario (e.g. for generating a statistic). With the given formula,
we already get the execution times for a RequestedDataSource of 10.000.

tpurposeAuthorization = 15808.69ms

These execution times for the step of PurposeAuthorization is not acceptable for a real-time
system. In order to optimize the software design, additional measurements were taken and
analyzed.

Put all requested and inherited Purposes to the key-set 7 ms
of which executing getInheritedPurposes 7 ms
Put the Data Sources to the relevant Purposes 1289 ms
of which executing getLppRelevantPurposes 1278 ms
Getting all not relevant Purposes of the key-set <1 ms
Remove all not relevant Purposes from the result map <1 ms
Total execution time 1296 ms

Tab. 4: Detailed measured execution times of Purpose-Authorization for the benchmark test parameter
RequestedDataSource.

From the 1296 ms execution time of the step Purpose-Authorization, are 1286 ms waiting
for methods of other modules (PurposeRequestManager - the mocked persistence layer).
The pure computing time required by this step is approximately 10 ms.

Thus, we note that the high measured execution times of the RequestedDataSource pa-
rameter are due only to the time Mockito takes to process the getInheritedPurposes and
getLppRelevantPurposes methods. Further optimization of Purpose-Authorization does not
seem necessary to solve the original problem of long execution times for a high amount of
RequestedDataSource. By connecting the implementation to a high-performance persistence
layer, the execution time of the steps promise to be within an acceptable range. This

252 Sebastian Wilhelm, Armin Gerl

Policy-based Authentication and Authorization based on LPL 9

determination can analogously be transferred to the parameters DataSourceNumber and
RequestedPurposes.

In summary, it can thus be stated that the measured execution times are very much influenced
Mockito, and that queries can be processed even faster by a high-performance persistence
layer. The aim of this section 4, however, was merely to show that the implementation can
also be used in large systems and is scalable. This could be demonstrated.

5 Related Work

Data protection and purpose-based storage and processing of personal data is not a new field
of research. Thereby, some privacy languages were already proposed, each with their own
distinct application [Ge18b]. In the context of authentication and authorization amongst
other the privacy languages AIR [Kh10], DORIS [BB88], E-P3P [As02], P2U [IV14], P3P
[Cr06], Ponder [SLL01], Primelife policy language [Ar09], Rei [Ka02], SecPAL [BFG10],
SPECIAL [Ki18], XACL [BCF04], are worth mentioning.

But also in the context of database systems, purpose-based authorization has been introduced
in Hippocratic Databases [Ag02], which we will detail in the following. In contrast to the
Layered Privacy Language, the Hippocratic Database design is not to be considered as fixed
technology or framework [vTJ11], but as a vision of a database system that implements
the principles of Purpose Specification, Consent, Limited Collection, Limited Use, Limited
Disclosure, Limited Retention, Accuracy, Safety, Openness and Compliance. In the concept
of Hippocratic Databases, analogues to the Layered Privacy Language, Purposes are the
central component. For the stored data, the Purposes is attached, which is relevant for this
record, for example we look at the schema of Tab. 5. In contrast to the Layered Privacy

purpose customer id name email

Tab. 5: Database Schema for Hippocratic Database.

Language, the Entity-Authentication is not part of the Hippocratic Database concept.
Furthermore, the Layered Privacy Language promises a more flexible Data-Authorization
with different configuration parameters (e.g. return only consented data from Data Subjects)
and so a more flexible usage of the framework.

6 Conclusion

The Layered Privacy Language defines six steps to privacy-preserving process data -
Entity-Authentication, Purpose-Authorization, Entity-Authorization, Data-Authorization,
Minimum Anonymization and Application of Privacy Model. The first four steps are detailed
and evaluated in this work. The benchmark evaluation shows that the implemented modules

Policy-based Authentication and Authorization 253

10 Sebastian Wilhelm, Armin Gerl

are scalable and capable of processing complex requests (many requested data, extensive
data storage) efficient, which depends on an efficient backend.

For future works the remaining steps of the Policy-based De-identification process will
be evaluated, showing the introduced overhead of the policy processing against the de-
identification solely. Furthermore, we plan to introduce pseudonymization capabilities
utilitzing tokenization methodology in both LPL as well as the Policy-based De-identification
process. Another concern is the possibility of privacy inference that has to be detected and
prevented due to consecutive requests. Lastly, different scenarii, concerning relevant privacy
use cases, will be defined and used to evaluate the complete Policy-based De-identification
process based on LPL.

References
[Ag02] Agrawal, Rakesh; Kiernan, Jerry; Srikant, Ramakrishnan; Xu, Yirong: Hippocratic Databases.

In: Proceedings of the 28th International Conference on Very Large Data Bases. VLDB ’02.
VLDB Endowment, pp. 143–154, 2002.

[Ar09] Ardagna, Claudio A; Bussard, Laurent; De Capitani di Vimercati, Sabrina; Neven, Gregory;
Pedrini, E; Paraboschi, S; Preiss, F; Samarati, P; Trabelsi, S; Verdicchio, M: Primelife policy
language. In: W3C Workshop on Access Control Application Scenarios. W3C, 2009.

[As02] Ashley, Paul; Hada, Satoshi; Karjoth, Günter; Schunter, Matthias: E-P3P privacy policies
and privacy authorization. In: Proceeding of the ACM workshop on Privacy in the Electronic
Society - WPES '02. ACM Press, 2002.

[BB88] Biskup, Joachim; Brüggeman, Hans Hermann: The personal model of data:. Computers &
Security, 7(6):575–597, dec 1988.

[BCF04] Bertino, Elisa; Carminati, Barbara; Ferrari, Elena: Access control for XML documents and
data. Information Security Technical Report, 9(3):19–34, jul 2004.

[BFG10] Becker, Moritz Y.; Fournet, Cédric; Gordon, Andrew D.: SecPAL: Design and Semantics
of a Decentralized Authorization Language. J. Comput. Secur., 18(4):619–665, December
2010.

[Co16] Council of the European Union: , General Data Protection Regulation, April 2016. Regulation
(EU) 2016 of the European Parliament and of the Council of on the protection of natural
persons with regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC.

[Cr06] Cranor, Lorrie; Dobbs, Brooks; Egelman, Serge; Hogben, Giles; Humphrey, Jack; Langhein-
rich, Marc; Marchiori, Massimo; Presler-Marshall, Martin; Reagle, Joseph M.; Schunter,
Matthias; Stampley, David A.; Wenning, Rigo: , The Platform for Privacy Preferences
1.1 (P3P1.1) Specification. World Wide Web Consortium, Note NOTE-P3P11-20061113,
November 2006.

[Ge18a] Gerl, Armin: Extending Layered Privacy Language to Support Privacy Icons for a Personal
Privacy Policy User Interface. In: Proceedings of British HCI 2018. BCS Learning and
Development Ltd., Belfast, UK, p. 5, 2018.

254 Sebastian Wilhelm, Armin Gerl

Policy-based Authentication and Authorization based on LPL 11

[Ge18b] Gerl, Armin; Bennani, Nadia; Kosch, Harald; Brunie, Lionel: LPL, Towards a GDPR-
Compliant Privacy Language: Formal Definition and Usage. volume Transactions on
Large-Scale Databases and Knowledge-Centered Systems (TLDKS) of Lecture Notes in
Computer Science (LNCS) 10940. Springer-Verlag GmbH Germany, part of Springer Nature
2018, chapter 2, pp. 1–40, 2018.

[GP18] Gerl, Armin; Pohl, Dirk: Critical Analysis of LPL according to Articles 12 - 14 of the GDPR.
In: Proceedings of International Conference on Availability, Reliability and Security. ARES
2018, Hamburg, Germany, p. 9, August 2018.

[IV14] Iyilade, Johnson; Vassileva, Julita: P2U: A Privacy Policy Specification Language for
Secondary Data Sharing and Usage. In: Proceedings of the 2014 IEEE Security and Privacy
Workshops. SPW ’14, IEEE Computer Society, Washington, DC, USA, pp. 18–22, 2014.

[Ka02] Kagal, Lalana: Rei: A Policy Language for the Me-Centric Project. Technical report, HP
Laboratories Palo Alto, 2002.

[Kh10] Khandelwal, Ankesh; Bao, Jie; Kagal, Lalana; Jacobi, Ian; Ding, Li; Hendler, James:
Analyzing the AIR Language: A Semantic Web (Production) Rule Language. In (Hitzler,
Pascal; Lukasiewicz, Thomas, eds): Web Reasoning and Rule Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 58–72, 2010.

[Ki18] Kirrane, Sabrina; Fernández, Javier D.; Dullaert, Wouter; Milosevic, Uros; Polleres, Axel;
Bonatti, Piero A.; Wenning, Rigo; Drozd, Olha; Raschke, Philip: A Scalable Consent,
Transparency and Compliance Architecture. In: Lecture Notes in Computer Science, pp.
131–136. Springer International Publishing, 2018.

[SLL01] Sloman, Morris; Lobo, Jorge; Lupu, Emil, eds. POLICY ’01: Proceedings of the International
Workshop on Policies for Distributed Systems and Networks, London, UK, UK, 2001.
Springer-Verlag.

[vTJ11] van Tilborg, Henk C. A.; Jajodia, Sushil: Optimal Extension Fields (OEFs). In: Encyclopedia
of Cryptography and Security. Springer US, Boston, MA, pp. 888–890, 2011.

Policy-based Authentication and Authorization 255

Tutorienprogramm

cbe

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Tutorial: Data Analytics with Graph Algorithms — A
Hands-on Tutorial with Neo4J

Lena Wiese1

Abstract: This tutorial presents perspectives for advanced graph data analytics and covers the
background of graph data management in modern data stores. It provides an overview of several
well-established graph algorithms. The three categories covered are path-based algorithms, community
detection and centrality scores. A deeper understanding of graph algorithms is a major precondition
to efficiently analyze graph-structured data. The tutorial hence enables participants to achieve an
informed decision about what kind of algorithm is appropriate for which use case.

1 Introduction

Many scientists as well as practitioners work with graph-structured data. Such data often
occur in many modern data science applications. Graph theory offers different variants of
graph algorithms as well as many optimizations for them. Often it is however difficult to
assess which algorithms will be applicable to specific use cases.

2 Outline

The tutorial will proceed in the following steps.

Background Graph data are predominant in many applications like medicine and biology,
social networks, the internet and the semantic web. We present several of these applications
to highlight the importance of graph data management and analytics.

Graph theory This topic explains some basics of graph theory. Having presented several
choices for graph data structures (from adjacency matrix to incidence list), it describes the
predominant data model for graph databases: the property graph model.
1 University of Goettingen, Institute of Computer Science , Goldschmidtstraße 7, 37077 Göttingen, wiese@cs.

uni-goettingen.de

cba doi:10.18420/btw2019-ws-26

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 259

https://creativecommons.org/licenses/by-nc/3.0/
wiese@cs.uni-goettingen.de
wiese@cs.uni-goettingen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-26

2 Lena Wiese

The graph database The Neo4J graph database is a world-leading open source graph
database. Its declarative query language Cypher makes graph data management convenient
even for novice users. The database offers built-in visualization and implementations of
all covered graph algorithms. In order to gain first practical experiences with the database,
Neo4J offers an online sandbox [Sa] including the graph algorithm library.

Graph algorithms The following categories of graph algorithms will be presented:

• Path-based algorithms find optimal traversals of the graph. We will cover Minimum
Weight Spanning Tree as well as Shortest Path.

• Community Detection algorithms identify clusters of nodes in the graph and assess
the quality of these clusters. We will cover Label Propagation, Louvain, Weakly and
Strongly Connected Components and Triangle Count.

• Centralities are algorithms that assign a score to each node in the graph. These scores
help identify those nodes most important for certain applications. We will cover Page
Rank, Betweenness Centrality as well as Closeness Centrality.

All presented algorithms will be visualized with appropriate examples in the Neo4J database.

3 Related Work

Theoretical exposition of the graph algorithms will be based on Chapter 5 and Chapter 10
of [LRU14]. Hands-on examples with the Neo4J database are based on [Co] and [NH19].
Background on graph data structures and graph databases will be based on [Wi15].

4 Speaker’s Biography

Dr. Lena Wiese is head of the research group Knowledge Engineering and lecturer at
the Georg August University Göttingen. She has been teaching advanced courses on data
management and database technology for several years at both graduate and undergraduate
level. The Neo4J database is used in these courses as a convenient test environment. She is
author of the book “Advanced Data Management for SQL, NoSQL, Cloud and Distributed
Databases” (DeGruyter/Oldenbourg, 2015) [Wi15]. She holds a PhD from the University of
Dortmund and worked as a postdoctoral researcher at the Japanese National Institute of
Informatics in Tokyo. She acts as a reviewer for international conferences and journals on a
regular basis.

260 Lena Wiese

Data Analytics with Graph Algorithms 3

References
[LRU14] Leskovec, Jure; Rajaraman, Anand; Ullman, Jeffrey David: Mining of massive datasets.

Cambridge university press, 2014.

[Nea] Neo4J Committers: , Neo4j Graph Algorithms User Guide. https://neo4j.com/docs/
graph-algorithms/current/.

[Neb] Neo4J Sandbox: . https://neo4j.com/sandbox-v2/.

[NH19] Needham, Mark; Hodler, Amy E.: Graph Algorithms: Practical Examples in Apache Spark
and Neo4j. O’Reilly, 2019.

[Wi15] Wiese, Lena: Advanced Data Management for SQL, NoSQL, Cloud and Distributed
Databases. DeGruyter, 2015.

Data Analytics with Graph Algorithms — A Hands-on Tutorial with Neo4J 261

https://neo4j.com/docs/graph-algorithms/current/
https://neo4j.com/docs/graph-algorithms/current/
https://neo4j.com/sandbox-v2/

cbe

Andreas Heuer et al. (Hrsg.): BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

StaRAI or StaRDB?

A Tutorial on Statistical Relational AI

Tanya Braun1

Abstract: This tutorial aims at connecting databases and statical relational AI (StaRAI), demonstrating
how database systems can benefit from methods developed within StaRAI, e.g., for implementing
efficient systems combining databases and StaRAI. Thus, the goal of this tutorial is two-fold: (i) Present
an overview of methods within StaRAI. (ii) Provide a forum to members of both communities for
exchanging ideas.

Keywords: Statistical Relational AI, Probabilistic Relational Models, Probabilistic Inference

1 Introduction

In recent years, a need for compact representations of large relational databases became
apparent, e.g., in natural language understanding or decision making. Using inductive logic
programming (ILP), one can build a model of a database, allowing for a crisp reproduction
of data. Another idea is to build a so called factor graph model of data and introduce a
probability distribution to reproduce data approximately. Such a model defines an intensional
representation of a probabilistic database. A factor graph model uses parameterised variables
similarly to the variables in ILP to compactly represent relations and objects. Grounding
such a model incurs an exponential blowup and makes inference infeasible. Instead of
grounding out a model, one can answer queries on the model directly and in a scalable way.

This tutorial aims at connecting databases and statical relational AI (StaRAI), demonstrating
how database systems can benefit from methods developed within StaRAI with the goal of
implementing efficient systems for probabilistic inference. Thus, the goal of this tutorial
is two-fold: (i) Present an overview of methods within StaRAI. (ii) Provide a forum to
members of both communities for exchanging ideas.

This tutorial provides an overview of the approaches towards probabilistic relational
modelling, looking at applications, semantics, and inference problems. The main part dives
into algorithms developed to scale inference in probabilistic relational models, highlighting
where database systems connect in our quest for efficient implementations for large data
sets. Slides are available at https://www.ifis.uni-luebeck.de/index.php?id=597.
1 Universität zu Lübeck, Institut für Informationssysteme, Ratzeburger Allee 160, 23562 Lübeck, braun@ifis.uni-

luebeck.de

cba doi:10.18420/btw2019-ws-27

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 263

https://creativecommons.org/licenses/by-nc/3.0/
https://www.ifis.uni-luebeck.de/index.php?id=597
braun@ifis.uni-luebeck.de
braun@ifis.uni-luebeck.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-27

2 Tanya Braun

2 Probabilistic Relational Modelling

Applications of probabilistic relational modelling range from information retrieval to
predicting network attacks, often requiring some form of query answering (QA). As early
as 1995, Fuhr presents Probabilistic Datalog for information retrieval [Fu95]. In 2017,
Muñoz-González et al. use Bayesian networks for network analysis [Mu17]. While the
range of application areas is wide, the areas have all in common that QA requires proper
probabilistic reasoning which brings along scalability issues, especially under grounding
semantics [Sa95]. In a complementary approach, one is interested to lift ground instances
into a first-order or template representation and answer queries exploiting the first-order
structure during calculations [Po03]. Lifted representations allow for modelling relations
between objects under uncertainty.

Of course, there is not only the question of how to model a scenario but what semantics to link
with a model. The above mentioned grounding semantics defines a discrete joint distribution
based on factors. Various frameworks, such as the above mentioned Probabilistic Datalog or
ProbLog [RKT07] use grounding semantics, including lifted approaches [Po03, RD06]. For
continuous domains, probabilistic soft logic defines a density function using a log-linear
model [BMG10]. Maximum-entropy semantics allow for partially specifying discrete joints,
which are then completed uniformly [Th10].

The inference problems full into two categories, static or dynamic, where dynamic refers to
modelling a sequential or temporal process. In the static case, the inference tasks consist
of (i) projection (margins), (ii) most-probable explanation (MPE), and (iii) maximum a
posteriori (MAP). In the dynamic case, the inference problems are (i) filtering (present),
(ii) prediction (future), (iii) hindsight (past), and (iv) MPE/MAP (temporal sequence). The
main part, regarding scalability through lifting, focuses on solving static and dynamic
inference tasks within the parfactor modelling framework first introduced by Poole [Po03].

3 Scalability by Lifting

Lifting for inference has lead to the development of a range of representation formalisms
such as parfactor models [Po03] and Markov logic networks [RD06], lifting propositional
representations, e.g., Bayesian networks, factor graphs, or Markov networks. There exist
approaches for learning lifted representations, a prominent one being the colouring algorithm
by Ahmadi et al. [Ah13]. Learning lifted representations is a subject deserving of a tutorial of
its own. This tutorial concentrates on efficient inference algorithms for lifted representations.

Inference algorithms take a lifted representation as input and answer queries efficiently by
exploiting the first-order structures in the representations. Similar to lifting propositional
models, researchers have lifted algorithms that work for propositional models to work
for lifted models. From a more logical inference perspective, there exist lifted versions
[VMD14] of knowledge compilation [DM02] or theorem proving [GD11], all based on

264 Tanya Braun

StaRAI or StaRDB? 3

weighted model counting. Approximate lifted inference include lifted versions of belief
propagation [SD08, Ah13] as well as lifted sampling approaches [GD11, FV18].

From the area of probabilistic exact inference, variable elimination (VE) is a standard
algorithm for answering queries on static models [ZP94]. The junction tree algorithm (JT)
builds a helper structure, called a junction tree, to efficiently answer a set of queries on a
static model, incorporating VE as a subroutine [LS88]. The interface algorithm (IA) uses
the junction tree idea to formalise an efficient algorithm for answering a set of queries on a
dynamic model [Mu02]. For each algorithm, lifted counterparts exist, allowing for runtimes
no longer depending exponentially on domain sizes, i.e., number of objects in a model. Lifted
VE (LVE) avoids duplicate calculations by performing a calculation once for a representative
instance and then incorporating the isomorphic instances [Po03, dSBAR05, Mi08, Ta13].
The lifted junction tree algorithm (LJT) builds a lifted junction tree representation, which
enables LJT to use LVE as a subroutine [BM16]. The lifted dynamic junction tree algorithm
is based on IA and LJT, combining the idea behind the interface algorithm and lifted
junction trees [GBM18].

