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Vorwort

Die 18. Fachtagung “Datenbanksysteme für Business, Technologie und Web” (BTW)
des Fachbereichs “Datenbanken und Informationssysteme” (DBIS) der Gesellschaft für
Informatik (GI) findet vom 4. bis 8. März 2019 an der Universität Rostock statt. Pünktlich
zu einem Multi-Jubiläum besucht damit die deutsche Datenbanktagung zum ersten Mal in
ihrer Geschichte die Ostseeküste: Stadt und Universität Rostock feiern ein Doppeljubiläum
(800 Jahre Stadt Rostock in 2018, 600 Jahre Universität Rostock in 2019). Daneben feiert
auch die Rostocker Informatik einige Jubiläen in 2019: eine Computergrafik gibt es seit 50
Jahren an der Universität, eine Informatik seit 35 Jahren, den Lehrstuhl Datenbank- und
Informationssysteme seit 25 Jahren.

Auf der BTW trifft sich nun auch schon seit fast 35 Jahren im zweijährigen Rhythmus die
deutschsprachige Datenbankgemeinde, um neue Fragestellungen zu erörtern und aktuelle
Forschungsergebnisse zu präsentieren und zu diskutieren. Nicht nur Wissenschaftler, son-
dern auch Praktiker und Anwender finden sich hier zum Wissens- und Erfahrungsaustausch
zusammen. Die BTW 2019 bietet ein wissenschaftliches Programm, ein Industriepro-
gramm, ein Demonstrationsprogramm und ein Studierendenprogramm, dazu verschiedene
Workshops und Tutorien. Zum zweiten Mal wird auf der BTW ein Wettbewerb veranstal-
tet, die sogenannte Data Science Challenge — in diesem Jahr zum aktuellen Thema
Feinstaubbelastung in Städten.

Die Datenbanktechnologie befindet sich in einem interessanten Spannungsfeld zwischen
ihren etablierten Kernthemen — die (glücklicherweise) wohl niemals aus der Diskussion und
den Konferenzprogrammen verschwinden werden — und neuen Fronten und Anwendungen,
die wir uns mit unserem “Datenbank-Verstand” erobern. Das zeigte sich exakt so in den
Einreichungen, die wir in diesem Jahr erhielten. Unter den insgesamt 37 Beiträgen, die
im Scientific Track eingereicht wurden, dominieren Papiere zur Anfrageverarbeitung und
Implementationstechniken. Direkt dahinter stehen jedoch Machine Learning, Wissensman-
agement und die Verarbeitung von Nicht-Standarddatentypen. Fünfzehn dieser Beiträge
werden im Wissenschaftlichen Programm in Rostock präsentiert.

Zwölf weitere Einreichungen wurden uns im Industrial Track zugesandt. Hier findet sich
eine ganz ähnliche thematische Breite, die von “Domain Query Optimization” bis zur
Bekämpfung von “Spam in Dating Apps” reicht. Es ist einfach nur spannend zu sehen,
welche Fortentwicklung und welchen Einsatz Datenbanksysteme in der industriellen Praxis
erfahren. Wir freuen uns auf neun Papiere, die im Industriellen Programm der BTW 2019
vorgestellt werden.

Das Gesamtprogramm der BTW ist eine Kooperation zwischen den insgesamt 231 Autoren
und den 69 Mitgliedern unserer Programm-Komitees. Letztere haben sich ausnahmslos zügig,
kooperativ und mit Expertise den Beiträgen gestellt. Sowohl die eigentlichen Reviews, die
nachfolgende Diskussion — in diesem Jahr auch wieder auf einem der schon traditionellen
PC-Meetings in Frankfurt — als auch das Mentoring von Autoren haben geholfen, ein



Programm zu formen, auf das wir stolz sein können. Die PC-Chairs bedanken sich ganz
herzlich bei allen Autoren und ihren Komitees für die harte Arbeit auf beiden Seiten!

Der Workshopband bietet zu den drei Workshops “Novel Data Management Ideas on
Heterogeneous (Co-)Processors (NoDMC)”, “Digitale Lehre im Fach Datenbanken” und
“Big (and Small) Data in Science and Humanities” insgesamt 17 Beiträge. Daneben werden
der SPP 2037: “Scalable Data Management for Future Hardware”, das Tutorienprogramm
mit fünf und das Studierendenprogramm mit neun Beiträgen sowie die beteiligten Gruppen
der Data Science Challenge vorgestellt. Der “BTW 2019 Workshopband” erscheint ebenfalls
in der LNI-Reihe der GI als Band 290, ISBN 978-3-88579-684-8.

Für das Demo-Programm der BTW wurden aus den Einreichungen 16 Beiträge ausgewählt,
die erzielte Ergebnisse der Forschung im Bereich der Datenbank- und Informationssys-
temtechnologien auf interaktive Weise einem breiten Publikum vorzustellen. Das breite
Themenspektrum im Demo-Programm reicht von Tools zur Veranschaulichung relationaler
Algebra, Analyse von Linked Data, Efficient Data Processing, Profiling von NoSQL-
Datenbanken über Methods for Interactive Clustering, Graph Pattern Matching, Big Graph
Analysis bis hin zu eLearning Tools für Datenbankthemen. Zahlreiche Forschungsgruppen
stellen dabei ihre Arbeiten vor. Ein besonderer Schwerpunkt liegt im Demo-Programm auf
Beiträgen, in denen Datenbanktechnologien angewendet werden, etwa zu zuverlässigen
Verspätungsvorhersagen, Precision Oncology und Movie Recommender Systemen. Alle
Beiträge des Demo-Programms sind in diesem Tagungsband enthalten.