In this tutorial, we take a look at the given formalisms and algorithms through examples,
investigating possible links to database systems in a quest for an efficient implementation of
StaRAI algorithms in database systems.

References
[Ah13] Ahmadi, Babak; Kersting, Kristian; Mladenov, Martin; Natarajan, Sriraam: Exploiting

Symmetries for Scaling Loopy Belief Propagation and Relational Training. Machine
Learning, 92(1):91–132, 2013.

[BM16] Braun, Tanya; Möller, Ralf: Lifted Junction Tree Algorithm. In: Proc. of KI 2016:
Advances in Artificial Intelligence. Springer, pp. 30–42, 2016.

[BMG10] Bröcheler, Matthias; Mihalkova, Lilyana; Getoor, Lise: Probabilistic Similarity Logic.
In: UAI-10 Proc. of the 26th Conf. on Uncertainty in Artificial Intelligence. pp. 73–82,
2010.

[DM02] Darwiche, Adnan; Marquis, Pierre: A Knowledge Compilation Map. Journal of Artificial
Intelligence Research, 17(1):229–264, 2002.

[dSBAR05] de Salvo Braz, Rodrigo; Amir, Eyal; Roth, Dan: Lifted First-order Probabilistic Inference.
In: IJCAI-05 Proc. of the 19th International Joint Conf. on Artificial Intelligence. IJCAI
Organization, pp. 1319–1325, 2005.

[Fu95] Fuhr, Norbert: Probabilistic Datalog - A Logic for Powerful Retrieval Methods. In:
SIGIR-95 Proc. of the 18th Annual International ACM SIGIR Conf. on Research and
Development in Information Retrieval. pp. 282–290, 1995.

[FV18] Friedman, Tal; Van den Broeck, Guy: Approximate Knowledge Compilation by Online
Collapsed Importance Sampling. In: NIPS-18 Advances in Neural Information Processing
Systems 31. Curran Associates, Inc., pp. 8034–8044, 2018.

StaRAI or StaRDB? — A Tutorial on Statistical Relational AI 265

4 Tanya Braun

[GBM18] Gehrke, Marcel; Braun, Tanya; Möller, Ralf: Lifted Dynamic Junction Tree Algorithm.
In: Proc. of the International Conf. on Conceptual Structures. Springer, pp. 55–69, 2018.

[GD11] Gogate, Vibhav; Domingos, Pedro: Probabilistic Theorem Proving. In: UAI-11 Proc. of
the 27th Conf. on Uncertainty in Artificial Intelligence. pp. 256–265, 2011.

[LS88] Lauritzen, Steffen L.; Spiegelhalter, David J.: Local Computations with Probabilities on
Graphical Structures and Their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B: Methodological, 50:157–224, 1988.

[Mi08] Milch, Brian; Zettelmoyer, Luke S.; Kersting, Kristian; Haimes, Michael; Kaelbling,
Leslie Pack: Lifted Probabilistic Inference with Counting Formulas. In: AAAI-08 Proc.
of the 23rd AAAI Conf. on Artificial Intelligence. AAAI Press, pp. 1062–1068, 2008.

[Mu02] Murphy, Kevin Patrick: Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, University of California, Berkeley, 2002.

[Mu17] Muñoz-González, Luis; Sgandurra, Daniele; Barrère, Martín; Lupu, Emil C.: Exact
Inference Techniques for the Analysis of Bayesian Attack Graphs. IEEE Transactions on
Dependable and Secure Computing, PP(99):1–14, 2017.

[Po03] Poole, David: First-order Probabilistic Inference. In: IJCAI-03 Proc. of the 18th
International Joint Conf. on Artificial Intelligence. IJCAI Organization, pp. 985–991,
2003.

[RD06] Richardson, Matthew; Domingos, Pedro: Markov Logic Networks. Machine Learning,
62(1-2):107–136, 2006.

[RKT07] Raedt, Luc De; Kimmig, Angelika; Toivonen, Hannu: ProbLog: A Probabilistic Prolog
and its Application in Link Discovery. In: IJCAI-07 Proc. of 20th International Joint
Conf. on Artificial Intelligence. IJCAI Organization, pp. 2062–2467, 2007.

[Sa95] Sato, Taisuke: A Statistical Learning Method for Logic Programs with Distribution
Semantics. In: Proc. of the 12th International Conf. on Logic Programming. MIT Press,
pp. 715–729, 1995.

[SD08] Singla, Parag; Domingos, Pedro: Lifted First-order Belief Propagation. In: AAAI-08
Proc. of the 23rd AAAI Conf. on Artificial Intelligence. AAAI Press, pp. 1094–1099,
2008.

[Ta13] Taghipour, Nima; Fierens, Daan; Davis, Jesse; Blockeel, Hendrik: Lifted Variable
Elimination: Decoupling the Operators from the Constraint Language. Journal of
Artificial Intelligence Research, 47(1):393–439, 2013.

[Th10] Thimm, Matthias; Finthammer, Marc; Loh, Sebastian; Kern-Isberner, Gebriele; Beierle,
Christoph: A System for Relational Probabilistic Reasoning on Maximum Entropy.
In: FLAIRS-10 Proc. of the 23rd International Florida Artificial Intelligence Research
Society Conf. pp. 116–121, 2010.

[VMD14] Van den Broeck, Guy; Meert, Wannes; Darwiche, Adnan: Skolemisation for Weighted
First-order Model Counting. In: KR-14 Proc. of the 14th International Conf. on Principles
of Knowledge Representation and Reasoning. AAAI Press, pp. 111–120, 2014.

[ZP94] Zhang, Nevin L.; Poole, David: A Simple Approach to Bayesian Network Computations.
In: Proc. of the 10th Canadian Conf. on Artificial Intelligence. Springer, pp. 171–178,
1994.

266 Tanya Braun

cba

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

NoSQL & Real-Time Data Management in Research &
Practice

Wolfram Wingerath1, Felix Gessert2, Norbert Ritter3

Abstract: Users have come to expect reactivity from mobile and web applications, i.e. they assume
that changes made by other users become visible immediately. However, developers are challenged
with building reactive applications on top of traditional pull-oriented databases, because they are
ill-equipped to push new information to the client. Systems for data stream management and processing,
on the other hand, are natively push-oriented and thus facilitate reactive behavior, but they do not
follow the same collection-based semantics as traditional databases: Instead of database collections,
stream-oriented systems are based on a notion of potentially unbounded sequences of data items. In this
tutorial, we survey and categorize the system space between pull-oriented databases and push-oriented
stream management systems, using their respectively facilitated means of data retrieval as a reference
point. We start with an in-depth survey of the most relevant NoSQL databases to provide a comparative
classification and highlight open challenges. To this end, we analyze the approach of each system
to derive its scalability, availability, consistency, data modeling, and querying characteristics. We
present how each system’s design is governed by a central set of trade-offs over irreconcilable system
properties. We then cover recent research results in distributed data management to illustrate that
some shortcomings of NoSQL systems could already be solved in practice, whereas other NoSQL
data management problems pose interesting and unsolved research challenges. A particular emphasis
lies on the novel system class of real-time databases which combine the push-based access paradigm
of stream-oriented systems with the collection-based query semantics of traditional databases. We
explore why real-time databases deserve distinction in a separate system class and dissect their
different architectures to highlight issues, derive open challenges, and discuss avenues for addressing
them.

Keywords: Real-Time Databases, NoSQL, Scalability, Distributed Systems, High Availability,
Polyglot Persistence, Stream Processing, Cloud Data Management, Big Data, Push-Based Data Access

1 Introduction

The design of any data management system reflects a bias towards either pull-based or
push-based data access: A pull-based query assembles data from a bounded data repository
and completes by returning data once, whereas a push-based query processes a conceptually
unbounded stream of information to generate incremental output over time. For example,
traditional databases are clearly geared towards efficiency for pull-based data retrieval, even
1 Baqend, Stresemannstraße 23, 22769 Hamburg, ww@baqend.com
2 Baqend, Stresemannstraße 23, 22769 Hamburg, fg@baqend.com
3 Universität Hamburg, DBIS, Vogt-Kölln-Straße 30, 22527 Hamburg, ritter@informatik.uni-hamburg.de

cba doi:10.18420/btw2019-ws-28

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 267

https://creativecommons.org/licenses/by-sa/4.0/
ww@baqend.com
fg@baqend.com
ritter@informatik.uni-hamburg.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-28

2 Wolfram Wingerath, Felix Gessert, Norbert Ritter

though they do support push-based access to a certain degree (e.g. through triggers). Figure
1 illustrates how the different classes of data management systems can be classified by the
way they facilitate access to data.

pull-based push-based

Database

Management

sta�c

collec�ons

Stream

Processing

unstructured

streams

Data Stream

Management

structured

streams

Real-Time

Databases

evolving

collec�ons

Fig. 1: Different classes of data management systems and the access patterns they support.
At the one extreme, there are traditional databases which represent snapshots of domain
knowledge that are the basis of all queries. At the other extreme, there are general-purpose
stream processing engines which are designed to generate output from conceptually
unbounded and arbitrarily structured ephemeral data streams. Real-time databases and data
stream management systems both stand in the middle, but adhere to different semantics:
Real-time databases work on evolving collections that are distinguished from their static
counterparts (i.e. from typical database collections) through continuous integration of
updates over time, enabling push-based real-time queries. Data stream management
systems provide APIs to query data streams, for example, by applying filters to incoming
data or by computing rolling aggregations and joins over configurable time windows.

2 Tutorial Outline
With this tutorial, we intend to provide an overview over the entire system spectrum. Our
tutorial is divided into three parts as follows.

In the first part, we cover pull-based data management systems. To this end, we first
recall the basics of distributed data management (e.g. partitioning, replication, eventual
consistency, NoSQL data models) and present the most important impossibility results
(e.g. the CAP theorem). We then provide an in-depth survey of the NoSQL landscape by
discussing the individual architectures and classifying each system according to functional
and non-functional properties.

In the second part, we turn to push-based systems for real-time data management. After a
short historical recap of push-based mechanisms in data management, we dissect the current
state of the art in real-time databases and stream processing frameworks with respect to
their capabilities in storing, querying, and analyzing data with low latency.

In the final part of our tutorial, we review polyglot persistence environments that bring
together many of the discussed systems, unfold open practical and research challenges in
the field of data management, and discuss possible venues for addressing them.

268 Wolfram Wingerath, Felix Gessert, Norbert Ritter

NoSQL & Real-Time Data Management in Research & Practice 3

3 Intended Audience & Relationship to Prior Tutorials
We expect the tutorial to appeal to a large portion of the BTW community, specifically
anybody interested in a comparative overview of the current data management landscape
and a discussion of open challenges. Our target audience thus includes students who are
looking for novel research topics and orientation, experienced researchers in the fields of
database systems, cloud computing, and distributed systems, as well as industry practitioners
tackling data management problems who are looking for a survey and classification of
existing systems and their respective sweet spots.

This tutorial includes revised content from earlier tutorials given at EDBT 2018 [Wi18],
BTW 2017 [GWR17], and ICDE 2016 [GR16].

4 Presenters

Wolfram Wingerath is a distributed systems engineer at the Backend-as-a-Service company
Baqend4 where he is responsible for all things related to real-time query processing. During
his PhD studies at the University of Hamburg, Wolfram conceived the scalable design
behind Baqend’s real-time query engine and thereby also developed a strong background
in real-time databases and related technology such as scalable stream processing, NoSQL
database systems, cloud computing, and Big Data analytics. Eager to connect with others
and share his experiences, Wolfram regularly speaks at developer and research conferences.

Felix Gessert is the CEO and co-founder of Baqend4. During his PhD studies at the University
of Hamburg, he developed the core technology behind Baqend’s web performance service.
Felix is passionate about making the web faster by bringing research to practice. He
frequently talks at conferences about exciting technology trends in data management and
web performance.

Norbert Ritter is a full professor of computer science at the University of Hamburg, where
he heads the databases and information systems group. He received his PhD from the
University of Kaiserslautern in 1997. His research interests include distributed and federated
database systems, transaction processing, caching, cloud data management, information
integration, and autonomous database systems. He has been teaching NoSQL topics in
various courses for several years. Seeing the many open challenges for NoSQL systems,
he and Felix Gessert have been organizing the annual Scalable Cloud Data Management
Workshop5 to promote research in this area.

References
[GR16] Gessert, Felix; Ritter, Norbert: Scalable Data Management: NoSQL Data Stores in Research

and Practice. In: 32nd IEEE International Conference on Data Engineering, ICDE 2016.
2016.

4 Baqend: https://www.baqend.com/.
5 Annual Scalable Cloud Data Management Workshop: www.scdm.cloud.

NoSQL & Real-Time Data Management in Research & Practice 269

https://www.baqend.com/
www.scdm.cloud

4 Wolfram Wingerath, Felix Gessert, Norbert Ritter

[GWR17] Gessert, Felix; Wingerath, Wolfram; Ritter, Norbert: Scalable Data Management: An
In-Depth Tutorial on NoSQL Data Stores. In: Datenbanksysteme für Business, Technologie
und Web (BTW 2017) - Workshopband, 2.-3. März 2017, Stuttgart, Germany. volume
P-266 of LNI. GI, pp. 399–402, 2017.

[Wi18] Wingerath, Wolfram; Gessert, Felix; Witt, Erik; Friedrich, Steffen; Ritter, Norbert: Real-
Time Data Management for Big Data. In: Proceedings of the 21th International Conference
on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018.
OpenProceedings.org, 2018.

270 Wolfram Wingerath, Felix Gessert, Norbert Ritter

Vorstellung
DFG-Schwerpunktprogramm 2037

cba

Einreichung fuer: BTW 2019,
Geplant als Veröffentlichung innerhalb der Lecture Notes in Informatics (LNI)

DFG Priority Program SPP 2037: Scalable Data
Management for Future Hardware

Kai-Uwe Sattler1, Alfons Kemper2, Thomas Neumann2, Jens Teubner3

Abstract: The priority program 2037 “Scalable Data Management for Future Hardware” is funded by
the DFG and comprises 10 projects from german universities. The program is based on the observation
that the currently used database concepts and systems are not well prepared to support emerging
application domains. At the same time current and future hardware trends provide new opportunities.
In the following we give an overview of the overall goals and the projects funded within the program.

1 Program Goals and Structure

Over the past thirty years, database management systems have been established as one of
the most successful software concepts. In today’s business environment they constitute the
centerpiece of almost all critical IT systems. The reasons for this success are manyfold. On
the one hand, such systems provide abstractions hiding the details of underlying hardware
or operating systems layers. This covers the existence of a memory hierarchy, memory
organization, data representation and efficient data access for multiple users or application
developers. On the other hand, database management systems are ACID compliant, which
enables them to represent an accurate picture of a real world scenario, and ensures correctness
of the managed data even in extreme cases (e.g., a high number of concurrent database
operations or possible system failures). Hence, there is a wide acceptance of architectural
patterns for database systems which are based on assumptions of classic hardware setups.

Today, the application of database systems has moved beyond pure transaction-oriented
scenarios. Instead they are more and more utilized as data integration platforms to realize
a unified access model (perhaps limited to read operations) to heterogeneous or even
distributed data. In addition, database technology in a broader sense is exploited in
pure analytical applications (e.g., building models for data mining algorithms such as
classification, clustering, recommendation, etc.). These analyses are based on clickstream
data or experimental results in the scientific environment (e.g., protein analyses in micro
biology, or galaxy detection in astro-physical research projects). For such applications, the
rigid transaction-oriented architecture of classical database systems often proves to be too
1 TU Ilmenau, kus@tu-ilmenau.de
2 TU Munich, lastname@in.tum.de
3 TU Dortmund, jens.teubner@cs.tu-dortmund.de

cba doi:10.18420/btw2019-ws-29

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 273

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-29

2 Kai-Uwe Sattler et al.

rigid, inflexible and not scalable to the required extent. During the consequently emerging
diversification of data management solutions some of the well established functionalities
of classical database systems fell by the wayside: For instance, consistency in eventually
consistent system has to be realized at the application level (e.g. using versioning). At the
same time, current and future hardware trends provide new opportunities such as:

• many-core CPUs: Next-generation CPUs will provide hundreds of compute cores
already in the commodity range. In order to allow high degrees of parallelism some
architectures already provide hardware support for the necessary synchronization,
e.g. transactional memory. Utilizing this parallelism for database processing is still
an open issue.
• co-processors like GPUs and FPGAs: Special-purpose computing units such as GPUs

and FPGAs allow for parallelism at much higher degrees accelerating compute-
intensive tasks significantly – even for database tasks. Moreover, heterogeneous
hardware designs such as coupled CPU-FPGA and CPU-GPU architectures represent
a trend of close integration between classic hardware and emerging hardware which
could be beneficial in data management.
• novel storage technologies like NVRAM and SSD: Modern in-memory database

system solutions still rely mostly on block-based media for ensuring persistence
of data. Emerging memory technologies such as non-volatile memory (NVRAM)
promise byte-addressable persistence with latencies close to DRAM requiring to
revisit memory and storage hierarchies in data management systems.
• high-speed networks: Both, in scale-up and scale-out scenarios efficient interconnects

play a crucial role. Today, some network technologies based on Gbit Ethernet or
InfiniBand already support Remote DMA, i.e., direct access to memory of a remote
node. But, to utilize this technology in database systems requires new concepts.

The goals of the DFG priority program on Scalable Data Management for Future Hardware
are based on the observation that data management architectures will undergo a radical shift
in the next years. This is driven by the fact that on the one hand, the range of applications
requiring to handle large sets of data has significantly broadened, in particular those based
on analytics/machine learning, and on the other hand, new trends in hardware as well as at
operating system level offer great opportunities for rethinking current system architectures.
Thus, the leitmotif of the first phase of the priority program can be formulated as “Scalability
beyond current limits”.

The program is coordinated by Kai-Uwe Sattler (TU Ilmenau), Jens Teubner (TU Dortmund),
Alfons Kemper (TU Munich), and Thomas Neumann (TU Munich). The coordinators are
supported by an advisory board with highly experienced experts both from industry and
academia: Peter Boncz (CWI/VU Amsterdam), Franz Färber (SAP SE), Goetz Graefe
(Google, Madison), Theo Härder (TU Kaiserslautern), and Wolfgang Lehner (TU Dresden).

274 Kai-Uwe Sattler, Alfons Kemper, Thomas Neumann, Jens Teubner

DFG Priority Program SPP 2037 3

2 Funded Projects

The first phase of the priority program started in summer 2017 with a kickoff meeting at the
VLDB in Munich. During this phase, 10 projects in the areas Networking and RDMA,
FPGA & Many-core CPUs, Memory and Storage, and SGX are funded involving 22
researchers and 18 PIs. In detail, the following projects are part of the priority program.

Scalable Data Management in the Presence of High-Speed Networks (TU Darmstadt).
The goal of this project is to develop abstractions for remote direct memory access
(RDMA) in distributed databases. These abstractions shall support a wide range
of different workloads ranging from traditional applications (OLAP and OLTP) to
more complex workloads (e.g., machine learning). The experimental evaluation will
address large-scale deployments with up to 100 nodes.

Distributed, fault-tolerant in-place consensus sequence on innovative hardware as
a building block for data management (ZIB Berlin). This project deals also with
RDMA technology in combination with NVRAM to manage distributed shared states.
The main goal of this project is to extend the Paxos protocol to support a sequence of
consensus decisions in-place.

Interactive Big Data Exploration on Modern Hardware (TU Munich). This project
aims to provide interactive response times for database queries even on big data. This
is achieved by deeply integrating big data exploration functionality into the core of the
system. In particular, latest and emerging hardware trends to scale database systems
as well as techniques such as query compilation and micro adaptivity are exploited.

Query Compilation for the Heterogeneous Many Core Age (TU Berlin). The goal
of this project is to allow database systems to adapt themselves automatically to
heterogeneous, previously unknown processors, and in this way, avoiding manual
per-processor tuning. This is achieved by introducing variations to database operators
(e.g., code optimizations, data structures and parallelization strategies), which allows
to generate custom implementations of database operators for each processor.

ReProVide: Query Optimisation and Near-Data Processing on Reconfigurable SoCs
for Big Data Analysis (University Erlangen-Nuremberg). In this project, a novel
FPGA-based System-on-Chip (SoC) architecture called ReProVide (Reconfigurable
Data ProVider) for near-data processing will be designed and developed. The goal
is to provide query-specific accelerator datapaths and filter functions on-demand by
exploiting the fact that the hardware of an FPGA may be dynamically reconfigured.

Adaptive Data Management in Evolving Heterogeneous Hardware/Software Systems
(Uni Magdeburg). This project aims to develop integration concepts for diverse
operators and heterogeneous hardware devices in adaptive database systems. In
particular, optimization strategies for exploiting individual device-specific features
but also the inherent cross-device parallelism in multi-device systems are investigated.
The complexity of the query optimization design space incurred by the parallelism
is handled by a distributed optimization approach as well as a set on cross-layer
optimizations strategies incorporating learning-based techniques.

DFG Priority Program SPP 2037 275

4 Kai-Uwe Sattler et al.

MxKernel: A Bare-Metal Runtime System for Database Operations on Heterogeneous
Many-Core Hardware (TU Dortmund). As part of this projecz a bare-metal runtime
system called MxKernel is developed. MxKernel provides very lightweight resource
management for database system. For this purpose, heterogeneity and parallelism
become first-class citizens. This is achieved by an abstraction for work items called
MxTask which represents a unit of work for which atomic execution is guaranteed.

High-Performance Event Processing on Modern Hardware (Uni Marburg). This
project deals with low latency requirements of Complex Event Processing (CEP)
and high-throughput analysis of event data. The main goals are to develop new
indexing techniques for CEP and analysis of historical event analysis exploiting
modern storage technologies such as SSDs. In particular, new loading strategies for
multiversion indexes and storage layouts for processing queries like pattern matching
are considered.

Transactional Stream Processing on Non-Volatile Memory (TU Ilmenau). The project
addresses the challenges of transactional stream processing, i.e. a combination of
data stream processing with transactional guarantees such as ACID, exactly-once and
ordered execution, by exploiting opportunities of modern hardware technology – in
particular NVRAM. For this purpose, data structures for managing operator states
taking into account the specific properties of NVRAM are developed and evaluated.

Scalable Hardware-Aided Trusted Data Management (TU Braunschweig/University of
Applied Sciences Harz). The goal of this project is to exploit recent hardware security
technologies, in particular Intel Software Guard Extensions (SGX), for scalable data
management. In particular, the project aims to deriving an architecture model for
document-based DBMSs with functionality tailored to hardware encryption support
(e.g., confidentiality and integrity protection) and security awareness.

3 Activities and Outlook

In addition to the ordinary program meetings and workshops, the members of the priority
program have organized several scientific activities, e.g., a Dagstuhl seminar on “Database
Architectures for Modern Hardware (Seminar 18251)” [BGH+18] as well as a special issue
of the german database jourrnal Datenbank-Spektrum [SKH18].

The first funding period ends in summer 2020. The call for the second phase will be
published in September 2019.

References
[BGH+18] Peter A. Boncz, Goetz Graefe, Bingsheng He, Kai-Uwe Sattler: Database Architectures

for Modern Hardware (Dagstuhl Seminar 18251). Dagstuhl Reports 8(6): 63-76 (2018).
[SKH18] Kai-Uwe Sattler, Alfons Kemper, Theo Härder: Editorial. Datenbank-Spektrum 18(3):

Special Issue on Data Management on New Hardware (2018).

276 Kai-Uwe Sattler, Alfons Kemper, Thomas Neumann, Jens Teubner

Data Science Challenge 2019

Vorwort

cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 11

Die Data Science Challenge auf der BTW 2019 in Rostock

Hannes Grunert1, Holger Meyer2

Abstract: Zum zweiten Mal — nach der BTW 2017 in Stuttgart [Wa17] — findet auf der BTW-
Konferenzreihe die Data Science Challenge statt. Die Teilnehmer der Challenge hatten die Möglichkeit,
ihren eigenen Ansatz zur cloud-basierten Datenanalyse zu entwickeln und damit im direkten Vergleich
gegen andere Teilnehmer anzutreten.

Keywords: Data Science Challenge; Big Data Analytics; Feinstaub

1 Preise und Bewertungskriterien

Nach der Bewerbungsrunde präsentieren die Teilnehmer in Rostock auf der BTW 2019
ihre Ergebnisse vor einer Fachjury, bestehend aus Vertretern von Forschung und Industrie.
Der erste bis dritte Platz wird mit einem Preisgeld gewürdigt. Da das Votum der Jury zum
Zeitpunkt der Drucklegung noch nicht feststand, finden Sie in diesem Workshopband die
Beiträge aus der Bewerbungsphase. Die ersten drei Plätze werden mit einem Preisgeld
gewürdigt:

• Erster Platz: 500 Euro

• Zweiter Platz: 300 Euro

• Dritter Platz: 200 Euro

Die Bewertung und Auswahl der Gewinner umfasst die folgenden Kriterien:

• Neuheit und Umsetzbarkeit der Ergebnisse,

• Vollständigkeit / Umfang der Ergebnisse,

• Gesellschaftliche Relevanz,

• Datenvisualisierung und
1 Universität Rostock, Lehrstuhl für Datenbank- und Informationssysteme, Albert-Einstein-Straße 22, 18059

Rostock, hg@informatik.uni-rostock.de
2 Universität Rostock, Lehrstuhl für Datenbank- und Informationssysteme, Albert-Einstein-Straße 22, 18059

Rostock, hme@informatik.uni-rostock.de

cba doi:10.18420/btw2019-ws-30

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 281

https://creativecommons.org/licenses/by-sa/4.0/
hg@informatik.uni-rostock.de
hme@informatik.uni-rostock.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-30

12 Hannes Grunert, Holger Meyer

• Live-Präsentation am 05.03.2019 auf der BTW 2019

Bewertet wurden die Beiträge durch das Preiskomitee:
Leitung: Holger Meyer, Universität Rostock

• Stefan Goers, TÜV Nord (Umweltservices)

• Daniela Nicklas, Universität Bamberg

• Kai-Uwe Sattler, TU Ilmenau

• Holger Schwarz, Universität Stuttgart

• Tim Waizenegger, IBM Böblingen

• Rajko Zschiegner, OKLab Stuttgart

2 Vorgehen

Zeitgleich mit der Ausschreibung wurden Beispieldatenquellen sowie dazu passende
Beispielaufgaben bekanntgegeben. Diese Datenquellen und Aufgaben wurden von den
Teilnehmern genutzt, um darauf aufbauend Ihr initiales Konzept zu entwickeln und einen
ersten Prototypen zu entwickeln. Anschließend bewarben sich die Teilnehmer mit einer
zweiseitigen Beschreibung.

Nach Bekanntgabe der zugelassenen Teilnehmer wurden einen Monat vor der BTW 2019
die für die Challenge zu verwendeten Datenquellen und Aufgaben bekanntgegeben. Diese
sind so gewählt, dass die wesentlichen Aspekte der entwickelten Konzepte weiter verwendet
werden konnten; jedoch mussten innerhalb eines Monates die Konzepte an die veränderte
Aufgabenstellung angepasst werden.

Die Teilnehmer hatten eine freie Auswahl in Bezug auf die verwendeten Cloud-Dienste und
-Technologien. Die zu untersuchenden Daten wurden auch in der IBM Cloud über ein IBM
Watson Studio Notebook bereitgestellt.

3 Problemstellung

Sowohl die Bewerbungsaufgabe als auch die Aufgabe für das Finale drehten sich rund
um das Thema Feinstaub. Als Ausgangsbasis diente der archivierte Datenbestand von
archive.luftdaten.info. Das Citizen Science Projekt luftdaten.info hat zum Ziel, die
Feinstaubmessung im großflächig zu realisieren. Ausgehend von dem Datenbestand wurden
den potentiellen Teilnehmern eine Reihe von Beispielaufgaben gestellt:

• Bereinigen Sie die Daten bzw. stellen Sie Datenqualität sicher.

282 Hannes Grunert, Holger Meyer

archive.luftdaten.info
luftdaten.info

Data Science Challenge 2019 13

• Finden Sie interessante Sachverhalte und Muster. Visualisieren Sie Ihre Ergebnisse.

• Versuchen Sie vorherzusagen, wie die Feinstaubbelastung in der nahen Zukunft
aussehen könnte.

• Entdecken Sie mögliche größere, zusammenhängende "No goAreale, an denen die
Feinstaubbelastung zu groß ist bzw. zu groß sein wird.

Zur Sicherstellung der Diversität der Ergebnisse mussten die Teilnehmer die Feinstaubdaten
Ihrer Universitätsstadt analysieren. Die Teilnehmer verwendeten verschiedenste Technologi-
en, wie beispielsweise IBM Cloud SQL Queries in Kombination mit Jupyter Notebooks,
Apache Spark und vorgefertigten Deep-Learning-Bibliotheken. Die Analysen reichen von
der Datenbereinigung und -integration über Anwendung neu entwickelter statistischer
Funktionen, neuronaler Netze und Zeitreihenanalysen bis hin zu Visualisierungen.

4 Data Science Challenge @ BTW 2019

Dem Beitragsaufruf folgten fünf Teams mit folgenden Beiträgen:

• Dresden: Assessing the Impact of Driving Bans with Data Analysis

• Leipzig: Deep Learning zur Vorhersage von Feinstaubbelastung

• Berlin: Explanation of Air Pollution Using External Data Sources

• Ilmenau: Peaks and the Influence of Wheather, Traffic, and Events on Particulate
Pollution

• Stuttgart: Prediction of air pollution with machine learning

Nach Prüfung der Beiträge wurden alle Teilnehmer zur Präsentation Ihrer Lösung der Final-
aufgabe eingeladen. Auf Basis der aktuellen politischen und gesellschaftlichen Diskussion
hinsichtlich des Für und Wider von Feinstaubmessungen wurden die Teilnehmer mit neuen
Fragestellungen konfrontiert:

• Wie hat sich das Verkehrsaufkommen in den Städten mit Fahrverboten verändert?

• Ist eine Korrelation zwischen der Lebenserwartung und der Feinstaubbelastung
erkennbar? Sind die bisherigen Studien vom Helmholtz-Institut bestätigbar?

• Welche weiteren Faktoren, neben dem Verkehr, spielen eine Rolle bzgl. der Feinstaub-
belastung? Finden sie öffentliche Events, die zu einer kurzzeitigen Steigerung der
Feinstaubbelastung führen.

• Wie kann durch die Integration von mehreren Messdaten ein bundesweit einheitliche-
res Bild der Feinstaubbelastung erstellt werden?

Die Data Science Challenge auf der BTW 2019 in Rostock 283

14 Hannes Grunert, Holger Meyer

Im Rahmen des Workshopprogramms der BTW am 05.03.2019 wurden die einzelnen
Beiträge präsentiert. Die Gewinner werden im Rahmen des Data Science Panels am
Mittwoch, den 06.03.19, bekanntgegeben.

Die Gewinner werden im Anschluss an die BTW 2019 eingeladen, an einem Sonderbeitrag
für das Datenbankspektrum mitzuwirken. Dort werden die Aufgabe aus der Finalrunde,
sowie die prämierten Lösungsansätze im Detail vorgestellt.

5 Organsiation
• Stefan Goers, TÜV Nord (Umweltservices)

• Hannes Grunert, Universität Rostock

• Holger Meyer, Universität Rostock

• Ute Schuerfeld, IBM Böblingen

• Rajko Zschiegner, OKLab Stuttgart

Literatur

[Wa17] Waizenegger, T.: BTW 2017 Data Science Challenge (SDSC17). In (Mitschang, B.; Ritter, N.;
Schwarz, H.; Klettke, M.; Thor, A.; Kopp, O.; Wieland, M., Hrsg.): Datenbanksysteme
für Business, Technologie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs
„Datenbanken und Informationssysteme"(DBIS), 6.-10. März 2017, Stuttgart, Germany,
Workshopband. Bd. P-266. LNI, GI, S. 405–406, 2017, isbn: 978-3-88579-660-2, url:
https://dl.gi.de/20.500.12116/938.

284 Hannes Grunert, Holger Meyer

https://dl.gi.de/20.500.12116/938

Teilnehmer der Challenge

cba

(Hrsg.): BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Assessing the Impact of Driving Bans with Data Analysis
Lucas Woltmann1, Claudio Hartmann1, Wolfgang Lehner1

1 Introduction

Suspended particulate matter (SPM) is a significant problem discussed in current environ-
mental research with an impact on the every-day life of many people. Our goal for the BTW
2019 Data Science Challenge (DSC) is to leverage information from available sensor data
about SPM and assess the benefits and disadvantages of driving bans. Our application builds
upon data of 57 sensors in the city of Dresden and 338 sensors in the city of Stuttgart. Each
sensor tracks particle concentration, temperature, and humidity. Stuttgart has a particular
interesting situation because of the driving ban for outdated diesel engines on roads in
the inner city introduced in January 2019. This gives us the possibility to compare the
effectiveness of driving bans not only over time but also between two cities. While we only
analyze two cities exemplary in this report, we see high potential of applying our tools to
other cities and scenarios. We think, this universality of our approach is an important factor
in knowledge transfer. The applications are not limited to SPM analyses but can be extended
for example to weather and climate research.

The following sections address the tasks and sketch our approaches. Section 2 discusses data
cleaning and preparation. This includes a minute-wise aggregation and a linear interpolation
of the data. Then, we show visualization techniques used to identify patterns for an
assessment of driving bans (Section 3). Furthermore, we predict the future development of
SPM with a technique called Cross-sectional AutoRegession (CSAR) [Ha19], developed
in our group (Section 4). In Section 5, we condense the results of previous analyses and
define no-go areas with the highest particle concentrations and also identify the reasons for
particular no-go areas. We close our work with a short conclusion in Section 6.

2 Data Cleaning and Preparation

First, the data of all sensors in Dresden and Stuttgart is collected. We use a nearest neighbor
search around the city center of both cities with a radius of 10km to retrieve all sensors in
both city areas.

A general problem is the division of sensor types into SPM sensors and temperature/humidity
sensors. To construct a common base for the analysis, we need to integrate the SPM sensors
1 Technische Universität Dresden, Database Systems Group, 01062 Dresden, Germany
<firstname.lastname>@tu-dresden.de

cba doi:10.18420/btw2019-ws-31

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 287

https://creativecommons.org/licenses/by-sa/4.0/
<firstname.lastname>@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-31

2 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

0

6

12

18

24

30

0

25

50

75

100

Sep 03 00:00 Sep 03 06:00 Sep 03 12:00 Sep 03 18:00 Sep 04 00:00

Date and time

P
ar

tic
le

 c
on

ce
nt

ra
tio

n
[µ

/m
³]

R
elative hum

idity [%
]

Measurements

humidity

P1

Sensor 5301 intraday

(a) Comparison Dresden

0

20

40

60

80

100

0

25

50

75

100

Sep 03 00:00 Sep 03 06:00 Sep 03 12:00 Sep 03 18:00 Sep 04 00:00
Date and time

P
ar

tic
le

 c
on

ce
nt

ra
tio

n
[µ

/m
³]

R
elative hum

idity [%
]

Measurements

humidity

P1

Sensor 609 intraday

(b) Comparison Stuttgart
Fig. 1: Particle concentration P1 compared to humidity.

and the humidity/temperature sensors into one data set. Therefore, we aggregate the data for
each sensor type to a minute-wise time scale by averaging all measurement within every
minute for each sensor. This provides a common minute granularity for all sensors. The next
step is to merge the temperature and humidity data with the particle concentration data by
sensor location and time. Note that this is only possible in a standardized minute granularity
in both sensor type data.

From the resulting table, we remove all particle concentrations where the humidity is larger
than 70% because above this value the particle sensors do not provide reliable reads [No15].
This leads to sparse data for both Dresden and Stuttgart because both cities have a rather
humid river climate. Additionally, both cities are located in a valley. This problem is shown

288 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

SPM DSC BTW 2019 - TU Dresden 3

in Figure 1 which compares the particle concentration P1 to the humidity for one sensor in
each city close to the river. The 70% limit for the humidity is marked with a black line.

Finally, we impute all missing values with linear interpolation. This has proven to be a very
robust approach in the field of time series analysis [Mo15].

3 Visualization and Patterns

Visualization is a common approach to find interesting patterns. We present two different
kinds of plots helping with the identification of structure in the data. First, all time series
get split into trend, season, and residual components with time series decomposition [Cl90].
The seasonal component details peaks and valleys in the time series which occur in a regular
pattern. This component shows the recurrent influence of each point in time on the time
series, as shown on the y-axis.

For example, we can clearly show the morning and evening rush hours as two peaks in the
seasonal component of the sensor data in Figure 2. Both sensors are located in the respective
center of the given city. Whereas the sensor in Dresden in Figure 2a has clearly visible
peaks for these two events, the sensor in Stuttgart details the evening rush hour only in a
noisy pattern for 2018. We can now compare the regular pattern of the rush hours before
and after the introduction of the driving ban in Figures 2b and 2c. The last plot has no
characteristic structure for neither morning nor evening rush hour. There are no recurring
rush hour patterns in the data for January 2019. This can be ascribed to the driving ban
because less cars in the city center also means less traffic during rush hours or even no rush
hours at all. The sheer absence of peek concentrations can be seen as an improvement in air
quality. But if we have a look at Figure 3, where we took a sensor near the border of the
driving ban area, one can see a negative impact of the restriction. Following the introduction
of the ban, the evening rush hour has a much larger impact on the sensor’s surrounding area.
Figure 3b details an influence value for the evening rush hour (y-axis) 10 times higher than
in Figure 3a. This can be an indication that the driving ban does in fact make the inner
city cleaner but only at the expense of flooding the surrounding areas with more cars and
pollution. This negative effect can be observed especially during rush hours.

As a second visualization, we will map the distribution of particles over both cities. The
plot in Figure 4 highlights particle hotspots in the cities. The darker the shade of an area,
the higher the particle concentration. For visualization, the concentration is smoothed using
cubic splines [Pe84]. The black points on the map are the locations of the SPM sensors.
Furthermore, we will use this plot as one of the tools to identify no-go areas of high particle
concentration in Section 5.

For now, we can compare the distribution of particles over Stuttgart before and after the
ban. Figure 4c compared to Figure 4b gives the same intuition as our last visualization. The
general pollution got less with the ban. This can be seen via the lighter hue of the complete

Assessing the Impact of Driving Bans with Data Analysis 289

4 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

city area and the smaller areas with dark hue. Whereas the particle pollution in the inner city
got better, the surrounding areas suffer from heavier pollution. The hue of the concentration
coloring is darker on the edges of the city of Stuttgart. As mentioned before, the reason

Morning

 rush

 hour

Evening

 rush

 hour
−4

−3

−2

−1

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hours in a day

In
flu

en
ce

 o
n

pa
rt

ic
le

 c
on

ce
nt

ra
tio

n

Measurements

P1

Sensor 5301 seasonality per day

(a) Rush hours in Dresden

Morning

 rush

 hour

Evening

 rush

 hour

−3

−2

−1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hours in a day

In
flu

en
ce

 o
n

pa
rt

ic
le

 c
on

ce
nt

ra
tio

n

Measurements

P1

Sensor 7561 seasonality per day

(b) Rush hours in Stuttgart in 2018

Morning

 rush

 hour
Evening

 r.h.
−3

−2

−1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hours in a day

In
flu

en
ce

 o
n

pa
rt

ic
le

 c
on

ce
nt

ra
tio

n

Measurements

P1

Sensor 7561 seasonality per day

(c) Rush hours in Stuttgart in January 2019
Fig. 2: Rush hour patterns for both cities.