Im Rahmen des Hauptprogramms findet auch die Panel-Diskussion zum Thema “Daten-
banksysteme im Zeitalter von KI und Data Science“ (Moderator: Volker Markl) statt.
Insbesondere wird hier geklärt, welche Rolle Datenbanksysteme bei KI und Data Science
spielen und welche technologischen Herausforderungen zu lösen sind.

Leuchttürme des BTW-Programms an der Ostsee sind die drei eingeladenen Vorträge.
Stefanie Rinderle-Ma (Universität Wien) wird mit “From LEGO to the Shopfloor: Driving
Digitalization Through Process Technology” gleich zu Beginn eine (LEGO-)Brücke zwis-
chen Datenbankforschung und -praxis bauen. Ihab Ilyas (University of Waterloo) verkörpert
mit “Building Scalable Machine Learning Solutions for Data Cleaning” das oben erwähnte
neue, breitere Verständnis von Datenbanktechnologie. Genau dieses unterstreichen Frank
Renkes und Christian Sommer (SAP Walldorf) mit “Blockchain in the Context of Business
Applications and Enterprise Databases” gleich nochmals.

Dieses Jahr wurden zudem zum zehnten Mal die BTW-Dissertationspreise des GI-
Fachbereichs DBIS vergeben. Die eingereichten Dissertationen aus dem Zeitraum Oktober
2016 bis September 2018 waren durchweg von hervorragender Qualität. Auf Basis einer
umfassenden vergleichenden Begutachtung wurden drei Arbeiten für die Auszeichnung
ausgewählt: “Architectural Principles for Database Systems on Storage-Class Memory” von
Ismail Oukid (TU Dresden), “Data Profiling — Efficient Discovery of Dependencies” von



Thorsten Papenbrock (HPI Potsdam) und “Modern Techniques for transaction-oriented
Database Recovery” von Caetano Sauer (TU Kaiserslautern).

Die Informationen und Materialien zur BTW 2019 stehen über die Web-Seiten der Tagung
unter https://www.btw2019.de zur Verfügung. Die Organisation der BTW-Tagung nebst
allen angeschlossenen Veranstaltungen ist nicht ohne die Unterstützung vieler Partner
möglich. Diese sind auf den folgenden Seiten aufgeführt. Zu ihnen zählen insbesondere alle
Sponsoren, als Ko-Veranstalter die Universität Rostock und als Unterstützer das Steinbeis-
Transferzentrum DBIS an der Universität Rostock. Organisiert wurde die BTW 2019 vom
Lehrstuhl Datenbank- und Informationssysteme der Universität Rostock. Insbesondere aber
gilt ein Dank der GI-Geschäftsstelle für die finanzielle Abwicklung der Tagung.

Vielen Dank an alle Beteiligten!

Rostock, im Januar 2019
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From LEGO to the Shopfloor: Driving Digitalization
Through Process Technology

Stefanie Rinderle-Ma1

Abstract

Processes constitute the major vehicle to support companies to move towards digital business
(models). One major application area is smart manufacturing, also referred to as Industrie
4.0. Here, processes connect and integrate machines, actors, sensors, information systems,
and business partners, collecting, processing, and exchanging production-relevant data.
This yields manifold benefits such as optimized processing and integrated data analysis.
Designing and implementing such solutions touches and raises many research challenges,
including the flexible and robust implementation of distributed process networks and
the application and extension of process-oriented data analysis methods. We illustrate
these challenges by our own journey from a LEGO-based Industrie 4.0 lab setting to the
centurio.work manufacturing orchestration suite.
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Building Scalable Machine Learning Solutions for Data
Cleaning

Ihab Ilyas1

Abstract

Machine learning tools promise to help solve data curation problems. While the principles
are well understood, the engineering details in configuring and deploying ML techniques are
the biggest hurdle. In this talk I discuss why leveraging data semantics and domain-specific
knowledge is key in delivering the optimizations necessary for truly scalable ML curation
solutions. The talk focuses on two main problems: (1) entity consolidation, which is arguably
the most difficult data curation challenge because it is notoriously complex and hard to scale;
and (2) using probabilistic inference to suggest data repair for identified errors and anomalies
using our new system called HoloClean. Both problems have been challenging researchers
and practitioners for decades due to the fundamentally combinatorial explosion in the space
of solutions and the lack of ground truth. There’s a large body of work on this problem
by both academia and industry. Techniques have included human curation, rules-based
systems, and automatic discovery of clusters using predefined thresholds on record similarity
Unfortunately, none of these techniques alone has been able to provide sufficient accuracy
and scalability. The talk aims at providing deeper insight into the entity consolidation and
data repair problems and discusses how machine learning, human expertise, and problem
semantics collectively can deliver a scalable, high-accuracy solution.