290 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

SPM DSC BTW 2019 - TU Dresden 5

for that might be the diverted traffic now filling the streets around the city creating more
pollution there.

If we compare Dresden, a city without a driving ban, to Stuttgart, we only need to take a
look at the data for 2018 because there is no active change in pollution in Dresden. Dresden
has a lighter coloring and therefore less pollution because of having less traffic in the city
area than Stuttgart [IN17]. The data in Stuttgart is less sparse because there are more sensors
available. This leads to a finer gradient in color for the visualization and a more detailed
view on pollution compared to Dresden. Nevertheless, the similar topology of both cities
cause the same problems. Both cities have large areas of congestion on their access roads
to the Autobahn (see Section 5). The valley position of both cities can dictate long access
road to the Autobahn because building interstate roads near or in the valley might be either
very expensive or very polluting. Long access roads mean more potential for heavy traffic.

Morning

 rush

 hour

Evening

 r.h.
−6

−4

−2

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hours in a day

In
flu

en
ce

 o
n

pa
rt

ic
le

 c
on

ce
nt

ra
tio

n

Measurements

P1

Sensor 609 seasonality per day

(a) Rush hours in 2018

Morning

 rush

 hour

Evening

 r.h.
−6

−4

−2

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hours in a day

In
flu

en
ce

 o
n

pa
rt

ic
le

 c
on

ce
nt

ra
tio

n

Measurements

P1

Sensor 609 seasonality per day

(b) Rush hours in January 2019
Fig. 3: Rush hour patterns for sensor outside the driving ban area.

Assessing the Impact of Driving Bans with Data Analysis 291

6 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

(a) Particle distribution over Dresden in 2018.

(b) Particle distribution over Stuttgart in December
2018.

(c) Particle distribution over Stuttgart in January
2019.

Fig. 4: Particle distribution over the cities.

Even though the valley structure of both cities is hardly visible in the data visualization,
one could argue that in Stuttgart one can see the southwest to northeast valley around the
Nesenbach and the Neckar valley east of the city center in a darker hue. This assumption
does not hold for Dresden, mainly due to the sparsity of sensors.

292 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

SPM DSC BTW 2019 - TU Dresden 7

0

20

40

60

80

Nov Dez Jan Feb

Time

P
ar

tic
le

 c
on

ce
nt

ra
tio

n

Measurements

Real

Forecast

Top Aggregat Dresden

(a) Forecast January 2019 Dresden

0

20

40

60

80

Nov Dez Jan Feb

Time

P
ar

tic
le

 c
on

ce
nt

ra
tio

n

Measurements

Real

Forecast

Top Aggregat Stuttgart

(b) Forecast January 2019 Stuttgart
Fig. 5: Comparison of forecasts and actual sensor readings.

Given our analysis results, we can show that visualization is a powerful tool for assessing
particle concentration and its impact on the environment. We see high potential for
our approach to be applied to other cities and use cases. This could also help domain
experts making decisions and drawing conclusions with a more profound background in
environmental research than us.

4 Time Series Forecasting

Time series forecasting is a technique that allows computation of expected values for the
future behavior of time-dependent measure values. In our previous work we designed a
forecast technique called CSAR [Ha19] that focuses on the prediction of many time series
that originate from the same domain, i.e. SPM sensor readings. Thorough predictions enable
the comparison of predicted sensor readings without a driving ban and the actual measured
values after the driving ban takes effect.

Assessing the Impact of Driving Bans with Data Analysis 293

8 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

(a) No-go areas in Dresden in 2018. (b) No-go areas in Stuttgart in 2018.
Fig. 6: No-go areas in both cities.

We predict the readings for all sensors in both cities using a dedicated CSAR model for
Dresden and one for Stuttgart. The results of our experiment are shown in Figure 5. For the
forecast, we aggregate the sensor readings to a daily granularity. Otherwise, the prediction
of the entire January would end up with a forecast horizon too long to calculate reliably.
For both cities, we see that the actual SPM levels (orange line) are slightly lower than the
corresponding forecast values (blue line). For Stuttgart (Figure 5b) this might be attributed
to the driving ban that took effect in January. The results for Dresden (Figure 5a), show
that other external factor might influence the SPM levels too, such that there is a visible
deviation.

However, the comparison of only two cities is too little data to draw a reliable conclusion
from. More data and an in-depth analysis are required to assess the actual role of driving
bans. Furthermore, other external influences that affect the SPM levels have to be identified
and taken into account during the forecasting process. This would lead to more accurate
forecast results and enable more reliable decisions on the effectiveness of driving bans.

5 No-go Areas

As mentioned earlier, we will identify no-go areas with the highest particle concentrations
using the generated maps. We calculate the centroids for all areas with a dark hue. The
centroid gives us the possibility to analyze nearby points of interest which could generate
such a high concentration. Currently, we already identified six of the top concentration
accumulations in Dresden in Figure 6a and the top six in Stuttgart in Figure 6b.

In Dresden, the accumulation in the north and south are the access roads from the surrounding
areas to the city center. This includes two long tunnels on the Autobahn producing a high
concentration at their entrances. The northwestern area is an Autobahn exit which has a lot
of traffic backup from a large shopping center located right next to the Autobahn. The one

294 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

SPM DSC BTW 2019 - TU Dresden 9

cluster near the city center is the river harbor. Ships are well-known for not having clean
engines [Sm15].

The Neckar harbor in the eastern part of Stuttgart has a similar influence. A high particle
concentration can be spotted there. Near the harbor, there is an industrial area which is
visible in the concentration as well. The city center has also a high particle concentration
due to a lot of traffic going through. A particular interesting point is the ridge around
the Birkenkopf hill southwest of the city center (marked with the mountain symbol). The
curvature of the ridge forms a barrier in the particle concentration. The reason for this
phenomenon could be the agglomeration of particles in front of the ridge if the wind flows
perpendicular to the ridge. Last, one can see two darker areas for the access roads to the
western Autobahn in the north and northwest of Stuttgart.

6 Conclusion

We have shown a multi-tool workbench for assessing the impact of SPM and driving bans
in city areas. We use visualization and forecasting to find interesting patterns. This is done
completely with a pure data-driven approach. Our argumentation closely follows the findings
from the data. So, we rely on the correctness and completeness of the data. Data analysis
only can be as good as the data fulfilling these two criteria. In our case the sparsity of the
measurements due to the high humidity in some areas and the sparsity of the sensor network
itself are negative factors for the analysis. The sparsity introduces uncertainty which can
not be modeled correctly or can not be modeled at all. Complete data would require a
organized network of sensors in our use case. Whereas the idea of open data and citizen
science to collect relevant data is a good one, we see potential in getting a more organized
structure into the project. Given the severity of the SPM topic, this could extend into a
government-organized data collection scheme.

We think our work can be extended to different cities but also to a different set of problems.
Any data which can be represented both as a concentration distribution and a time series
will be assessable with our framework. Topics closely aligned would be weather and climate
research, market research, and energy research. We see our approach as an important tool
for knowledge transfer between people from different areas of research. The main goal
would be to give domain experts a robust analysis platform for their decision making.

References
[Cl90] Cleveland, Robert B; Cleveland, William S; McRae, Jean E; Terpenning, Irma: STL: A

Seasonal-Trend Decomposition. Journal of Official Statistics, 6(1):3–73, 1990.
[Ha19] Hartmann, Claudio; Ressel, Franziska; Hahmann, Martin; Habich, Dirk; Lehner, Wolfgang:

CSAR: the cross-sectional autoregression model for short and long-range forecasting.
International Journal of Data Science and Analytics, jan 2019.

Assessing the Impact of Driving Bans with Data Analysis 295

10 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

[IN17] INRIX Global Traffic Scoreboard, http://inrix.com/scorecard/, Accessed on 08-02-2019.
[Mo15] Moritz, S.; Sardá, A.; Bartz-Beielstein, T.; Zaefferer, M.; Stork, J.: Comparison of different

Methods for Univariate Time Series Imputation in R. ArXiv e-prints, October 2015.
[No15] SDS011 Laser PM2.5 Sensor specification, http://ecksteinimg.de/Datasheet/SDS011 laser

PM2.5 sensor specification-V1.3.pdf, Accessed on 08-02-2019.
[Pe84] Peter Alfeld: A trivariate Clough-Tocher scheme for tetrahedral data. Computer Aided

Geometric Design, 1(2):169–181, 1984.
[Sm15] Smith, T. W. P. et al.: Third IMO Greenhouse Gas Study 2014. International Maritime

Organization, United Kingdom, 2015.

296 Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

cba

Mahdi Esmaloghli et al. (Hrsg.): Database Systems for Business, Technology and Web,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Explanation of Air Pollution Using External Data Sources

Mahdi Esmailoghli1, Sergey Redyuk2, Ricardo Martinez34,
Ziawasch Abedjan13, Tilmann Rabl23, Volker Markl23

High concentrations of fine-grained particles in the air can adversely affect human health5.
To control it, the European Union has undertaken several strategies, such as the introduction
of certain particle concentration thresholds allowed in populated areas, or limitations for
vehicle access [Ra15]. However, many cities in Germany are unable to follow this legislation6
and control the particle emission because it is hard to attribute the pollution to a clear source.
Therefore, it is important to understand the dynamic process of the fine-grained particles
distribution and the reasons the emission occurs. In this project, we aim at designing a
system that provides the human analyst with descriptions about polluted areas within a city,
and potential causes.

During the phase of exploratory data analysis on the sensor dataset, which is provided by
BTW specifically for the data science challenge7, we selected all sensors located within a
10-kilometer radius from Berlin city center (255 sensors with 3GB of data), and provided a
common data schema that fitted all the sensor types. We found that a particular subset of
sensors (lat. 52.556) shows consistently higher degree of pollution. Since the original data
was not enough to explain potential causes of this anomaly, we integrated the dataset with
external air traffic data. Then, we established that the location of Tegel (TXL) airport airways
correlated with the sensors that recorded higher pollution. We also observed seasonal
fluctuations in pollution, and considered inversion during the winter as a potential cause.
However, the seasonal trend near TXL turned out to be different. Air pollution is increased
drastically during the summer, more likely, due to the higher number of flights to or from
the airport. During the exploration phase, we discovered that air pollution might be caused
by numerous local events organized in the city. For instance, we observed an instant increase
in pollution ratio near the Berlin TV Tower during the New Year’s Eve. Checking external
web sources revealed the news feed about the New Year celebration fireworks.
1 Technische Universität Berlin, lastname@tu-berlin.de
2 Technische Universität Berlin, firstname.lastname@tu-berlin.de
3 Deutsches Forschungszentrum für Künstliche Intelligenz, Berlin,
4 ricardo_ernesto.martinez_ramirez@dfki.de
5 https://www.pca.state.mn.us/air/fine-particles-and-human-health

6 http://ec.europa.eu/environment/air/quality/standards.htm

7 https://archive.luftdaten.info/

cba doi:10.18420/btw2019-ws-32

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 297

https://creativecommons.org/licenses/by-sa/4.0/
lastname@tu-berlin.de
firstname.lastname@tu-berlin.de
ricardo_ernesto.martinez_ramirez@dfki.de
https://www.pca.state.mn.us/air/fine-particles-and-human-health
http://ec.europa.eu/environment/air/quality/standards.htm
https://archive.luftdaten.info/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-32

2 Esmailoghli et al.

As demonstrated, external data can provide human analyst with comprehensible understand-
ing of causes for the observed pollution levels. Therefore, we formulate the goal for the
project as finding explanations for air pollution through integration of external data sources,
and building a new tool that provides human analysts with the explanation of potential
sources of pollution. In the project, we face several challenges: (i) streaming scenario and
fast-changing data that current outlier explanation tools do not handle well [ZDM17] (e.g.,
MAD algorithm for univariate outlier detection is not applicable for streaming scenarios;
solutions that adapt MAD for data streams, process batches instead of true streaming); (ii)
heterogeneity of sensory data that leads to multiple schemata and makes data integration
harder; and (iii) malfunctioning sensors that create erroneous and incomplete data [Ab16].
We address the aforementioned challenges in our project.

Progress Report and Outlook
We choose Berlin as the target region, and take two additional data sources for data
integration - weather and air traffic data (airports TXL and SXF). As the data contains
temporal information, we propose an event-based simulation model for our prototype that
“replays” historical information as if the events are happening now, thus supporting stream
processing to fit the fast-changing real-world scenario [Gr18] (Challenge (i)). In order to
accommodate different schemata for external data sources, we provide a common schema
that fits all external sources, and use data integration techniques [DHI12] for merging
(Challenge (ii)). We utilize hexagon binning [Le11] and clustering methods to group the data
spatially and integrate the readings from different neighboring sensors. Assuming that the
sensors close to one another record similar data, we can fuse these data points into a single
record, improving the data quality. This approach can also be used for cross-validation, in
order to handle anomalies that are generated by malfunctioning sensors (Challenge (iii)).
For interactive data analysis, we propose to use visualization tools, such as Thingsboard8,
and Plotly Dash9. To find the reason of pollution observed by aforementioned sensors, we
use state-of-the-art outlier explanation systems such as Macrobase [Ba17], and integrate the
correlated features with external sources, to provide reasonable interpretation of feature-wise
causal relationships for interesting points [Mi13].

In the first phase of this project, we apply MAD on pollution data. We choose MAD as
outlier detection algorithm because (i) pollution ratios are correlated and outlier in P1 means
an outlier in P2, and vice versa; so we can use MAD which is a univariate outlier detection
technique, and (ii) MAD is used in many state-of-the-art systems such as Macrobase. We
introduce an online version of MAD that can treat the data as stream. Then, we acquire and
prepare both weather and flight data for further integration into the prototype (fusing by the
compound timestamp-location key). After data integration, we apply ranking metrics to
select external data features that “explain” potential causes of anomalous pollution levels.

As fine-grained particles have many potential sources (factories, transport, cultural events,
power stations, agriculture, plants’ pollen, forest fires etc.), in the future we aim to generalize

8 https://thingsboard.io/docs/user-guide/rule-engine-2-0/tutorials/aggregate-latest-data

9 https://plot.ly/products/dash/

298 Mahdi Esmailoghli et al.

https://thingsboard.io/docs/user-guide/rule-engine-2-0/tutorials/aggregate-latest-data
https://plot.ly/products/dash/

BTW Data Science Challenge 3

our solution and add more external sources. We also aim to provide a solution that selects
external information automatically, by integrating web tables and web forms with the
detected features [Ab15].

Relevant Experience. Coming from the DIMA and BIGDAMA research groups at TU Berlin,
we cover the necessary expertise in data management, distributed computing [Al14], data
integration [De17], and machine learning [Mo17]. Our previous applied projects included
analysis of sensory data for the metal industry (production line optimization, hot rolling
mills [St18]), urban development (traffic analysis), graph-based fraud detection in healthcare,
and outlier explanation.

Acknowledgements. We thank Felix Neutatz, Batuhan Tüter, Felipe Gutierrez and Dimitrios
Giouroukis for their constructive comments and help.

References
[Ab15] Abedjan, Z.; Morcos, J.; Gubanov, M. N.; Ilyas, I. F.; Stonebraker, M.; Papotti, P.;

Ouzzani, M.: Dataxformer: Leveraging the Web for Semantic Transformations. In: CIDR.
2015.

[Ab16] Abedjan, Z.; Chu, X.; Deng, D.; Fernandez, R. C.; Ilyas, I. F.; Ouzzani, M.; Papotti, P.;
Stonebraker, M.; Tang, N.: Detecting data errors: Where are we and what needs to be
done? VLDB 9/12, pp. 993–1004, 2016.

[Al14] Alexandrov, A.; Bergmann, R.; Ewen, S.; Freytag, J.-C.; Hueske, F.; Heise, A.; Kao, O.;
Leich, M.; Leser, U.; Markl, V., et al.: The stratosphere platform for big data analytics.
VLDB 23/6, pp. 939–964, 2014.

[Ba17] Bailis, P.; Gan, E.; Madden, S.; Narayanan, D.; Rong, K.; Suri, S.: MacroBase: Prioritizing
Attention in Fast Data. In: SIGMOD. Pp. 541–556, 2017.

[De17] Deng, D.; Fernandez, R. C.; Abedjan, Z.; Wang, S.; Stonebraker, M.; Elmagarmid, A. K.;
Ilyas, I. F.; Ouzzani, S. M. M.; Tang, N.: The Data Civilizer System. In: CIDR. 2017.

[DHI12] Doan, A.; Halevy, A. Y.; Ives, Z. G.: Principles of Data Integration. Morgan Kaufmann,
2012, isbn: 978-0-12-416044-6.

[Gr18] Grulich, P. M.; Saitenmacher, R.; Traub, J.; Breß, S.; Rabl, T.; Markl, V.: Scalable
Detection of Concept Drifts on Data Streams with Parallel Adaptive Windowing. In:
EDBT. Pp. 477–480, 2018.

[Le11] Lewin-Koh, N.: Hexagon binning. Online: http://cran.r-project.org/web/packages/
hexbin/vignettes/hexagon_binning.pdf/, 2011.

[Mi13] Micenková, B.; Ng, R. T.; Dang, X.-H.; Assent, I.: Explaining outliers by subspace
separability. In: ICDM. Pp. 518–527, 2013.

[Mo17] Monte, B. D.; Karimov, J.; Mahdiraji, A. R.; Rabl, T.; Markl, V.: PROTEUS: Scalable
Online Machine Learning for Predictive Analytics and Real-Time Interactive Visualization.
In: EDBT/ICDT 2017 Joint Conference. 2017.

[Ra15] Rausch, A.; Werhahn, O.; Witzel, O.; Ebert, V.; Vuelban, E. M.; Gersl, J.; Kvernmo, G.;
Korsman, J.; Coleman, M.; Gardiner, T., et al.: Metrology to underpin future regulation
of industrial emissions. In: 17th International Congress of Metrology. EDP Sciences,
p. 07008, 2015.

Explanation of Air Pollution Using External Data Sources 299

http://cran.r-project.org/web/packages/hexbin/vignettes/hexagon_binning.pdf
http://cran.r-project.org/web/packages/hexbin/vignettes/hexagon_binning.pdf

4 Esmailoghli et al.

[St18] Ståhl, N.; Falkman, G.; Mathiason, G.; Karlsson, A.: A Self-Organizing Ensemble of
Deep Neural Networks for the Classification of Data from Complex Processes. In: IPMU.
Pp. 248–259, 2018.

[ZDM17] Zhang, H.; Diao, Y.; Meliou, A.: EXstream: Explaining Anomalies in Event Stream
Monitoring. In: EDBT. 2017.

300 Mahdi Esmailoghli et al.

cbe

Vorname Nachname et al. (Hrsg.): BTW Data Science Challenge 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Peaks and the Influence of Weather, Traffic, and Events on
Particulate Pollution

Stefan Hagedorn1, Kai-Uwe Sattler1

The task of the Data Science Challenge as part of the BTW 2019 conference is to analyze air
quality data collected by the luftdaten2 project. This project provides sensor measurements
recorded from volunteers around the world. With do-it-yourself setups people can deploy
their own sensors and report various environmental values to the project’s servers, where
they are made available as open data for further analyses. Thus, data is available only in
regions where volunteers decided to participate in the project. Since in our city, Ilmenau,
as well as in the state Thuringia only very few sensors are present, we decided to shift our
focus to a broader area around Thuringia.

1 Frameworks, Technology & Preparation

Used Frameworks & Technology To investigate the schemata and contents of the many
measurement files, we preferred a notebook system that let us easily explore the files. We
use Apache Spark (and SparkSQL) in combination with our STARK3 framework for spatial
and temporal analyses, preprocessing as well as visualization. We additionally utilize Spark
ML, e. g. for finding rules in the measurements. As programming languages we chose Scala,
Python, and R.

Data Cleaning First analyses of downloaded data reveiled that alone for a single day,
2018-02-01, six different schemata exist. Some sensors report temperature and humidity
only (DHT22), while others measure the particulate matter (SDS011). In addition to these two
we found further six sensor types that measure e. g. air pressure, altitude or another level of
particle concentration. We used the per-sensor measurement files provided in the luftdaten
archive and integrated them using our Piglet4 as well as Python scripts. In addition to the
integration, a challenging task is to find invalid measurements, e. g. due to extreme weather
condiditons, missing values, etc.
1 Technische Universität Ilmenau, Databases & Information Systems, Ilmenau, first.last@tu-ilmenau.de
2 https://luftdaten.info/

3 https://github.com/dbis-ilm/stark/

4 https://github.com/dbis-ilm/piglet

cba doi:10.18420/btw2019-ws-33

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 301

https://creativecommons.org/licenses/by-nc/3.0/
first.last@tu-ilmenau.de
https://luftdaten.info/
https://github.com/dbis-ilm/stark/
https://github.com/dbis-ilm/piglet
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-33

2 Stefan Hagedorn, Kai-Uwe Sattler

2 Analyses Goals

Particle Concentration Peaks Our first goal is to find peaks in the particle measurements
for regions. Peaks are measurements exceeding the average particle value for a short period
of time. Such peaks occur e. g. on New Year’s Eve or during commuting hours. This
is achieved by performing a spatial join with the sensors and a data set containing the
regions of interest using STARK. Then, we calculate the average value per such region
and subsequently filter the input measurements for values greater than that average. The
result is visualized on a map, showing a timeline per region when and by how much the
average particle concentration was exceeded. This information can be used to learn how
long such extreme air pollution persists. Since this also depends on the weather conditions,
we use values from weather data sets provided by the National Oceanic and Athmospheric
Administration5.

Weather Influence The weather conditions have an impact on the particle concentration
measured by the sensors. Our hypothesis is that with rainy weather more people use their
car instead of walking or taking the bike. However, since the rain will clean the air, we
expect not many peaks. In order to support this hypothesis, we plan to additionally integrate
open traffic data that can be found on various open data portals67. Besides the case for rainy
weather, we also look at the opposite weather condition: Do people use the car when it gets
too hot?

The overall idea is to find weather conditions when many people (or more people than
usual) will use their private vehicles and thus produce more particulates. The results are
temperature and precipitation values (lowest and highest) where the particle concentration
rises above average.

Particulate Matter Polution Prediction & Correlation We employ a frequent itemset
mining approach to find rules to predict the particle concentration and limit exceedings
from the weather conditions and current volume of traffic. For this, we use the traffic data as
well as “historic” weather data sets to categorize the particulate pollution. An additional
correlation is to be tested between “events” (such as the begin of New Year’s Eve, begin/end
of school vacations, or concerts, football matches etc.) in cities and the air pollution. Since
the luftdaten project continuously collects new values, the set of existing values is used as
training data and future values are used for validation.

The result of this analysis is a set of rules that can be used to predict the range in which the
particle concentration will be under forecasted weather conditions and traffic volume.

5 https://www.ncdc.noaa.gov/cdo-web/datasets#GHCND

6 http://opentraffic.io/

7 http://govdata.de

302 Stefan Hagedorn, Kai-Uwe Sattler

https://www.ncdc.noaa.gov/cdo-web/datasets#GHCND
http://opentraffic.io/
http://govdata.de

cbe

To be defined. (Hrsg.): 18. BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Prediction of air pollution with machine learning

Christian Schmitz1, Dhiren Devinder Serai2, Tatiane Escobar Gava3

Abstract: Cities worldwide are facing air quality issues, leading to bans of vehicles and lower quality
of life for inhabitants. We forecast the air quality for Stuttgart based on expected weather condition.
For that purpose, we extract, cleanse, and integrate the DHT22 and SDS11 sensors’ data to feed two
different machine learning models for predicting the particulate matter values for the near future.

1 Introduction
According to the World Health Organization (WHO) [WH16], urban air pollution increased
by more than 8% between 2008 and 2013, despite all efforts on improving air quality in
many countries around the globe. Urban air pollution may lead to a number of diseases,
including reduced lung function, respiratory infections, and aggravated asthma. We live in
Stuttgart, the city with the highest air pollution in Germany. Thus, we are directly affected.
However, we do not want to risk our health more than necessary. Therefore, we propose a
solution to predict the air quality situation for the next hours and days in the city center. This
information may support various applications of value to society, e.g., four route planning
or adapting daily habits.

2 Approach
Our initial solution predicts air pollution by integrating two data sources. The first source
is sensor data from [OK15]. In Stuttgart’s downtown area, 25 sensors collect data on
temperature, humidity, and particle matter. The second data source provides data on weather
forecast OpenWeather [Op18], and is used as input for the machine learning models in order
to predict the air quality for that given scenario (weather forecast, date, and time).

From the air pollution sensor dataset, we collect all DHT22 sensors measurements for
temperature and humidity information and SDS011 sensors’ measurements for air quality
indices (particle matter values, to be precise). We filter the dataset, so that it only contains
values from Stuttgart’s downtown area. We integrate the weather information from the
DHT22 sensors with the air quality indices from the SDS011 sensors based on the location
and time. We notice that the dataset contains many implausible sensor values. That is why
we remove those data items which were measured under unsupported weather conditions.
In the end, we have an integrated dataset containing records with particle matter values and
1 Universität Stuttgart, IPVS, Universitätsstr. 38, 70569 Stuttgart, st160269@stud.uni-stuttgart.de
2 Universität Stuttgart, IPVS, Universitätsstr. 38, 70569 Stuttgart, st161906@stud.uni-stuttgart.de
3 Universität Stuttgart, IPVS, Universitätsstr. 38, 70569 Stuttgart, st160427@stud.uni-stuttgart.de

cba doi:10.18420/btw2019-ws-34

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 303

https://creativecommons.org/licenses/by-nc/3.0/
st160269@stud.uni-stuttgart.de
st161906@stud.uni-stuttgart.de
st160427@stud.uni-stuttgart.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-34

2 Christian Schmitz, Dhiren Devinder Serai, Tatiane Escobar Gava

weather information. We use this dataset to train, test, and fine-tune our machine learning
models. We for instance use recurrent neural network regression techniques such as Long
Short-Term Memory (LSTM).

Further, we obtain relevant weather forecast data such as the hourly humidity and temperature
and feed our trained model with the forecast values, so that we finally obtain an hourly
particle matter forecast for the next days. We present the final result using a visualization
adapted to a chosen application, e.g., a plot to visualize the forecast for the next hours.

3 Cloud Services
Our solution makes use of multiple cloud services. For data cleaning and integration, we use
Google’s Cloud Dataproc service, which allows us to run Spark jobs. For machine learning,
we employ Google’s Cloud Machine Learning Engine. Further, we extract relevant weather
forecast information from [Op18].

4 Insights

Fig. 1: Hourly air particle matter in sum-
mer and spring for a Monday and Sunday.

Based on our initial data cleaning, integration, and
visualization, we get credible insights on relevant
features for our machine learning model. In Fig. 1,
we display the hourly pollution for a Sunday and
Monday in spring and summer. Multiple factors
affecting the air pollution are visible here, e.g., the
seasonal (weather) effect, traffic during rush hour, or
variation depending on day of week.

5 Next Steps
We currently have a cleaned and integrated dataset. We have also collected a list of important
features for our machine learning approach. Nest, we will evaluate different recurrent neural
network approaches such as LSTM and Gated Recurrent Unit (GRU) in order to find the most
promising approach. The model for Stuttgart will then be used to implement a predictive
application targeted to improve the quality of life of urban population.

Acknowledgements. We thank our advisors Ralf Diestelkämper and Melanie Herschel for
their support on this project.

References
[OK15] OK Lab Stuttgart: Luftdaten Info, https://archive.luftdaten.info/csv_per_month/, Stand: 28.11.2018, 2015.
[Op18] OpenWeather: Weather API - OpenWeatherMap, https://openweathermap.org/api, Stand: 28.11.2018, 2018.
[WH16] WHO: Air pollution levels rising in many of the world’s poorest cities, http://www.who.int/en/news-

room/detail/12-05-2016-air-pollution-levels-rising-in-many-of-the-world-s-poorest-cities, Stand:
24.11.2018, 2016.

304 Christian Schmitz, Dhiren Devinder Serai, Tatiane Escobar Gava

https://archive.luftdaten.info/csv_per_month/
https://openweathermap.org/api
http://www.who.int/en/news-room/detail/12-05-2016-air-pollution-levels-rising-in-many-of-the-world-s-poorest-cities
http://www.who.int/en/news-room/detail/12-05-2016-air-pollution-levels-rising-in-many-of-the-world-s-poorest-cities

cba

(Hrsg.): BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Deep Learning zur Vorhersage von Feinstaubbelastung

Georges Alkhouri1, Moritz Wilke2

1 Einleitung

Feinstaubbelastung steht seit einiger Zeit in der öffentlichen Debatte und stellt mir hoher
Wahrscheinlichkeit ein großes Gesundheitsrisiko dar. Laut WHO [Or06] kann die Redu-
zierung von Feinstaub zur Senkung verschiedener Krankheiten, wie bspw. Herzinfarkten,
Lungenkrebs und asmathischen Erkankungen dienen. Deswegen werden von der Organisa-
tion Tagesgrenzwerte von 25 µg/m3 für Partikel um 2,5 µm (PM2,5) und 50 µg/m3 für
Partikel um 10 µm (PM10) empfohlen. In diesem Beitrag zur Data Science Challenge soll
gezeigt werden, wie die vorhandenen Feinstaubsensoren in der Stadt Leipzig genutzt werden
können, um zukünftige Werte vorherzusagen.3 Eine solche Vorhersage könnte nicht nur zur
Warnung dienen, sondern auch Grundlage für kurzfristige Gegenmaßnahmen (bspw. den
Wechsel auf ÖPNV) bilden.

2 Vorverarbeitung der Sensordaten

Die vorhandenen Daten in Leipzig bringen zwei Herausforderungen mit sich. Zum Einen
braucht es für eine zuverlässige Verwendung der Feinstaubmesswerte aus einem Sensor vom
Typ SDS011 auch ein Luftfeuchtigkeitswert zum gleichen Zeitpunkt, da die Sensoren nur
zwischen einer relativen Luftfeuchtigkeit von 20%− 50% zuverlässig messen. [Bu18] Diese
Messungen sind nicht für jeden Ort vorhanden. Zum Anderen benötigt es für eine Vorhersage
eine Messreihe von mindesten einem Jahr, wenn (vermutete) zyklische Einflussfaktoren,
wie Jahreszeit, berücksichtigt werden sollen.

Abb. 1 zeigt alle Standorte mit Sensoren vom Typ SDS011 und DHT22 (Temperatur,
Luftfeuchtigkeit) in Leipzig. Da deren Verteilung keine genauere örtliche Unterteilung
innerhalb der Stadt ermöglicht und die Sensoren z.T. erst seit Anfang 2018 in Betrieb
1 Competence Center for Scalable Data Services and Solutions (ScaDS), Ritterstrasse 9-13, 04109 Leipzig,

alkhouri@informatik.uni-leipzig.de
2 Competence Center for Scalable Data Services and Solutions (ScaDS), wilke@informatik.uni-leipzig.de
3 Der Quellcode der beschriebenen Analysen und weitere Arbeiten finden sich unter htt-

ps://github.com/GeorgesAlkhouri/golddust.

cba doi:10.18420/btw2019-ws-35

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 305

https://creativecommons.org/licenses/by-sa/4.0/
alkhouri@informatik.uni-leipzig.de
wilke@informatik.uni-leipzig.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-ws-35

2 Georges Alkhouri, Moritz Wilke

Abb. 1: Sensoren in Leipzig

sind, wurden die validen Messwerte bereinigt und die mittleren Werte für Temperatur,
Luftfeuchtigkeit und Feinstaubbelastung von allen Sensoren in Leipzig zu einer Zeitreihe
zusammengefasst. Hierbei wurden stündliche Intervalle aggregiert.

3 Zeitreihenanalyse und Vorhersage

Die extrahierte Zeitreihe wurde verwendet um ein neuronales Netz zu trainieren. Zur
Vorhersage der Zielvariable PM10 wurden verschiedene Merkmale aus dem Datum und
der angegebenen Zeit des Sensors genutzt und zudem weitere Merkmale gebildet. Pro-
totypisch wurden die Merkmale Stunde, Tag des Monats und Monat genutzt und die
Merkmale Wochentag, Wochennummer und Jahreszeit konstruiert. Des Weiteren fließen
die durchschnittliche Temperatur und Luftfeuchtigkeit, in einer stündlichen Auflösung, in
die Vorhersage ein.

Der verwendete neuronale Netz-Protoypen, besteht aus einer LSTM-Schicht [HS97] mit
48 Neuronen. Um einem Overfitting vorzubeugen wurde eine regulierende Dropoutschicht
hinzugefügt und anschließend die Vorhersage von einem linearen Neuron durchgeführt.
Hierbei konnte mit diesem simplen neuronalen Netz und den weiter oben aufgeführten
Merkmalen eine mittlere quadratische Abweichung von 32, 232µg/m3 erreicht und ein
erster Eindruck der Vorhersageleistung gewonnen werden, welcher in Abb. 2 dargestellt ist.

306 Georges Alkhouri, Moritz Wilke

Deep Learning zur Vorhersage von Feinstaubbelastung 3

17 3 13 23 9 19 5 16 2 12 22 8 18
Hour

0

5

10

15

20

25

30

35

40

P1
0

Truth
Predition

Abb. 2: Erste Validierung der Vorhersage mit einem MSE von 32.232µg/m3 durch ein LSTM Netz.

Obwohl der illustrierte Zeitabschnitt, in Abb. 2, dem neuronalen Netz zum Trainingszeitpunkt
nicht bekannt war, ist ein Vorhersagbarkeit tendenziell zu erkennen.

4 Weitere Arbeiten

Um die Aussagekraft der extrahierten Zeitreihe zu erhöhen, soll diese in ein Walk-Forward-
Modell transformiert werden. Dies bedeutet, dass der Erwartungswert PM10 nach jeder
Vorhersage als Merkmal für die nächste Vorhersage zur Verfügung steht. Formal soll dies
folgendes Beispiel illustrieren:

(x0, . . . , xn)t → PM10t
(x0, . . . , xn, PM10t)t+1 → P; 10t+1

, wobei x0, . . . , xn Merkmale zur Vorhersage von PM10 darstellen und t den Zeitschritt
definiert. Weiter gilt es, die Zeitreihe unter dem Erwartungswert PM2,5 zu untersuchen und
auszuwerten.
Da exemplarisch nur ein Standort berechnet wurde, bietet sich die Möglichkeit, die
Vorhersage auf mehrere Sensoren auszudehnen. Hierbei könnten dann weitere Faktoren wie
Verkehrsdaten, Bevölkerungsdichte und Kategorisierung der Umgebung (Wohn-, Industrie-
oder Naherholungsgebiet) in die Vorhersage einfließen. Hierbei bietet sich auch an zu
prüfen, ob und wie entsprechende Daten aus öffentlichen Quellen generiert werden können.
So gibt es in vielen Städten Webcams zur Betrachtung der aktuellen Verkehrslage die
auswerten ließen. Abschließend ist eine Validierung der Qualität der PM10 Messwerte und
Vorhersagen mittels der Daten des Bundesumweltamtes4 notwendig.

4 https://www.umweltbundesamt.de/daten/luft/feinstaub-belastung

Deep Learning zur Vorhersage von Feinstaubbelastung 307

4 Georges Alkhouri, Moritz Wilke

5 Verwendete Technologien

Zur Verarbeitung der Rohdaten wurden IBM Cloud SQL Queries in Kombination mit Jupyter
Notebooks verwendet. Die Vorhersage basiert auf der Deep-Learning Bibliothek Keras
[Ch15]. Es wurde prototypisch nur ein (kombinierter) Sensor untersucht. Für die parallele
Echtzeit-Verarbeitung von mehreren Sensoren bietet sich ein cloud-basiertes Streaming
Framework, bspw. Apache Flink5 oder Spark6 an.

Literaturverzeichnis
[Bu18] Budde, Matthias; Müller, Thomas; Laquai, Bernd; Streibl, Norbert; Schwarz, Almuth;

Schindler, Gregor; Riedel, Till; Beigl, Michael; Dittler, Achim: Suitability of the Low-Cost
SDS011 Particle Sensor for Urban PM-Monitoring. In: 3rd International Conference on
Atmospheric Dust. 2018.

[Ch15] Chollet, François et al.: , Keras. https://keras.io, 2015.
[HS97] Hochreiter, Sepp; Schmidhuber, Jürgen: Long Short-term Memory. Neural computation, 9,

1997.
[Or06] Organization, World Health: Air quality guidelines: global update 2005: particulate matter,

ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, 2006.

5 https://flink.apache.org/
6 https://spark.apache.org/

308 Georges Alkhouri, Moritz Wilke

https://keras.io

Autorenverzeichnis

A
Abedjan, Ziawasch, 297
Algergawy, Alsayed, 155
Alkhouri, Georges, 305

B
Baumstark, Alexander, 215
Becher, Andreas, 51
Beer, Anna, 173
Binnig, Carsten, 29, 81
Braun, Tanya, 263
Breß, Sebastian, 87
Broneske, David, 23

C
Charfuelan, Marcela, 205

D
Damme, Patrick, 33
Duong, Manh Khoi, 163

E
Esmailoghli, Mahdi, 297

F
Faeskorn-Woyke, Heide, 97
Fenske, Wolfram, 129
Funke, Henning, 87

G
Gava, Tatiane Escobar, 303
Gavriilidis, Haralampos, 195
Gehring, Melissa, 205
Gerl, Armin, 245
Gessert, Felix, 267
Götze, Philipp, 71

Groß, Anika, 103
Grunert, Hannes, 281

H
Habich, Dirk, 23, 33
Hagedorn, Stefan, 301
Hartmann, Claudio, 287
Held, Janis, 173
Herrmann, Achim, 51
Hirn, Denis, 235

K
Kemper, Alfons, 273
Kern, Alexander, 185
Kiefer, Cornelia, 145
Klan, Friederike, 103, 135
König-Ries, Birgitta, 103

L
Lehner, Wolfgang, 33, 287

M
Mark, Volker, 297
Markl, Volker, 87, 205
Martinez, Ricardo, 297
Meyer, Holger, 281

N
Neumann, Thomas, 273

P
Papenbrock, Thorsten, 225
Pietrzyk, Johannes, 33
Pohl, Constantin, 71

R
Rabl, Tilmann, 87, 297

Rahm, Erhard, 109
Rakow, Thomas C., 97
Redyuk, Sergey, 297
Reimann, Peter, 103, 119
Ritter, Norbert, 267
Röhm, Uwe, 81
Rost, Christopher, 109

S
Saake, Gunter, 129
Sattler, Kai-Uwe, 71, 273, 301
Schindler, Sirko, 135
Schmidl, Sebastian, 225
Schmidt, Christopher, 91
Schmitz, Christian, 303
Schneider, Frederic, 225
Seeger, Bernhard, 103
Seidl, Thomas, 173
Serai, Dhiren Devinder, 303
Spieß, Marco, 119
Steinberg, Markus, 135

T
Teich, Jürgen, 51
Teubner, Jens, 273
Thor, Andreas, 109

U
Udovenko, Vladimir, 155
Uflacker, Matthias, 91

W
Wehnert, Sabine, 129
Wiese, Lena, 259
Wildermann, Stefan, 51
Wilhelm, Sebastian, 245
Wilke, Moritz, 305
Wingerath, Wolfram, 267
Woltmann, Lucas, 287

Z
Zeuch, Steffen, 87
Ziegler, Tobias, 81

P-1 Gregor Engels, Andreas Oberweis, Albert
Zündorf (Hrsg.): Modellierung 2001.