Author
Ihab Ilyas is a professor in the Cheriton School of Computer Science and the NSERC-

Thomson Reuters Research Chair on data quality at the University of Waterloo. His
main research focuses on the areas of big data and database systems, with special
interest in data quality and integration, managing uncertain data, rank-aware query
processing, and information extraction. Ihab is also a co-founder of Tamr, a startup
focusing on large-scale data integration and cleaning. He is a recipient of the Ontario
Early Researcher Award (2009), a Cheriton Faculty Fellowship (2013), an NSERC

1 Cheriton School of Computer Science, University of Waterloo, Canada, ilyas@uwaterloo.ca

cba doi:10.18420/btw2019-02

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 27

https://creativecommons.org/licenses/by-sa/4.0/
ilyas@uwaterloo.ca
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-02


2 Ihab Ilyas

Discovery Accelerator Award (2014), and a Google Faculty Award (2014), and
he is an ACM Distinguished Scientist. Ihab is an elected member of the VLDB
Endowment board of trustees, elected SIGMOD vice , and an associate editor of
the ACM Transactions of Database Systems (TODS). He holds a PhD in computer
science from Purdue University, West Lafayette.

28 Ihab Ilyas



cba

Frank Renkes & Christian Sommer (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Blockchain in the Context of Business Applications and
Enterprise Databases

Frank Renkes1, Christian Sommer1

Abstract

Blockchain seems to be the future of all cross-company business applications. Similar
to the adoption of machine learning into all novel and existing business applications and
processes we can see the same trend for blockchain. Nearly every application tries to
leverage blockchain technology to improve the application related process chains. Is this
just a hype or is blockchain really the solution to all problems, in which applications rely on
an intelligent and secure data distribution / sharing? What are the most relevant qualities
of blockchain needed in modern business applications and which role can a traditional
database play in this? Wouldn’t be an integration of some of the qualities into traditional
databases a better approach to build the so called ‘distributed business applications’? What
is the relationship and overlap between core blockchain and core database concepts like
(redo) logging, security features like auditing and encryption, distributed (query) processing,
as well as stored procedures/smart contracts?

This talk discusses how blockchain can be integrated into existing business applications and
processes, what the biggest challenges are and which role a traditional database can play in
this context.
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Fighting the Duplicates in Hashing: Conflict Detection-aware
Vectorization of Linear Probing

Johannes Pietrzyk1, Annett Ungethüm1, Dirk Habich1, Wolfgang Lehner1

Abstract: Hash tables are a core data structure in database systems, because they are fundamental for
many database operators like hash-based join and aggregation. In recent years, the efficient vectorized
implementation using SIMD (Single Instruction Multiple Data) instructions has attracted a lot of
attention. Generally, all hash table implementations need to address what happens when collisions
occur. In order to do that, the collisions have to be detected first. There are two types of collisions: (i)
key duplicates and (ii) hash value duplicates. The second type is more complicated than the first type. In
this paper, we investigate linear probing as a heavily applied hash table implementation and we present
an extension of the state-of-the-art vectorized implementation with a hardware-supported duplicate or
collision detection. For that, we use novel SIMD instructions which have been introduced with Intel’s
SIMD instruction set extension AVX-512. As we are going to show, our approach outperforms the
state-of-the-art vectorized version for the key handling, but introduces novel challenges for the value
handling. We conclude the paper with some ideas how to tackle that challenge.

Keywords: Hashing; Linear Probing; Vectorization; Conflict Detection

1 Introduction

The key objective of database systems is to reliably manage data, where high query throughput
and low query latency are still core challenges [Ab16, BFT16, Do13, Ou17]. To satisfy
these requirements, database systems constantly adapt to novel hardware features [BKM08].
In the recent past, we have seen numerous hardware advances, in particular with respect
to memory, processing elements, and interconnects having a huge impact on the design of
database systems [Le17, LUH18, OL18]. For example, with growing capacities of main
memory, efficient analytical in-memory data processing becomes viable and is now state-
of-the-art [BKM08, Fa17] on the one hand. On the other hand, vectorization is a common
approach to improve the processing performance of CPUs by parallelizing computations
over vector registers. This vectorization is done using SIMD extensions (SIMD stands for
Single Instruction Multiple Data) such as Intel’s SSE (Streaming SIMD Extensions) or AVX
(Advanced Vector Extensions) and have been available in modern processors for several years.
SIMD instructions apply one operation to multiple elements of so-called vector registers
at once. Thus, the efficient vectorized implementation of database operations using SIMD
instructions has attracted a lot of attention in recent years [La16, LB15, PRR15, ZR02].
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In the past years, hardware vendors have regularly introduced new SIMD instruction
set extensions operating on ever wider registers. For instance, Intel’s Advanced Vector
Extensions (AVX) operates on vector registers of size 256 bits, while Intel’s newest extension
set AVX-512 uses now 512-bit vector registers. The wider the vector registers, the more data
elements can be stored and processed in one vector. For example, Intel’s SSE 128-bit vector
register can store four 32-bit data elements, AVX 256-bit vector can store eight (2x), and
AVX-512 512-bit vector can store 16 (4x) of such data elements. Consequently, the SIMD
instructions operating on these wider vector registers can also process 2x respectively 4x the
number of data elements in one instruction, which promises significant speedups. In [Ha18],
we investigated the influence of the wider vector registers on data compression. As we have
shown, the achieved speedups of wider vector registers are sub-optimal in most cases, since
the algorithms quickly become memory-bound when computations are accelerated through
wider vector registers processing more data elements at once. Thus, an open challenge in
this domain is the development of appropriate approaches which exploit the capabilities of
newer SIMD extensions to the maximum extent.