P-2 Mikhail Godlevsky, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications, ISTA’2001.

P-3 Ana M. Moreno, Reind P. van de
Riet (Hrsg.): Applications of Natural
Lan-guage to Information Systems,
NLDB’2001.

P-4 H. Wörn, J. Mühling, C. Vahl, H.-P.
Meinzer (Hrsg.): Rechner- und sensor-
gestützte Chirurgie; Workshop des SFB
414.

P-5 Andy Schürr (Hg.): OMER – Object-
Oriented Modeling of Embedded Real-
Time Systems.

P-6 Hans-Jürgen Appelrath, Rolf Beyer, Uwe
Marquardt, Heinrich C. Mayr, Claudia
Steinberger (Hrsg.): Unternehmen Hoch-
schule, UH’2001.

P-7 Andy Evans, Robert France, Ana Moreira,
Bernhard Rumpe (Hrsg.): Practical UML-
Based Rigorous Development Methods –
Countering or Integrating the extremists,
pUML’2001.

P-8 Reinhard Keil-Slawik, Johannes Magen-
heim (Hrsg.): Informatikunterricht und
Medienbildung, INFOS’2001.

P-9 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Innovative Anwendungen in
Kommunikationsnetzen, 15. DFN Arbeits-
tagung.

P-10 Mirjam Minor, Steffen Staab (Hrsg.): 1st
German Workshop on Experience Man-
agement: Sharing Experiences about the
Sharing Experience.

P-11 Michael Weber, Frank Kargl (Hrsg.):
Mobile Ad-Hoc Netzwerke, WMAN
2002.

P-12 Martin Glinz, Günther Müller-Luschnat
(Hrsg.): Modellierung 2002.

P-13 Jan von Knop, Peter Schirmbacher and
Viljan Mahni_ (Hrsg.): The Changing
Universities – The Role of Technology.

P-14 Robert Tolksdorf, Rainer Eckstein
(Hrsg.): XML-Technologien für das Se-
mantic Web – XSW 2002.

P-15 Hans-Bernd Bludau, Andreas Koop
(Hrsg.): Mobile Computing in Medicine.

P-16 J. Felix Hampe, Gerhard Schwabe
(Hrsg.): Mobile and Collaborative Busi-
ness 2002.

P-17 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Zukunft der Netze –Die Verletz-
barkeit meistern, 16. DFN Arbeitstagung.

P-18 Elmar J. Sinz, Markus Plaha (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2002.

P-19 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-3.
Okt. 2002 in Dortmund.

P-20 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-3.
Okt. 2002 in Dortmund (Ergänzungs-
band).

P-21 Jörg Desel, Mathias Weske (Hrsg.):
Promise 2002: Prozessorientierte Metho-
den und Werkzeuge für die Entwicklung
von Informationssystemen.

P-22 Sigrid Schubert, Johannes Magenheim,
Peter Hubwieser, Torsten Brinda (Hrsg.):
Forschungsbeiträge zur “Didaktik der
Informatik” – Theorie, Praxis, Evaluation.

P-23 Thorsten Spitta, Jens Borchers, Harry M.
Sneed (Hrsg.): Software Management
2002 – Fortschritt durch Beständigkeit

P-24 Rainer Eckstein, Robert Tolksdorf
(Hrsg.): XMIDX 2003 – XML-
Technologien für Middleware – Middle-
ware für XML-Anwendungen

P-25 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Commerce – Anwendungen und
Perspektiven – 3. Workshop Mobile
Commerce, Universität Augsburg,
04.02.2003

P-26 Gerhard Weikum, Harald Schöning,
Erhard Rahm (Hrsg.): BTW 2003: Daten-
banksysteme für Business, Technologie
und Web

P-27 Michael Kroll, Hans-Gerd Lipinski, Kay
Melzer (Hrsg.): Mobiles Computing in
der Medizin

P-28 Ulrich Reimer, Andreas Abecker, Steffen
Staab, Gerd Stumme (Hrsg.): WM 2003:
Professionelles Wissensmanagement –
Er-fahrungen und Visionen

P-29 Antje Düsterhöft, Bernhard Thalheim
(Eds.): NLDB’2003: Natural Language
Processing and Information Systems

P-30 Mikhail Godlevsky, Stephen Liddle,
Heinrich C. Mayr (Eds.): Information
Systems Technology and its Applications

P-31 Arslan Brömme, Christoph Busch (Eds.):
BIOSIG 2003: Biometrics and Electronic
Signatures

 GI-Edition Lecture Notes in Informatics

P-32 Peter Hubwieser (Hrsg.): Informatische
Fachkonzepte im Unterricht – INFOS
2003

P-33 Andreas Geyer-Schulz, Alfred Taudes
(Hrsg.): Informationswirtschaft: Ein
Sektor mit Zukunft

P-34 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 1)

P-35 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 2)

P-36 Rüdiger Grimm, Hubert B. Keller, Kai
Rannenberg (Hrsg.): Informatik 2003 –
Mit Sicherheit Informatik

P-37 Arndt Bode, Jörg Desel, Sabine Rath-
mayer, Martin Wessner (Hrsg.): DeLFI
2003: e-Learning Fachtagung Informatik

P-38 E.J. Sinz, M. Plaha, P. Neckel (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2003

P-39 Jens Nedon, Sandra Frings, Oliver Göbel
(Hrsg.): IT-Incident Management & IT-
Forensics – IMF 2003

P-40 Michael Rebstock (Hrsg.): Modellierung
betrieblicher Informationssysteme – Mo-
bIS 2004

P-41 Uwe Brinkschulte, Jürgen Becker, Diet-
mar Fey, Karl-Erwin Großpietsch, Chris-
tian Hochberger, Erik Maehle, Thomas
Runkler (Edts.): ARCS 2004 – Organic
and Pervasive Computing

P-42 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Economy – Transaktionen und
Prozesse, Anwendungen und Dienste

P-43 Birgitta König-Ries, Michael Klein,
Philipp Obreiter (Hrsg.): Persistance,
Scalability, Transactions – Database Me-
chanisms for Mobile Applications

P-44 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): Security, E-Learning.
E-Services

P-45 Bernhard Rumpe, Wofgang Hesse
(Hrsg.): Modellierung 2004

P-46 Ulrich Flegel, Michael Meier (Hrsg.):
Detection of Intrusions of Malware &
Vulnerability Assessment

P-47 Alexander Prosser, Robert Krimmer
(Hrsg.): Electronic Voting in Europe –
Technology, Law, Politics and Society

P-48 Anatoly Doroshenko, Terry Halpin,
Stephen W. Liddle, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications

P-49 G. Schiefer, P. Wagner, M. Morgenstern,
U. Rickert (Hrsg.): Integration und Daten-
sicherheit – Anforderungen, Konflikte und
Perspektiven

P-50 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 1) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-51 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 2) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-52 Gregor Engels, Silke Seehusen (Hrsg.):
DELFI 2004 – Tagungsband der 2.
e-Learning Fachtagung Informatik

P-53 Robert Giegerich, Jens Stoye (Hrsg.):
German Conference on Bioinformatics –
GCB 2004

P-54 Jens Borchers, Ralf Kneuper (Hrsg.):
Softwaremanagement 2004 – Outsourcing
und Integration

P-55 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): E-Science und Grid Ad-
hoc-Netze Medienintegration

P-56 Fernand Feltz, Andreas Oberweis, Benoit
Otjacques (Hrsg.): EMISA 2004 – Infor-
mationssysteme im E-Business und
E-Government

P-57 Klaus Turowski (Hrsg.): Architekturen,
Komponenten, Anwendungen

P-58 Sami Beydeda, Volker Gruhn, Johannes
Mayer, Ralf Reussner, Franz Schweiggert
(Hrsg.): Testing of Component-Based
Systems and Software Quality

P-59 J. Felix Hampe, Franz Lehner, Key
Pousttchi, Kai Ranneberg, Klaus
Turowski (Hrsg.): Mobile Business –
Processes, Platforms, Payments

P-60 Steffen Friedrich (Hrsg.): Unterrichtskon-
zepte für inforrmatische Bildung

P-61 Paul Müller, Reinhard Gotzhein, Jens B.
Schmitt (Hrsg.): Kommunikation in ver-
teilten Systemen

P-62 Federrath, Hannes (Hrsg.): „Sicherheit
2005“ – Sicherheit – Schutz und Zuver-
lässigkeit

P-63 Roland Kaschek, Heinrich C. Mayr,
Stephen Liddle (Hrsg.): Information Sys-
tems – Technology and ist Applications

P-64 Peter Liggesmeyer, Klaus Pohl, Michael
Goedicke (Hrsg.): Software Engineering
2005

P-65 Gottfried Vossen, Frank Leymann, Peter
Lockemann, Wolffried Stucky (Hrsg.):
Datenbanksysteme in Business, Techno-
logie und Web

P-66 Jörg M. Haake, Ulrike Lucke, Djamshid
Tavangarian (Hrsg.): DeLFI 2005: 3.
deutsche e-Learning Fachtagung Infor-
matik

P-67 Armin B. Cremers, Rainer Manthey,
Peter Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 1)

P-68 Armin B. Cremers, Rainer Manthey,
Peter Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 2)

P-69 Robert Hirschfeld, Ryszard Kowalcyk,
Andreas Polze, Matthias Weske (Hrsg.):
NODe 2005, GSEM 2005

P-70 Klaus Turowski, Johannes-Maria Zaha
(Hrsg.): Component-oriented Enterprise
Application (COAE 2005)

P-71 Andrew Torda, Stefan Kurz, Matthias
Rarey (Hrsg.): German Conference on
Bioinformatics 2005

P-72 Klaus P. Jantke, Klaus-Peter Fähnrich,
Wolfgang S. Wittig (Hrsg.): Marktplatz
Internet: Von e-Learning bis e-Payment

P-73 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): “Heute schon das Morgen
sehen“

P-74 Christopher Wolf, Stefan Lucks, Po-Wah
Yau (Hrsg.): WEWoRC 2005 – Western
European Workshop on Research in
Cryptology

P-75 Jörg Desel, Ulrich Frank (Hrsg.): Enter-
prise Modelling and Information Systems
Architecture

P-76 Thomas Kirste, Birgitta König-Riess, Key
Pousttchi, Klaus Turowski (Hrsg.): Mo-
bile Informationssysteme – Potentiale,
Hindernisse, Einsatz

P-77 Jana Dittmann (Hrsg.): SICHERHEIT
2006

P-78 K.-O. Wenkel, P. Wagner, M. Morgens-
tern, K. Luzi, P. Eisermann (Hrsg.): Land-
und Ernährungswirtschaft im Wandel

P-79 Bettina Biel, Matthias Book, Volker
Gruhn (Hrsg.): Softwareengineering 2006

P-80 Mareike Schoop, Christian Huemer,
Michael Rebstock, Martin Bichler
(Hrsg.): Service-Oriented Electronic
Commerce

P-81 Wolfgang Karl, Jürgen Becker, Karl-
Erwin Großpietsch, Christian Hochberger,
Erik Maehle (Hrsg.): ARCS´06

P-82 Heinrich C. Mayr, Ruth Breu (Hrsg.):
Modellierung 2006

P-83 Daniel Huson, Oliver Kohlbacher, Andrei
Lupas, Kay Nieselt and Andreas Zell
(eds.): German Conference on Bioinfor-
matics

P-84 Dimitris Karagiannis, Heinrich C. Mayr,
(Hrsg.): Information Systems Technology
and its Applications

P-85 Witold Abramowicz, Heinrich C. Mayr,
(Hrsg.): Business Information Systems

P-86 Robert Krimmer (Ed.): Electronic Voting
2006

P-87 Max Mühlhäuser, Guido Rößling, Ralf
Steinmetz (Hrsg.): DELFI 2006: 4.
e-Learning Fachtagung Informatik

P-88 Robert Hirschfeld, Andreas Polze,
Ryszard Kowalczyk (Hrsg.): NODe 2006,
GSEM 2006

P-90 Joachim Schelp, Robert Winter, Ulrich
Frank, Bodo Rieger, Klaus Turowski
(Hrsg.): Integration, Informationslogistik
und Architektur

P-91 Henrik Stormer, Andreas Meier, Michael
Schumacher (Eds.): European Conference
on eHealth 2006

P-92 Fernand Feltz, Benoît Otjacques, Andreas
Oberweis, Nicolas Poussing (Eds.): AIM
2006

P-93 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 1

P-94 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 2

P-95 Matthias Weske, Markus Nüttgens (Eds.):
EMISA 2005: Methoden, Konzepte und
Technologien für die Entwicklung von
dienstbasierten Informationssystemen

P-96 Saartje Brockmans, Jürgen Jung, York
Sure (Eds.): Meta-Modelling and Ontolo-
gies

P-97 Oliver Göbel, Dirk Schadt, Sandra Frings,
Hardo Hase, Detlef Günther, Jens Nedon
(Eds.): IT-Incident Mangament & IT-
Forensics – IMF 2006

P-98 Hans Brandt-Pook, Werner Simonsmeier
und Thorsten Spitta (Hrsg.): Beratung
in der Softwareentwicklung – Modelle,
Methoden, Best Practices

P-99 Andreas Schwill, Carsten Schulte, Marco
Thomas (Hrsg.): Didaktik der Informatik

P-100 Peter Forbrig, Günter Siegel, Markus
Schneider (Hrsg.): HDI 2006: Hochschul-
didaktik der Informatik

P-101 Stefan Böttinger, Ludwig Theuvsen,
Susanne Rank, Marlies Morgenstern (Hrsg.):
Agrarinformatik im Spannungsfeld
zwischen Regionalisierung und globalen
Wertschöpfungsketten

P-102 Otto Spaniol (Eds.): Mobile Services and
Personalized Environments

P-103 Alfons Kemper, Harald Schöning, Thomas
Rose, Matthias Jarke, Thomas Seidl,
Christoph Quix, Christoph Brochhaus
(Hrsg.): Datenbanksysteme in Business,
Technologie und Web (BTW 2007)

P-104 Birgitta König-Ries, Franz Lehner,
Rainer Malaka, Can Türker (Hrsg.)
MMS 2007: Mobilität und mobile
Informationssysteme

P-105 Wolf-Gideon Bleek, Jörg Raasch,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007

P-106 Wolf-Gideon Bleek, Henning Schwentner,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007 –
Beiträge zu den Workshops

P-107 Heinrich C. Mayr,
Dimitris Karagiannis (eds.)
Information Systems
Technology and its Applications

P-108 Arslan Brömme, Christoph Busch,
Detlef Hühnlein (eds.)
BIOSIG 2007:
Biometrics and
Electronic Signatures

P-109 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 1

P-110 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 2

P-111 Christian Eibl, Johannes Magenheim,
Sigrid Schubert, Martin Wessner (Hrsg.)
DeLFI 2007:
5. e-Learning Fachtagung
Informatik

P-112 Sigrid Schubert (Hrsg.)
Didaktik der Informatik in
Theorie und Praxis

P-113 Sören Auer, Christian Bizer, Claudia
Müller, Anna V. Zhdanova (Eds.)
The Social Semantic Web 2007
Proceedings of the 1st Conference on
Social Semantic Web (CSSW)

P-114 Sandra Frings, Oliver Göbel, Detlef Günther,
Hardo G. Hase, Jens Nedon, Dirk Schadt,
Arslan Brömme (Eds.)
IMF2007 IT-incident
management & IT-forensics
Proceedings of the 3rd International
Conference on IT-Incident Management
& IT-Forensics

P-115 Claudia Falter, Alexander Schliep,
Joachim Selbig, Martin Vingron and
Dirk Walther (Eds.)
German conference on bioinformatics
GCB 2007

P-116 Witold Abramowicz, Leszek Maciszek
(Eds.)
Business Process and Services Computing
1st International Working Conference on
Business Process and Services Computing
BPSC 2007

P-117 Ryszard Kowalczyk (Ed.)
Grid service engineering and manegement
The 4th International Conference on Grid
Service Engineering and Management
GSEM 2007

P-118 Andreas Hein, Wilfried Thoben, Hans-
Jürgen Appelrath, Peter Jensch (Eds.)
European Conference on ehealth 2007

P-119 Manfred Reichert, Stefan Strecker, Klaus
Turowski (Eds.)
Enterprise Modelling and Information
Systems Architectures
Concepts and Applications

P-120 Adam Pawlak, Kurt Sandkuhl,
Wojciech Cholewa,
Leandro Soares Indrusiak (Eds.)
Coordination of Collaborative
Engineering - State of the Art and Future
Challenges

P-121 Korbinian Herrmann, Bernd Bruegge (Hrsg.)
Software Engineering 2008
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-122 Walid Maalej, Bernd Bruegge (Hrsg.)
Software Engineering 2008 -
Workshopband
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-123 Michael H. Breitner, Martin Breunig, Elgar
Fleisch, Ley Pousttchi, Klaus Turowski
(Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Technologien,
Prozesse, Marktfähigkeit
Proceedings zur 3. Konferenz Mobile und
Ubiquitäre Informationssysteme
(MMS 2008)

P-124 Wolfgang E. Nagel, Rolf Hoffmann,
Andreas Koch (Eds.)
9th Workshop on Parallel Systems and
Algorithms (PASA)
Workshop of the GI/ITG Speciel Interest
Groups PARS and PARVA

P-125 Rolf A.E. Müller, Hans-H. Sundermeier,
Ludwig Theuvsen, Stephanie Schütze,
Marlies Morgenstern (Hrsg.)
Unternehmens-IT:
Führungsinstrument oder
Verwaltungsbürde
Referate der 28. GIL Jahrestagung

P-126 Rainer Gimnich, Uwe Kaiser, Jochen
Quante, Andreas Winter (Hrsg.)
10th Workshop Software Reengineering
(WSR 2008)

P-127 Thomas Kühne, Wolfgang Reisig,
Friedrich Steimann (Hrsg.)
Modellierung 2008

P-128 Ammar Alkassar, Jörg Siekmann (Hrsg.)
Sicherheit 2008
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 4. Jahrestagung des
Fachbereichs Sicherheit der Gesellschaft
für Informatik e.V. (GI)
2.-4. April 2008
Saarbrücken, Germany

P-129 Wolfgang Hesse, Andreas Oberweis (Eds.)
Sigsand-Europe 2008
Proceedings of the Third AIS SIGSAND
European Symposium on Analysis,
Design, Use and Societal Impact of
Information Systems

P-130 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
1. DFN-Forum Kommunikations-
technologien Beiträge der Fachtagung

P-131 Robert Krimmer, Rüdiger Grimm (Eds.)
3rd International Conference on Electronic
Voting 2008
Co-organized by Council of Europe,
Gesellschaft für Informatik and E-Voting.
CC

P-132 Silke Seehusen, Ulrike Lucke,
Stefan Fischer (Hrsg.)
DeLFI 2008:
Die 6. e-Learning Fachtagung Informatik

P-133 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 1

P-134 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 2

P-135 Torsten Brinda, Michael Fothe,
Peter Hubwieser, Kirsten Schlüter (Hrsg.)
Didaktik der Informatik –
Aktuelle Forschungsergebnisse

P-136 Andreas Beyer, Michael Schroeder (Eds.)
German Conference on Bioinformatics
GCB 2008