To tackle that challenge for lightweight data compression algorithms, we presented a novel
hardware-oriented approach in [Un18]. The starting point of this novel approach was,
that in addition to an increased vector width of 512-bit, AVX-512 also offers a variety of
new instructions. One of the new instruction feature sets is called Conflict Detection

(AVX-512CD) which allows the vectorization of loops with possible address conflicts. Some
key features of AVX-512CD are (i) the generation of conflict free subsets, i.e. subsets which
contain no equal elements, and (ii) the count of leading zero bits of the elements in a vector.
In [Un18], we described the application of these CD instructions for run-length encoding.
In particular, we have clearly shown that the CD-based implementation is up to 3.2 times
faster for sequences of integers with short run lengths.

Our Contribution: Based on these experiences, we introduce our approach for the
application of the Conflict Detection instruction to hashing, which is completely different
from the data compression domain, in this paper. Generally, hashing is a core primitive
for many database operators such as hash-based joins and aggregations [PRR15, RAD15].
The main task of hashing is to distribute entries (key/values) across an array of buckets
(hash table). Given a key, the algorithm computes a bucket that suggests where the entry
can be found. All hash table implementations need to address what happens when collisions
occur. In order to do that, the collisions have to be detected, which sounds like a perfect
match to Conflict Detection. In particular, we evaluate linear probing as a heavily applied
hash table implementation [PRR15, RAD15]. Based on that, our main findings can be
summarized as follows:

1. Conflict Detection can be used to speedup linear probing, whereby the specific
SIMD instructions can be utilized at different positions within the hashing implemen-
tation. On the one hand, duplicate keys within one vector register can be detected to
reduce unnecessary work. On the other hand, duplicate hash values are extractable
within one vector register to reduce expensive Gather and Scatter operations.
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2. However, the application of Conflict Detection to hashing comes at a price of
difficulty and IO-costly value handling approaches. We will elaborate that aspect in
our evaluation in more detail.

Outline of the Paper: The remainder of this paper is organized as follows: In Section 2, we
present all essential background information starting by a short description of linear probing
followed by a detailed explanation of the state-of-the-art vectorized implementation. This
section closes with a short description of new and non-standard vector instructions which
have been introduced with AVX-512. Based on that, we introduce our novel vectorized linear
probing implementation in Section 3. Then, we present selective results of our exhaustive
evaluation on two different hardware systems in Section 4. Finally, we close with related
work in Section 5 and a summary including future work in Section 6.

2 Background

Basically, hash tables are a core and a heavily-used data structure in in-memory database
systems, because they are required to efficiently execute join and aggregation opera-
tions [PRR15]. For example, in a hash join, a hash table of the smaller input relation is
built, in which the hash table entries consist of the join attribute as key and the rest as
payload [PRR15]. Once the hash table is built, the larger input relation is scanned and join
partners are looked up using the hash table. The first phase in this hash join is usually called
build phase, while the second is called probe phase.

In these hash tables, hash functions play an important role [PRR15, RAD15]. Specifically, a
hash function is used to map keys to hash table positions allowing to quickly locate the keys
in constant time. However, the domain of a hash function (the set of possible keys) is larger
than its range (the number of hash table buckets), and so it will map several keys to the
same bucket which could result in collisions. That means, all hash table implementations
need to address what happens when collisions occur. A common collision strategy is open
addressing, which allows keys to leak out from their preferred bucket and spill over into
another bucket [Be18, RAD15].

Based on that, this background section is organized as follows: In Section 2.1, we briefly
describe the general idea of linear probing. Then, we introduce the state-of-the-vectorized
implementation of linear probing as introduced in [PRR15] in Section 2.2. We close this
background section with a description of new and non-standard vector instructions which
have been introduced with Intel’s latest SIMD extension AVX-512 in Section 2.3.

2.1 Linear Probing

Linear Probing (LP) is the simplest strategy for collision handling in open-addressing.
Generally, the hash table structure for open addressing is an array T whose bucket T[i] stores
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41 18 59Array T

Bucket 0 1 2 3 4 5 6 7 8 9

Insert Key 44
Collision!!