P-137 Arslan Brömme, Christoph Busch, Detlef
Hühnlein (Eds.)
BIOSIG 2008: Biometrics and Electronic
Signatures

P-138 Barbara Dinter, Robert Winter, Peter
Chamoni, Norbert Gronau, Klaus
Turowski (Hrsg.)
Synergien durch Integration und
Informationslogistik
Proceedings zur DW2008

P-139 Georg Herzwurm, Martin Mikusz (Hrsg.)‏
Industrialisierung des Software-
Managements
Fachtagung des GI-Fachausschusses
Management der Anwendungs entwick-
lung und -wartung im Fachbereich
Wirtschaftsinformatik

P-140 Oliver Göbel, Sandra Frings, Detlef
Günther, Jens Nedon, Dirk Schadt (Eds.)‏
IMF 2008 - IT Incident Management &
IT Forensics

P-141 Peter Loos, Markus Nüttgens,
Klaus Turowski, Dirk Werth (Hrsg.)
Modellierung betrieblicher Informations-
systeme (MobIS 2008)
Modellierung zwischen SOA und
Compliance Management

P-142 R. Bill, P. Korduan, L. Theuvsen,
M. Morgenstern (Hrsg.)
Anforderungen an die Agrarinformatik
durch Globalisierung und
Klimaveränderung

P-143 Peter Liggesmeyer, Gregor Engels,
Jürgen Münch, Jörg Dörr,
Norman Riegel (Hrsg.)
Software Engineering 2009
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-144 Johann-Christoph Freytag, Thomas Ruf,
Wolfgang Lehner, Gottfried Vossen
(Hrsg.)
Datenbanksysteme in Business,
Technologie und Web (BTW)

P-145 Knut Hinkelmann, Holger Wache (Eds.)
WM2009: 5th Conference on Professional
Knowledge Management

P-146 Markus Bick, Martin Breunig,
Hagen Höpfner (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Entwicklung,
Implementierung und Anwendung
4. Konferenz Mobile und Ubiquitäre
Informationssysteme (MMS 2009)

P-147 Witold Abramowicz, Leszek Maciaszek,
Ryszard Kowalczyk, Andreas Speck (Eds.)
Business Process, Services Computing
and Intelligent Service Management
BPSC 2009 · ISM 2009 · YRW-MBP
2009

P-148 Christian Erfurth, Gerald Eichler,
Volkmar Schau (Eds.)
9th International Conference on Innovative
Internet Community Systems
I2CS 2009

P-149 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
2. DFN-Forum
Kommunikationstechnologien
Beiträge der Fachtagung

P-150 Jürgen Münch, Peter Liggesmeyer (Hrsg.)
Software Engineering
2009 - Workshopband

P-151 Armin Heinzl, Peter Dadam, Stefan Kirn,
Peter Lockemann (Eds.)
PRIMIUM
Process Innovation for
Enterprise Software

P-152 Jan Mendling, Stefanie Rinderle-Ma,
 Werner Esswein (Eds.)
 Enterprise Modelling and Information

Systems Architectures
 Proceedings of the 3rd Int‘l Workshop

EMISA 2009

P-153 Andreas Schwill,
Nicolas Apostolopoulos (Hrsg.)
Lernen im Digitalen Zeitalter
DeLFI 2009 – Die 7. E-Learning
Fachtagung Informatik

P-154 Stefan Fischer, Erik Maehle
Rüdiger Reischuk (Hrsg.)
INFORMATIK 2009
Im Focus das Leben

P-155 Arslan Brömme, Christoph Busch,
Detlef Hühnlein (Eds.)
BIOSIG 2009:
Biometrics and Electronic Signatures
Proceedings of the Special Interest Group
on Biometrics and Electronic Signatures

P-156 Bernhard Koerber (Hrsg.)
Zukunft braucht Herkunft
25 Jahre »INFOS – Informatik und
Schule«

P-157 Ivo Grosse, Steffen Neumann,
Stefan Posch, Falk Schreiber,
Peter Stadler (Eds.)
German Conference on Bioinformatics
2009

P-158 W. Claupein, L. Theuvsen, A. Kämpf,
M. Morgenstern (Hrsg.)
Precision Agriculture
Reloaded – Informationsgestützte
Landwirtschaft

P-159 Gregor Engels, Markus Luckey,
Wilhelm Schäfer (Hrsg.)
Software Engineering 2010

P-160 Gregor Engels, Markus Luckey,
Alexander Pretschner, Ralf Reussner
(Hrsg.)
Software Engineering 2010 –
Workshopband
(inkl. Doktorandensymposium)

P-161 Gregor Engels, Dimitris Karagiannis
Heinrich C. Mayr (Hrsg.)
Modellierung 2010

P-162 Maria A. Wimmer, Uwe Brinkhoff,
Siegfried Kaiser, Dagmar Lück-
Schneider, Erich Schweighofer,
Andreas Wiebe (Hrsg.)
Vernetzte IT für einen effektiven Staat
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI) 2010

P-163 Markus Bick, Stefan Eulgem,
Elgar Fleisch, J. Felix Hampe,
Birgitta König-Ries, Franz Lehner,
Key Pousttchi, Kai Rannenberg (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme
Technologien, Anwendungen und
Dienste zur Unterstützung von mobiler
Kollaboration

P-164 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2010: Biometrics and Electronic
Signatures Proceedings of the Special
Interest Group on Biometrics and
Electronic Signatures

P-165 Gerald Eichler, Peter Kropf,
Ulrike Lechner, Phayung Meesad,
Herwig Unger (Eds.)
10th International Conference on
Innovative Internet Community Systems
(I2CS) – Jubilee Edition 2010 –

P-166 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
3. DFN-Forum Kommunikationstechnologien
Beiträge der Fachtagung

P-167 Robert Krimmer, Rüdiger Grimm (Eds.)
4th International Conference on
Electronic Voting 2010
co-organized by the Council of Europe,
Gesellschaft für Informatik and
E-Voting.CC

P-168 Ira Diethelm, Christina Dörge,
Claudia Hildebrandt,
Carsten Schulte (Hrsg.)
Didaktik der Informatik
Möglichkeiten empirischer
Forschungsmethoden und Perspektiven
der Fachdidaktik

P-169 Michael Kerres, Nadine Ojstersek
Ulrik Schroeder, Ulrich Hoppe (Hrsg.)
DeLFI 2010 - 8. Tagung
der Fachgruppe E-Learning
der Gesellschaft für Informatik e.V.

P-170 Felix C. Freiling (Hrsg.)
Sicherheit 2010
Sicherheit, Schutz und Zuverlässigkeit

P-171 Werner Esswein, Klaus Turowski,
Martin Juhrisch (Hrsg.)
Modellierung betrieblicher
Informationssysteme (MobIS 2010)
Modellgestütztes Management

P-172 Stefan Klink, Agnes Koschmider
Marco Mevius, Andreas Oberweis (Hrsg.)
EMISA 2010
Einflussfaktoren auf die Entwicklung
flexibler, integrierter Informationssysteme
Beiträge des Workshops
der GI-Fachgruppe EMISA
(Entwicklungsmethoden für Infor-
mationssysteme und deren Anwendung)

P-173 Dietmar Schomburg,
Andreas Grote (Eds.)
German Conference on Bioinformatics
2010

P-174 Arslan Brömme, Torsten Eymann,
Detlef Hühnlein, Heiko Roßnagel,
Paul Schmücker (Hrsg.)
perspeGKtive 2010
Workshop „Innovative und sichere
Informationstechnologie für das
Gesundheitswesen von morgen“

P-175 Klaus-Peter Fähnrich,
Bogdan Franczyk (Hrsg.)
INFORMATIK 2010
Service Science – Neue Perspektiven für
die Informatik
Band 1

P-176 Klaus-Peter Fähnrich,
Bogdan Franczyk (Hrsg.)
INFORMATIK 2010
Service Science – Neue Perspektiven für
die Informatik
Band 2

P-177 Witold Abramowicz, Rainer Alt,
Klaus-Peter Fähnrich, Bogdan Franczyk,
Leszek A. Maciaszek (Eds.)
INFORMATIK 2010
Business Process and Service Science –
Proceedings of ISSS and BPSC

P-178 Wolfram Pietsch, Benedikt Krams (Hrsg.)
 Vom Projekt zum Produkt
 Fachtagung des GI-

Fachausschusses Management der
Anwendungsentwicklung und -wartung
im Fachbereich Wirtschafts-informatik
(WI-MAW), Aachen, 2010

P-179 Stefan Gruner, Bernhard Rumpe (Eds.)
FM+AM`2010
Second International Workshop on
Formal Methods and Agile Methods

P-180 Theo Härder, Wolfgang Lehner,
Bernhard Mitschang, Harald Schöning,
Holger Schwarz (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW)
14. Fachtagung des GI-Fachbereichs
„Datenbanken und Informationssysteme“
(DBIS)

P-181 Michael Clasen, Otto Schätzel,
Brigitte Theuvsen (Hrsg.)
Qualität und Effizienz durch
informationsgestützte Landwirtschaft,
Fokus: Moderne Weinwirtschaft

P-182 Ronald Maier (Hrsg.)
6th Conference on Professional
Knowledge Management
From Knowledge to Action

P-183 Ralf Reussner, Matthias Grund, Andreas
Oberweis, Walter Tichy (Hrsg.)
Software Engineering 2011
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-184 Ralf Reussner, Alexander Pretschner,
Stefan Jähnichen (Hrsg.)
Software Engineering 2011
Workshopband
(inkl. Doktorandensymposium)

P-185 Hagen Höpfner, Günther Specht,
Thomas Ritz, Christian Bunse (Hrsg.)
MMS 2011: Mobile und ubiquitäre
Informationssysteme Proceedings zur
6. Konferenz Mobile und Ubiquitäre
Informationssysteme (MMS 2011)

P-186 Gerald Eichler, Axel Küpper,
Volkmar Schau, Hacène Fouchal,
Herwig Unger (Eds.)
11th International Conference on
Innovative Internet Community Systems
(I2CS)

P-187 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
4. DFN-Forum Kommunikations-
technologien, Beiträge der Fachtagung
20. Juni bis 21. Juni 2011 Bonn

P-188 Holger Rohland, Andrea Kienle,
Steffen Friedrich (Hrsg.)
DeLFI 2011 – Die 9. e-Learning
Fachtagung Informatik
der Gesellschaft für Informatik e.V.
5.–8. September 2011, Dresden

P-189 Thomas, Marco (Hrsg.)
Informatik in Bildung und Beruf
INFOS 2011
14. GI-Fachtagung Informatik und Schule

P-190 Markus Nüttgens, Oliver Thomas,
Barbara Weber (Eds.)
Enterprise Modelling and Information
Systems Architectures (EMISA 2011)

P-191 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2011
International Conference of the
Biometrics Special Interest Group

P-192 Hans-Ulrich Heiß, Peter Pepper, Holger
Schlingloff, Jörg Schneider (Hrsg.)
INFORMATIK 2011
Informatik schafft Communities

P-193 Wolfgang Lehner, Gunther Piller (Hrsg.)
IMDM 2011

P-194 M. Clasen, G. Fröhlich, H. Bernhardt,
K. Hildebrand, B. Theuvsen (Hrsg.)
Informationstechnologie für eine
nachhaltige Landbewirtschaftung
Fokus Forstwirtschaft

P-195 Neeraj Suri, Michael Waidner (Hrsg.)
Sicherheit 2012
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 6. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)

P-196 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2012
Proceedings of the 11th International
Conference of the Biometrics Special
Interest Group

P-197 Jörn von Lucke, Christian P. Geiger,
Siegfried Kaiser, Erich Schweighofer,
Maria A. Wimmer (Hrsg.)
Auf dem Weg zu einer offenen, smarten
und vernetzten Verwaltungskultur
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI)
2012

P-198 Stefan Jähnichen, Axel Küpper,
Sahin Albayrak (Hrsg.)
Software Engineering 2012
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-199 Stefan Jähnichen, Bernhard Rumpe,
Holger Schlingloff (Hrsg.)
Software Engineering 2012
Workshopband

P-200 Gero Mühl, Jan Richling, Andreas
Herkersdorf (Hrsg.)
ARCS 2012 Workshops

P-201 Elmar J. Sinz Andy Schürr (Hrsg.)
Modellierung 2012

P-202 Andrea Back, Markus Bick,
Martin Breunig, Key Pousttchi,
Frédéric Thiesse (Hrsg.)
MMS 2012:Mobile und Ubiquitäre
Informationssysteme

P-203 Paul Müller, Bernhard Neumair,
Helmut Reiser, Gabi Dreo Rodosek (Hrsg.)
5. DFN-Forum Kommunikations-
technologien
Beiträge der Fachtagung

P-204 Gerald Eichler, Leendert W. M.
Wienhofen, Anders Kofod-Petersen,
Herwig Unger (Eds.)
12th International Conference on
Innovative Internet Community Systems
(I2CS 2012)

P-205 Manuel J. Kripp, Melanie Volkamer,
Rüdiger Grimm (Eds.)
5th International Conference on Electronic
Voting 2012 (EVOTE2012)
Co-organized by the Council of Europe,
Gesellschaft für Informatik and E-Voting.CC

P-206 Stefanie Rinderle-Ma,
Mathias Weske (Hrsg.)
EMISA 2012
Der Mensch im Zentrum der Modellierung

P-207 Jörg Desel, Jörg M. Haake,
Christian Spannagel (Hrsg.)
DeLFI 2012: Die 10. e-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V.
24.–26. September 2012

P-208 Ursula Goltz, Marcus Magnor,
Hans-Jürgen Appelrath, Herbert Matthies,
Wolf-Tilo Balke, Lars Wolf (Hrsg.)
INFORMATIK 2012

P-209 Hans Brandt-Pook, André Fleer, Thorsten
Spitta, Malte Wattenberg (Hrsg.)
Nachhaltiges Software Management

P-210 Erhard Plödereder, Peter Dencker,
Herbert Klenk, Hubert B. Keller,
Silke Spitzer (Hrsg.)
Automotive – Safety & Security 2012
Sicherheit und Zuverlässigkeit für
automobile Informationstechnik

P-211 M. Clasen, K. C. Kersebaum, A.
Meyer-Aurich, B. Theuvsen (Hrsg.)
Massendatenmanagement in der
Agrar- und Ernährungswirtschaft
Erhebung - Verarbeitung - Nutzung
Referate der 33. GIL-Jahrestagung
20. – 21. Februar 2013, Potsdam

P-212 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2013
Proceedings of the 12th International
Conference of the Biometrics
Special Interest Group
04.–06. September 2013
Darmstadt, Germany

P-213 Stefan Kowalewski,
Bernhard Rumpe (Hrsg.)
Software Engineering 2013
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-214 Volker Markl, Gunter Saake, Kai-Uwe
Sattler, Gregor Hackenbroich, Bernhard Mit
schang, Theo Härder, Veit Köppen (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW) 2013
13. – 15. März 2013, Magdeburg

P-215 Stefan Wagner, Horst Lichter (Hrsg.)
Software Engineering 2013
Workshopband
(inkl. Doktorandensymposium)
26. Februar – 1. März 2013, Aachen

P-216 Gunter Saake, Andreas Henrich,
Wolfgang Lehner, Thomas Neumann,
Veit Köppen (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW) 2013 –
Workshopband
11. – 12. März 2013, Magdeburg

P-217 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)
6. DFN-Forum Kommunikations-
technologien
Beiträge der Fachtagung
03.–04. Juni 2013, Erlangen

P-218 Andreas Breiter, Christoph Rensing (Hrsg.)
DeLFI 2013: Die 11 e-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V. (GI)
8. – 11. September 2013, Bremen

P-219 Norbert Breier, Peer Stechert,
Thomas Wilke (Hrsg.)
Informatik erweitert Horizonte
INFOS 2013
15. GI-Fachtagung Informatik und Schule
26. – 28. September 2013

P-220 Matthias Horbach (Hrsg.)
INFORMATIK 2013
Informatik angepasst an Mensch,
Organisation und Umwelt
16. – 20. September 2013, Koblenz

P-221 Maria A. Wimmer, Marijn Janssen,
Ann Macintosh, Hans Jochen Scholl,
Efthimios Tambouris (Eds.)
Electronic Government and
Electronic Participation
Joint Proceedings of Ongoing Research of
IFIP EGOV and IFIP ePart 2013
16. – 19. September 2013, Koblenz

P-222 Reinhard Jung, Manfred Reichert (Eds.)
 Enterprise Modelling

and Information Systems Architectures
(EMISA 2013)

 St. Gallen, Switzerland
September 5. – 6. 2013

P-223 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
Open Identity Summit 2013
10. – 11. September 2013
Kloster Banz, Germany

P-224 Eckhart Hanser, Martin Mikusz, Masud
Fazal-Baqaie (Hrsg.)
Vorgehensmodelle 2013
Vorgehensmodelle – Anspruch und
Wirklichkeit
20. Tagung der Fachgruppe
Vorgehensmodelle im Fachgebiet
Wirtschaftsinformatik (WI-VM) der
Gesellschaft für Informatik e.V.
Lörrach, 2013

P-225 Hans-Georg Fill, Dimitris Karagiannis,
Ulrich Reimer (Hrsg.)
Modellierung 2014
19. – 21. März 2014, Wien

P-226 M. Clasen, M. Hamer, S. Lehnert,
B. Petersen, B. Theuvsen (Hrsg.)
IT-Standards in der Agrar- und
Ernährungswirtschaft Fokus: Risiko- und
Krisenmanagement
Referate der 34. GIL-Jahrestagung
24. – 25. Februar 2014, Bonn

P-227 Wilhelm Hasselbring,
Nils Christian Ehmke (Hrsg.)
Software Engineering 2014
Fachtagung des GI-Fachbereichs
Softwaretechnik
25. – 28. Februar 2014
Kiel, Deutschland

P-228 Stefan Katzenbeisser, Volkmar Lotz,
Edgar Weippl (Hrsg.)
Sicherheit 2014
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 7. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)
19. – 21. März 2014, Wien

P-229 Dagmar Lück-Schneider, Thomas
Gordon, Siegfried Kaiser, Jörn von
Lucke,Erich Schweighofer, Maria
A.Wimmer, Martin G. Löhe (Hrsg.)
Gemeinsam Electronic Government
ziel(gruppen)gerecht gestalten und
organisieren
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI)
2014, 20.-21. März 2014 in Berlin

P-230 Arslan Brömme, Christoph Busch (Eds.)
 BIOSIG 2014
 Proceedings of the 13th International

Conference of the Biometrics Special
Interest Group

 10. – 12. September 2014 in
 Darmstadt, Germany

P-231 Paul Müller, Bernhard Neumair,
Helmut Reiser, Gabi Dreo Rodosek
(Hrsg.)
7. DFN-Forum
Kommunikationstechnologien
16. – 17. Juni 2014
Fulda

P-232 E. Plödereder, L. Grunske, E. Schneider,
D. Ull (Hrsg.)

 INFORMATIK 2014
 Big Data – Komplexität meistern
 22. – 26. September 2014
 Stuttgart

P-233 Stephan Trahasch, Rolf Plötzner, Gerhard
Schneider, Claudia Gayer, Daniel Sassiat,
Nicole Wöhrle (Hrsg.)

 DeLFI 2014 – Die 12. e-Learning
 Fachtagung Informatik
 der Gesellschaft für Informatik e.V.
 15. – 17. September 2014
 Freiburg

P-234 Fernand Feltz, Bela Mutschler, Benoît
Otjacques (Eds.)

 Enterprise Modelling and Information
Systems Architectures

 (EMISA 2014)
 Luxembourg, September 25-26, 2014

P-235 Robert Giegerich,
Ralf Hofestädt,

 Tim W. Nattkemper (Eds.)
 German Conference on
 Bioinformatics 2014
 September 28 – October 1
 Bielefeld, Germany

P-236 Martin Engstler, Eckhart Hanser,
Martin Mikusz, Georg Herzwurm (Hrsg.)