Start here
Probe array to find empty slot

Fig. 1: Illustration of Linear Probing with Collision Example.

a single key as depicted in Fig. 1. Then, an arbitrary hash function h is used to map each key
into a bucket of T where the key should be stored. A hash collision occurs when the hash
function maps a key into a bucket that is already occupied by a different key. LP resolves
this collision by placing the new key into the closest following empty bucket. That means,
for a given key x, the buckets of T are examined, beginning with the bucket at position h(x)
(where h is the hash function) and continuing to the adjacent buckets h(x)+1, h(x)+2, ...,
until finding either an empty bucket or a bucket whose stored key equals x. An example is
given in Fig. 1. Here, key 44 shall be inserted in array bucket 3 leading to a collision. From
this bucket, the next free bucket will be used to store the key 44 in linear probing. In our
example, the next free bucket would be 4, which is then the storage bucket for this key. This
linear scan procedure (probe) is always executed for lookup as well as insertion.

LP has two excellent advantages: (i) low code complexity based on the simplicity of the
approach and (ii) very good cache efficiency due to the linear scan [RAD15]. Based on that,
we decided to use LP for our case study on applying Conflict Detection to hashing.

2.2 State-of-the-Art Vectorized Implementation of Linear Probing

To speed up the overall performance of hash tables, vectorized hash tables use a SIMD
register of width n to process multiple keys ki at once. Based on that idea, Polychroniou
et al. [PRR15] presented a vectorized version of LP. We will denote this SIMD LP
implementation as basic or state-of-the-art variant, respectively, thereby this approach
consists of several phases as illustrated in Fig. 2. The phases are repeated multiple times
until all keys are finally processed. The phases are:

Load Phase: In this phase several keys ki are loaded into a SIMD register v in each iteration.
We will denote these keys as active keys. In the first iteration, n keys are transferred
from memory to the vector register, whereby n is the size of the vector register. In
the next iterations, keys that were successfully inserted into the hash table of the
previous iterations are replaced by new keys using a selective load. This selective load
exchanges vector lanes by loading contiguous keys from unaligned memory based on
a k-bit mask.
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Fig. 2: Control Flow of State-of-the-Art Vectorized Implementation of Linear Probing.

Hash Phase: For each active key ki within the SIMD register, the hash table bucket is
computed using a hash function h and an offset (initial state equals zero). This requires
two vector operations.

Lookup Phase: The determined buckets of the keys are used in a Gather operation to load
the current content of the hash table. The loaded keys are stored in a second SIMD
register and compared with the active keys, whereby three results are possible:
(1) Bucket is empty (loaded key is zero): There is currently no key in the hash table

bucket stored. Thus, the new key can be stored at that bucket (Store Phase) as
well as invalidated (Carry Handling Phase) and the corresponding value has to
be stored.

(2) Bucket contains the same key (Match): The key is already in the corresponding
bucket of the hash table. That means, the key can be invalidated (Carry Handling
Phase) and only the corresponding value has to be stored.

(3) Bucket contains different key (Mismatch): The hash table contains already a dif-
ferent key at that bucket. Thus, the new key can neither be stored nor invalidated
and has to remain in the vector register (Carry Handling Phase).

Store Phase: Active keys with an identified empty bucket have to be stored using a Scatter

operation. However, different keys in the vector register can have equal hash values
which would lead to a conflict. If different vector lanes are stored to the same hash
table bucket, the lane with the highest lane index remains at the specific bucket. To
detect that, the stored active keys at the buckets are gathered again and compared with
the active keys. If the gathered key equals the scattered key, the key can be invalidated
and the value has to be stored (key successfully inserted into the hash table). If the
gathered key is not equal to the scattered key, the key has to remain in the vector
register (Carry Handling Phase).
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Fig. 3: Example for the _mm512_conflict_epi32 intrinsic.

Carry Handling Phase: Successfully inserted keys which are marked as invalidated during
the whole process can be exchanged in the next iteration. Additionally, the corre-
sponding offsets are set to zero. Lanes which could not be scattered successfully
remain in the vector register and corresponding offsets are incremented one by one
for the next iteration.

This state-of-the-art vectorization uses standard and well-known SIMD operations like
Scatter, Gather, and compare functions.

2.3 Novel SIMD Instructions

The newest version of Intel’s instruction set extension for vectorization is AVX-512. In
this extension, the width of vector registers is 512-bit. That means for the state-of-the-art
vectorized LP implemention, that 16 keys (each key has a width of 32-bit) can be processed
at once in each iteration. Aside from an increased vector width, AVX-512 also offers
a variety of new instructions. One of the new instruction feature sets is called Conflict
Detection (AVX-512CD) allowing the vectorization of loops with possible address conflicts.
This instruction feature set is currently supported by Intel Xeon Phi Knights Landing (KNL)
as well as on current Xeon processors.

As already presented in [Un18], some core features of AVX-512CD are (i) the generation
of conflict free subsets, i.e. subsets which contain no equal elements (no duplicates), and
(ii) the count of leading zeros of the elements in a vector. For example, the intrinsic
_mm512_conflict_epi32 creates a vector register containing a conflict free subset of a given
source register. An example for this is shown in Fig. 3. In other words and as illustrated in
this figure, this intrinsic transforms a vector register with 16 32-bit elements (illustrated by
A, B and C) into a new vector register with 16 bitmasks (each represented by 32-bit values).
Each bitmask encodes the positions of equal previous elements in the vector. The bitmasks
for the first three elements A, B, and C are zero in our example, because there are no equal
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Fig. 4: Example for the _mm512_maskz_compress_epi32 intrinsic.

previous elements. The A element at the third position in the input register is in conflict
(equal to) with the element at position 0 in the input register. Thus, the least significant bit
of the corresponding bitmask is set to 1, the rest of the bitmask is filled with zeros. The
element A at position 4 is in conflict with the previous elements at positions 3 and 0 (equal
to previous elements). Therefore, the corresponding bits in the bitmask are set to 1, all
other bits are zero. A second interesting CD-feature is the intrinsic _mm512_lzcnt_epi32,
which counts leading zeros. Given a vector of 16 values, this intrinsic counts the number of
leading zeros for all values at once and writes the results in a vector register with 16 values.

Another newly introduced functionality is a set of compress instructions, e.g.
_mm512_maskz_compress_epi32. They are part of the foundation instruction set of AVX512
(AVX-512F). The input of these compress instructions is a vector and a bitmask. Then, the
elements in the input vector, which are marked by the bitmask, are stored contiguously in
the output vector as depicted in Fig. 4. Using this compress instruction, the result vector
contains no reserved space of the unmarked elements in the input register.

3 CD-aware Vectorized Implementation of Linear Probing

The above presented state-of-the-art vectorized implementation of linear probing is well-
engineered, but the implementation has a major shortcoming. This shortcoming is related to
ever increasing widths of vector registers. On the one hand, with wider vector registers, more
keys can be processed simultaneously. For instance, with 128-bit wide vector registers only
4 keys, but now with 512-bit wide vector registers 16 keys are processable simultaneously.
On the other hand, with more keys in parallel, the probability of collisions within one vector
register increases for two reasons:

1. With more keys in parallel, the probability of duplicate keys within one vector register
increases the risk of collisions at the end.

2. With more keys in parallel, the probability that different keys are mapped to a single
bucket within one vector register increases the risk of collisions at the end.

Fundamentally, when more hash collisions occur in each iteration, more iterations are
needed to process all input data, because more keys have to be moved to the next iteration.
At the same time, more iterations also mean that more Gather and Scatter operations are
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Fig. 5: Control Flow of state-of-the-art Vectorized Linear Probing using Conflict Detection.

performed leading to decreasing performance, finally. Nevertheless, this is a perfect setting
for the Conflict Detection capability as described next.

3.1 CD-aware Hash Table Data Structures

Before we introduce our Conflict Detection-aware (CD-aware) vectorized implementation
of linear probing in detail, we describe our underlying data structure. The hash table usually
has to hold a set of key/value pairs. The keys are inserted into a so-called key-store as
illustrated in Fig. 2 consisting of a fixed size number of buckets realized by an array. The
corresponding values are stored within a separate memory location (value-store). Since a
single key can exist multiple times within the given input dataset, the value-store has to
hold every value for the corresponding key. Through the assumption that the total number
of occurrences of a single key is unknown in advance, the value-store is realized as a fixed
sized array of dynamic containers.

3.2 Handling of Bucket Duplicates

To overcome the mentioned shortcoming, we add two Conflict Detection instructions to
the Hash Phase as illustrated in Fig. 5. With these instructions, the number of non-sequential
memory accesses through Gather and Scatter operations in the subsequent phases are
minimized.

The first Conflict Detection instruction CD(kn) is placed directly after the Load Phase

as highlighted in Fig. 5. If the vector register of an iteration contains duplicate keys, we
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already know that only one lane has to be used for the further steps. Lanes containing
duplicate keys can be automatically invalidated. Since same keys can result in different
buckets through offset addition and only the left most lane remain valid, it is feasible to use
the compress intrinsic provided by AVX-512F to arrange valid lanes in a contiguous manner.
The associated values of duplicate keys have to be preserved until the key can be written to
memory. Because the total number of occurrences of a key within a given dataset is not
known without further investigations, the values are stored within a temporal dynamic sized
buffer. As a consequence, the buffer has to be resized when duplicate keys are detected.
When the key is successfully stored into the key-store, the values from the corresponding
buffer are appended to the corresponding value-store entry.

After this first Conflict Detection instruction, we are sure that the vector register contains
only unique keys, whereby already some lanes could be invalidated which limits the
exploitation of parallelization in this iteration. However, different keys in the vector register
can result in the same buckets within the key-store after the hash phase. There are two
possible reasons (i) through a pure hash collision or (ii) through the addition of the offset.
This situation also has to be detected and solved. For this detection, we use the second
Conflict Detection instruction CD(h(kn)) as shown in Fig. 5. Based on that, we know
the vector lanes with a conflicting position. But the conflicting lanes cannot be invalidated
immediately, because each of these different keys could already be in the key-store. Thus,
these keys are used in the next Lookup Phase. If an empty bucket is found, the key and its
assigned value corresponding to the first occurrence (as a result of Conflict Detection)
of the specific bucket is transferred into the hash table and the lane is invalidated. The
remaining lanes containing conflicting buckets reside in the vector register and are treated
in the Carry Handling phase.