 Projektmanagement und
Vorgehensmodelle 2014

 Soziale Aspekte und Standardisierung
 Gemeinsame Tagung der Fachgruppen

Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik der
Gesellschaft für Informatik e.V., Stuttgart
2014

P-237 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
 Open Identity Summit 2014
 4.–6. November 2014
 Stuttgart, Germany

P-238 Arno Ruckelshausen, Hans-Peter
Schwarz, Brigitte Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Referate der 35. GIL-Jahrestagung
23. – 24. Februar 2015, Geisenheim

P-239 Uwe Aßmann, Birgit Demuth, Thorsten
Spitta, Georg Püschel, Ronny Kaiser
(Hrsg.)
Software Engineering & Management
2015
17.-20. März 2015, Dresden

P-240 Herbert Klenk, Hubert B. Keller, Erhard
Plödereder, Peter Dencker (Hrsg.)
Automotive – Safety & Security 2015
Sicherheit und Zuverlässigkeit für
automobile Informationstechnik
21.–22. April 2015, Stuttgart

P-241 Thomas Seidl, Norbert Ritter,
Harald Schöning, Kai-Uwe Sattler,
Theo Härder, Steffen Friedrich,
Wolfram Wingerath (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2015)
04. – 06. März 2015, Hamburg

P-242 Norbert Ritter, Andreas Henrich,
Wolfgang Lehner, Andreas Thor,
Steffen Friedrich, Wolfram Wingerath
(Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2015) –
Workshopband
02. – 03. März 2015, Hamburg

P-243 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)

 8. DFN-Forum
Kommunikationstechnologien
06.–09. Juni 2015, Lübeck

P-244 Alfred Zimmermann,
Alexander Rossmann (Eds.)
Digital Enterprise Computing
(DEC 2015)
Böblingen, Germany June 25-26, 2015

P-245 Arslan Brömme, Christoph Busch ,
Christian Rathgeb, Andreas Uhl (Eds.)
BIOSIG 2015
Proceedings of the 14th International
Conference of the Biometrics Special
Interest Group
09.–11. September 2015
Darmstadt, Germany

P-246 Douglas W. Cunningham, Petra Hofstedt,
Klaus Meer, Ingo Schmitt (Hrsg.)
INFORMATIK 2015
28.9.-2.10. 2015, Cottbus

P-247 Hans Pongratz, Reinhard Keil (Hrsg.)
DeLFI 2015 – Die 13. E-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V. (GI)
1.–4. September 2015
München

P-248 Jens Kolb, Henrik Leopold, Jan Mendling
(Eds.)
Enterprise Modelling and Information
Systems Architectures
Proceedings of the 6th Int. Workshop on
Enterprise Modelling and Information
Systems Architectures, Innsbruck, Austria
September 3-4, 2015

P-249 Jens Gallenbacher (Hrsg.)
Informatik
allgemeinbildend begreifen
INFOS 2015 16. GI-Fachtagung
Informatik und Schule
20.–23. September 2015

P-250 Martin Engstler, Masud Fazal-Baqaie,
Eckhart Hanser, Martin Mikusz,
Alexander Volland (Hrsg.)
Projektmanagement und
Vorgehensmodelle 2015
Hybride Projektstrukturen erfolgreich
umsetzen
Gemeinsame Tagung der Fachgruppen
Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik
der Gesellschaft für Informatik e.V.,
Elmshorn 2015

P-251 Detlef Hühnlein, Heiko Roßnagel,
Raik Kuhlisch, Jan Ziesing (Eds.)
Open Identity Summit 2015
10.–11. November 2015
Berlin, Germany

P-252 Jens Knoop, Uwe Zdun (Hrsg.)
Software Engineering 2016
Fachtagung des GI-Fachbereichs
Softwaretechnik
23.–26. Februar 2016, Wien

P-253 A. Ruckelshausen, A. Meyer-Aurich,
T. Rath, G. Recke, B. Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Fokus: Intelligente Systeme – Stand der
Technik und neue Möglichkeiten
Referate der 36. GIL-Jahrestagung
22.-23. Februar 2016, Osnabrück

P-254 Andreas Oberweis, Ralf Reussner (Hrsg.)
Modellierung 2016
2.–4. März 2016, Karlsruhe

P-255 Stefanie Betz, Ulrich Reimer (Hrsg.)
Modellierung 2016 Workshopband
2.–4. März 2016, Karlsruhe

P-256 Michael Meier, Delphine Reinhardt,
Steffen Wendzel (Hrsg.)
Sicherheit 2016
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 8. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)
5.–7. April 2016, Bonn

P-257 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)
9. DFN-Forum
Kommunikationstechnologien
31. Mai – 01. Juni 2016, Rostock

P-258 Dieter Hertweck, Christian Decker (Eds.)
Digital Enterprise Computing (DEC 2016)
14.–15. Juni 2016, Böblingen

P-259 Heinrich C. Mayr, Martin Pinzger (Hrsg.)
INFORMATIK 2016
26.–30. September 2016, Klagenfurt

P-260 Arslan Brömme, Christoph Busch,
Christian Rathgeb, Andreas Uhl (Eds.)
BIOSIG 2016
Proceedings of the 15th International
Conference of the Biometrics Special
Interest Group
21.–23. September 2016, Darmstadt

P-261 Detlef Rätz, Michael Breidung, Dagmar
Lück-Schneider, Siegfried Kaiser, Erich
Schweighofer (Hrsg.)
Digitale Transformation: Methoden,
Kompetenzen und Technologien für die
Verwaltung
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI) 2016
22.–23. September 2016, Dresden

P-262 Ulrike Lucke, Andreas Schwill,
Raphael Zender (Hrsg.)
DeLFI 2016 – Die 14. E-Learning
Fachtagung Informatik
der Gesellschaft für Informatik e.V. (GI)
11.–14. September 2016, Potsdam

P-263 Martin Engstler, Masud Fazal-Baqaie,
Eckhart Hanser, Oliver Linssen, Martin
Mikusz, Alexander Volland (Hrsg.)
Projektmanagement und
Vorgehensmodelle 2016
Arbeiten in hybriden Projekten: Das
Sowohl-als-auch von Stabilität und
Dynamik
Gemeinsame Tagung der Fachgruppen
Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik
der Gesellschaft für Informatik e.V.,
Paderborn 2016

P-264 Detlef Hühnlein, Heiko Roßnagel,
Christian H. Schunck, Maurizio Talamo
(Eds.)
Open Identity Summit 2016
der Gesellschaft für Informatik e.V. (GI)
13.–14. October 2016, Rome, Italy

P-265 Bernhard Mitschang, Daniela
Nicklas,Frank Leymann, Harald
Schöning, Melanie Herschel, Jens
Teubner, Theo Härder, Oliver Kopp,
Matthias Wieland (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2017)
6.–10. März 2017, Stuttgart

P-266 Bernhard Mitschang, Norbert Ritter,
Holger Schwarz, Meike Klettke, Andreas
Thor, Oliver Kopp, Matthias Wieland
(Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2017)
Workshopband
6.–7. März 2017, Stuttgart

P-267 Jan Jürjens, Kurt Schneider (Hrsg.)
Software Engineering 2017
21.–24. Februar 2017, Hannover

P-268 A. Ruckelshausen, A. Meyer-Aurich,
W. Lentz, B. Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Fokus: Digitale Transformation –
Wege in eine zukunftsfähige
Landwirtschaft
Referate der 37. GIL-Jahrestagung
06.–07. März 2017, Dresden

P-269 Peter Dencker, Herbert Klenk, Hubert
Keller, Erhard Plödereder (Hrsg.)
Automotive – Safety & Security 2017
30.–31. Mai 2017, Stuttgart

P-270 Arslan Brömme, Christoph Busch,
Antitza Dantcheva, Christian Rathgeb,
Andreas Uhl (Eds.)
BIOSIG 2017
20.–22. September 2017, Darmstadt

P-271 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)
10. DFN-Forum Kommunikations-
technologien
30. – 31. Mai 2017, Berlin

P-272 Alexander Rossmann, Alfred
Zimmermann (eds.)
Digital Enterprise Computing
(DEC 2017)
11.–12. Juli 2017, Böblingen

P-273 Christoph Igel, Carsten Ullrich,
Martin Wessner (Hrsg.)
BILDUNGSRÄUME
DeLFI 2017
Die 15. e-Learning Fachtagung Informatik
der Gesellschaft für Informatik e.V. (GI)
5. bis 8. September 2017, Chemnitz

P-274 Ira Diethelm (Hrsg.)
Informatische Bildung zum Verstehen
und Gestalten der digitalen Welt
13.–15. September 2017, Oldenburg

P-275 Maximilian Eibl, Martin Gaedke (Hrsg.)
INFORMATIK 2017
25.–29. September 2017, Chemnitz

P276 Alexander Volland, Martin Engstler,
Masud Fazal-Baqaie, Eckhart Hanser,
Oliver Linssen, Martin Mikusz (Hrsg.)
Projektmanagement und
Vorgehensmodelle 2017
Die Spannung zwischen dem Prozess
und den Menschen im Projekt
Gemeinsame Tagung der Fachgruppen
Projektmanagement und
Vorgehensmodelle im Fachgebiet
Wirtschaftsinformatik der
Gesellschaft für Informatik e.V.
in Kooperation mit der Fachgruppe
IT-Projektmanagement der GPM e.V.,
Darmstadt 2017

P-277 Lothar Fritsch, Heiko Roßnagel,
Detlef Hühnlein (Hrsg.)
Open Identity Summit 2017
5.–6. October 2017, Karlstad, Sweden

P-278 Arno Ruckelshausen,
Andreas Meyer-Aurich, Karsten Borchard,
Constanze Hofacker, Jens-Peter Loy,
Rolf Schwerdtfeger,
Hans-Hennig Sundermeier, Helga Floto,
Brigitte Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Referate der 38. GIL-Jahrestagung
26.–27. Februar 2018, Kiel

P-279 Matthias Tichy, Eric Bodden,
Marco Kuhrmann, Stefan Wagner,
Jan-Philipp Steghöfer (Hrsg.)
Software Engineering und Software
Management 2018
5.–9. März 2018, Ulm

P-280 Ina Schaefer, Dimitris Karagiannis,
Andreas Vogelsang, Daniel Méndez,
Christoph Seidl (Hrsg.)
Modellierung 2018
21.–23. Februar 2018, Braunschweig

P-281 Hanno Langweg, Michael Meier, Bernhard
C. Witt, Delphine Reinhardt (Hrsg.)
Sicherheit 2018
Sicherheit, Schutz und Zuverlässigkeit
25.–27. April 2018, Konstanz

P-282 Arslan Brömme, Christoph Busch,
Antitza Dantcheva, Christian Rathgeb,
Andreas Uhl (Eds.)
BIOSIG 2018
Proceedings of the 17th International
Conference of the Biometrics Special
Interest Group
26.–28. September 2018
Darmstadt, Germany

P-283 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)
11. DFN-Forum Kommunikations-
technologien
27.–28. Juni 2018, Günzburg

P-284 Detlef Krömker, Ulrik Schroeder (Hrsg.)
DeLFI 2018 – Die 16. E-Learning
Fachtagung Informatik
10.–12. September 2018, Frankfurt a. M.

P-285 Christian Czarnecki, Carsten Brockmann,
Eldar Sultanow, Agnes Koschmider,
Annika Selzer (Hrsg.)
Workshops der INFORMATIK 2018 -
Architekturen, Prozesse, Sicherheit und
Nachhaltigkeit
26.–27. September 2018, Berlin

P-286 Martin Mikusz, Alexander Volland, Martin
Engstler, Masud Fazal-Baqaie, Eckhart
Hanser, Oliver Linssen (Hrsg.)
Projektmanagement und
Vorgehensmodelle 2018
Der Einfluss der Digitalisierung auf
Projektmanagementmethoden und
Entwicklungsprozesse
Düsseldorf 2018

The titles can be purchased at:

Köllen Druck + Verlag GmbH
Ernst-Robert-Curtius-Str. 14 · D-53117 Bonn
Fax: +49 (0)228/9898222
E-Mail: druckverlag@koellen.de

P-287 A. Meyer-Aurich, M. Gandorfer, N. Barta,
A. Gronauer, J. Kantelhardt, H. Floto (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Fokus: Digitalisierung für
landwirtschaftliche Betriebe in
kleinstrukturierten Regionen – ein
Widerspruch in sich?
Referate der 39. GIL-Jahrestagung
18.–19. Februar 2019, Wien

P-289 Torsten Grust, Felix Naumann, Alexander
Böhm, Wolfgang Lehner, Jens Teubner,
Meike Klettke, Theo Härder, Erhard
Rahm, Andreas Heuer, Holger Meyer
(Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2019)
4.–8. März 2019 in Rostock

P-290 Holger Meyer, Norbert Ritter, Andreas
Thor, Daniela Nicklas, Andreas Heuer,
Meike Klettke (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2019)
Workshopband
4.–8. März 2019 in Rostock

P-291 Michael Räckers, Sebastian Halsbenning,
Detlef Rätz, David Richter,
Erich Schweighofer (Hrsg.)
Digitalisierung von Staat und Verwaltung
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI) 2019
6.–7. März 2019 in Münster

P-292 Steffen Becker, Ivan Bogicevic,Georg
Herzwurm, Stefan Wagner (Hrsg.)
Software Engineering and Software
Management 2019
18.–22. Februar 2019 in Stuttgart

“BTW 2019” is the 18th event in a conference series focusing on a broad range of data-
base topics from a variety of perspectives. With its emphasis on lively discussions and
cross-fertilization of academia and industry, it provides a valuable platform to further
the state of the art in database foundations and techniques for high-performance
query processing and optimization, cloud data management, text and graph process-
ing, and big data analytics, among others. This volume contains contributions from
the refereed workshop program, the refereed student program, the tutorials, and the
data science challenge.

ISSN 1617-5468
ISBN 978-3-88579-684-8

Gesellschaft für Informatik e.V. (GI)

publishes this series in order to make available to a broad public
recent findings in informatics (i.e. computer science and informa-
tion systems), to document conferences that are organized in co-
operation with GI and to publish the annual GI Award dissertation.

Broken down into
• seminars
• proceedings
• dissertations
• thematics
current topics are dealt with from the vantage point of research and
development, teaching and further training in theory and practice.
The Editorial Committee uses an intensive review process in order
to ensure high quality contributions.

The volumes are published in German or English.

Information: http://www.gi.de/service/publikationen/lni/

	Titelseite
	Vorwort
	Tagungsleitung
	Programmkomitee
	Organisationsteam
	Inhaltsverzeichnis
	1st Workshop on Novel Data Management Ideas on Heterogeneous (Co-)Processors (NoDMC)
	Preface
	1st Workshop on Novel Data Management Ideas on Heterogeneous (Co-)Processors (NoDMC) – David Broneske , Dirk Habich

	Invited Talk
	DPI: The Data Processing Interface for Modern Networks (Extended Abstract) – Carsten Binnig

	Workshop Papers
	First Investigations of the Vector Supercomputer SX-Aurora TSUBASA as a Co-Processor for Database Systems – Johannes Pietrzyk , Dirk Habich , Patrick Damme , Wolfgang Lehner
	ReProVide: Towards Utilizing Heterogeneous Partially Reconfigurable Architectures for Near-Memory Data Processing – Andreas Becher , Achim Herrmann , Stefan Wildermann , Jürgen Teich
	Query Planning for Transactional Stream Processing on Heterogeneous Hardware: Opportunities and Limitations – Philipp Götze , Constantin Pohl , Kai-Uwe Sattler
	Skew-resilient Query Processing for Fast Networks – Tobias Ziegler , Carsten Binnig , Uwe Röhm
	An Overview of Hawk: A Hardware-Tailored Code Generator for the Heterogeneous Many Core Age – Sebastian Breß , Henning Funke , Steffen Zeuch , Tilmann Rabl , Volker Markl
	Workload-Driven Data Placement for GPU-Accelerated Database Management Systems – Christopher Schmidt , Matthias Uflacker

	Workshop Digitale Lehre im Fach Datenbanken
	Workshop Digitale Lehre im Fach Datenbanken – Thomas C. Rakow , Heide Faeskorn-Woyke

	Workshop on Big (and Small) Data in Science and Humanities (BigDS 2019)
	Preface
	Workshop on Big (and Small) Data in Science and Humanities (BigDS 2019) – Friederike Klan , Birgitta König-Ries , Peter Reimann , Bernhard Seeger , Anika Groß

	Workshop Papers
	Temporal Graph Analysis using Gradoop – Christopher Rost , Andreas Thor , Erhard Rahm
	Angepasstes Item Set Mining zur gezielten Steuerung von Bauteilen in der Serienfertigung von Fahrzeugen – Marco Spieß , Peter Reimann
	Context Selection in a Heterogeneous Legal Ontology – Sabine Wehnert , Wolfram Fenske , Gunter Saake
	Software solutions for form-based, mobile data collection — A comparative evaluation – Markus Steinberg , Sirko Schindler , Friederike Klan
	Quality Indicators for Text Data – Cornelia Kiefer
	Entity Extraction in the Ecological Domain — A practical guide – Vladimir Udovenko , Alsayed Algergawy

	Studierendenprogramm
	Automated Architecture-Modeling for Convolutional Neural Networks – Manh Khoi Duong
	Chain-detection for DBSCAN – Janis Held , Anna Beer , Thomas Seidl
	Konzeption und Umsetzung einer DSL zur Informationsfusion auf verteilten heterogenen Graphen – Alexander Kern
	Computation Offloading in JVM-based Dataflow Engines – Haralampos Gavriilidis
	A Comparison of Distributed Stream Processing Systems for Time Series Analysis – Melissa Gehring , Marcela Charfuelan , Volker Markl
	Lock-free Data Structures for Data Stream Processing – Alexander Baumstark
	An Actor Database System for Akka – Sebastian Schmidl , Frederic Schneider , Thorsten Papenbrock
	PgCuckoo — Injecting Physical Plans into PostgreSQL – Denis Hirn
	Policy-based Authentication and Authorization based on the Layered Privacy Language – Sebastian Wilhelm , Armin Gerl

	Tutorienprogramm
	Data Analytics with Graph Algorithms — A Hands-on Tutorial with Neo4J – Lena Wiese
	StaRAI or StaRDB? — A Tutorial on Statistical Relational AI – Tanya Braun
	NoSQL & Real-Time Data Management in Research & Practice – Wolfram Wingerath , Felix Gessert , Norbert Ritter

	Vorstellung DFG-Schwerpunktprogramm 2037
	DFG Priority Program SPP 2037: Scalable Data Management for Future Hardware – Kai-Uwe Sattler , Alfons Kemper , Thomas Neumann , Jens Teubner

	Data Science Challenge 2019
	Vorwort
	Die Data Science Challenge auf der BTW 2019 in Rostock – Hannes Grunert , Holger Meyer

	Teilnehmer der Challenge
	Assessing the Impact of Driving Bans with Data Analysis – Lucas Woltmann , Claudio Hartmann , Wolfgang Lehner
	Explanation of Air Pollution Using External Data Sources – Mahdi Esmailoghli , Sergey Redyuk , Ricardo Martinez , Ziawasch Abedjan , Tilmann Rabl , Volker Mark
	Peaks and the Influence of Weather, Traffic, and Events on Particulate Pollution – Stefan Hagedorn , Kai-Uwe Sattler
	Prediction of air pollution with machine learning – Christian Schmitz , Dhiren Devinder Serai , Tatiane Escobar Gava
	Deep Learning zur Vorhersage von Feinstaubbelastung – Georges Alkhouri , Moritz Wilke

	Autorenverzeichnis