Based on our procedure, the Store Phase can be simplified as depicted in Fig. 5. In this
Store Phase, we do not have to load the buckets again to detect conflicts, because these
conflicts are now determined during the Hash Phase. In conclusion, the amount of random
access IO-operations can be reduced by using the conflict detection intrinsic. Also duplicate
keys are substituted within the next iteration resulting in a higher degree of vector lane
utilization. Still non-valid lanes are present within a single iteration step which leads to
non-optimal data parallelism.

3.3 Handling of Key Duplicates

To address the non-optimal vector lane utilization through conflicting keys mentioned in
section 3.2, the Load phase has to be adapted as depicted in Fig. 6. Instead of executing one
load operation per iteration, contiguous keys are transferred to a vector register (v0) until the
vector contains only distinct elements. We call this approach FetchD. To avoid selective and
non-cache friendly loads in our FetchD approach, a second full buffer vector register (vb)
is loaded at once. Then, distinct keys are identified using a conflict detection. This buffer
is then used to fill up invalidated lanes from the register containing the keys for further
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Fig. 6: Control Flow of the CD-aware Vectorized Implementation of Linear Probing.

processing. This is done using _mm512_maskz_compress_epi32 to organize distinct keys of
vector vb in a contiguous manner. In a second step, invalidated lanes of v0 are substituted
with elements from the vb using _mm512_mask_expand_epi32. These two steps are repeated
until v0 contains only distinct elements or all elements are processed. In regard to the values,
a similar approach as described in the section above is used. Nevertheless, the buffer vector
register needs its own temporal value buffer which is merged with the value buffer from v0
corresponding to the replaced key lanes. This leads to additional IO-operations during the
Load Phase.

In summary, the discussed concepts can be used to utilize vector registers with the maximum
amount of parallel computation on the one hand. On the other hand, organizing the values
require scalar IO-operations which can be considered to be expensive in comparison to
vectorized operations.

4 Experimental Evaluation

Before we summarize the core results of our exhaustive evaluation in Sections 4.1 and 4.2,
we briefly describe our overall evaluation setup. Basically, we used two different hardware
platforms as depicted in Tab. 1. The first platform is a Xeon Phi™ 7250 Knights Landing
(KNL), while the second is a Xeon® Gold 6130 (SKL). Both platforms provide the AVX-512
vector register extension as well as the special instruction set AVX-512CD. The cache sizes
of the KNL and SKL are the same for L1 and L2. While every core of the SKL has access
to a 22 MB dimensioned L3-Cache, the KNL has no L3-Cache. Instead, a high bandwidth
memory which is located on the chip can be used in the KNL.
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Name Xeon Phi™ Xeon® Gold
Prozessor Model 7250 6130
Base Clock Frequency 1.4 GHz 2.1 GHz
Nodes x Cores x Threads 4 x 17 x 4 4 x 16 x 2
L1 Size 32 KB 32 KB
L2 Size 1 MB 1 MB
L3 Size - 22 MB
AVX-512 F, PF, ER, CD F, DQ, CD, BW, VL

Tab. 1: Hardware Platform Specifications.

Furthermore, all vectorized implementations of linear probing were done in C/C++ by
ourselves, thereby we distinguish between the following implementations:

Basic: State-of-the-art vectorized implementation of linear probing as introduced
in [PRR15] (see also Section 2.2).

CDHashProbe: This is our first proposed CD-aware vectorized implementation with two
CD instructions in the Hash Phase and only a Scatter operation in the Store Phase
(see Fig. 5).

FetchD: This is our second proposed CD-aware vectorized implementation with the FetchD
approach in the Load Phase and a single CD instruction in the Hash Phase (see
Fig. 6).

FetchD-Basic: This is an enhanced state-of-the-art vectorized implementation using our
FetchD instead of a selective load in the Load Phase including a Scatter and Gather

operation in the Store Phase.

In all implementations and experiments, we used the vectorized version of Mumur3 as our
main hash function. Since in our work we focus on pushing the achieved data parallelism
for the hash build phase through vectorization to a maximum extent, we ran all experiments
single threaded. For this, we compiled all implementations with gcc (KNL: version 7.0.1,
SKL: version 7.2.0) with the optimization flags -Ofast -mavx512f -mavx512cd. We also
evaluated the novel Compress instruction of AVX-512. Unfortunately, the impact was very
marginal and therefore, we do not include this aspect in our evaluation.

4.1 Evaluation Result for Hashing without Value Handling

In our first series of experiments, we investigated linear probing without value handling
which can be used for aggregation, anti-join and exists operators in in-memory database
systems. As clearly mentioned previously, there are two possible types of collisions: (i)
bucket duplicates and (ii) key duplicates. In the following, we separately evaluate both types.
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Fig. 7: Runtime Results and Speedups for a Key-Store with 1024KB Size and Input Data Consisting
of Unique Keys.

4.1.1 Bucket Duplicates

To evaluate the influence of bucket duplicates on the runtime behaviour of the different
linear probing implementation, we generated various data sets containing different numbers
of unique keys and varied the load factor of the key store from 0.5 to 0.9 in increments of
0.1. With unique keys, we explicitly restrict ourselves to bucket duplicates and we would
expect, that our first CD-aware implementation CDHashProbe (see Fig. 5) outperforms
Basic, while our second CD-aware implementation FetchD offers too much overhead in
this case. Generally, with higher load factors of the key-store (hashmap), the number of
bucket duplicates increases leading to higer runtimes. Fig. 7(a) and (c) show runtimes for
KNL as well as SKL on a data set size consisting of unique keys and a key-store size of
1024KB, so that the key-store fits in the L2-cache on both hardware platforms. As we can
see, the runtimes for each implementation increases with increasing load factors and SKL
is faster than KNL as expected. Fig. 7(b) and (d) depict the speedups of our approaches
compared to the Basic implementation. On KNL, our CDHashProbe approach is slightly
faster than Basic in all cases. In contrast to that, our CDHashProbe only outperforms the
Basic approach on SKL for high load factors. The reason for that is that the CD instruction is
an expensive operation and this is only beneficial when the effort is less than the additional
Gather operation in Basic. Moreover, FetchD and FetchD-Basic are slower than the Basic
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Fig. 8: Runtime Results and Speedups for a Key-Store with 16MB Size and Input Data Consisting of
Unique Keys.

implementation in all cases. Of course, since we do not have key duplicates, the treatment
of this introduces additional overhead.

Fig. 8 shows the results for data sets with unique keys, a key-store size of 16MB and varying
load factors. As we can see, the same observations are also visible for higher amount of data
as well. From this set of experiments, we can conclude that our CD-aware implementation
for bucket duplicates CDHashProbe slightly outperforms the Basic approach.

4.1.2 Key Duplicates

In order to evaluate the influence of key duplicates on the runtime behaviour of the different
linear probing implementation, we generated various data sets containing different numbers
of repeating keys in sequence. Furthermore, we also varied the load factor of the key-store
from 0.5 to 0.9 in increments of 0.1. With repeating keys, we explicitly investigate the
influence of key duplicates in a best case scenario and we would expect, that our second
CD-aware implementation FetchD (see Fig. 6) outperforms the other implementations.
While Fig. 9 shows the results for KNL, Fig. 10 depicts the results for SKL. In both cases, we
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Fig. 9: KNL-Results for Key-Store of Size 1024KB and Varying Number of Repeating Keys.

illustrate the runtimes for load factors of 0.6, 0.7, and 0.9 as well as the speedups compared
to the Basic implementation.

As we can see, the presented implementation improvements benefit from a higher amount of
duplicates within the processed data, while FetchD has the highest impact on the performance.
With increasing load factors, the speedup of our CD-aware implementations also increases
compared to the Basic implementation. For example, we can improve the performance for
data with a high number of repetitive keys up to a factor of 18 (load factor 0.9; repetition
sequence length of 100) on the KNL and up to factor a factor of 10 on the SKL. Moreover,
we observed better runtimes of all investigated scenarios (data size, number of duplicate
key, load factors) when the underlying key-store is quite small, so it can fit into small levels
of cache, but this is already well-known.

4.1.3 Intermin Conclusion

As already shown by [PRR15], the load factor should not exceed 0.6 with regard to memory
consumption and total execution time. In our previous presented evaluation results, we
always included this specific load factor for a key-store size of 1MB in our considerations,
so that the key-store perfectly fits in the L2-Cache of our hardware platforms. From these
evaluations, we are able to conclude the following two aspects:

1. If the input data only consists of unique keys, our first CD-aware implementation
CDHashProbe performs slightly better than the Basic implementation.

2. However, already with a small amount of duplicate keys in the input data, our second
CD-aware improvement pays more off.
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Fig. 10: SKL-Results for Key-Store of Size 1024KB and Varying Number of Repeating Keys.

Thus, our experiments show that using new instructions like Conflict Detection instead
of random access IO operations can improve the total performance if actual conflicts
occur. Furthermore, the presented approach FetchD which needs additional instructions
and branches amortizes as soon as duplicate keys are within the range of a vector register
through a cache friendly access pattern and a high degree of data parallelism.

To conclude, the presented CD-aware optimization’s for linear probing can improve the
total performance if the processed data contains duplicate keys or duplicate buckets. The
influence of Conflict Detection as well as FetchD grows with higher load factors and the
amount of duplicates. This arises from the fact that without value handling, repeating keys
within vector registers are redundant and can be discarded. However if values have to be
treated, the values of repetitive keys have to be handled.

4.2 Evaluation Results for Hashing with Value Handling

To precisely evaluate our proposed value handling approach for the CD-aware implementa-
tions, we repeated all our previously introduced experiments with enabled value handling.
In particular, the value handling is important in order to execute hash joins. Fig. 11 shows
the results on the KNL as well as on the SKL hardware platform. In the depicted experiment,
we used a key-store of size 1MB, thereby we only compare the Basic with the FetchD
implementation. Through the need of dynamic temporal buffers, a growing amount of
memory re-allocations and copying for all our CD-aware implementations for value handling,
the performance of our FetchD is lower then the Basic one. As we can see, the negative
impact on the performance gets slightly better with a growing number of duplicates and a
higher load factor. Nevertheless, a more sophisticated value handling approach for FetchD
has to be found to be competitive or even better than the Basic implementation.
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Fig. 11: Value Handling Evaluation Results with a Key-Store of Size 1MB.

5 Related Work

Fundamentally, related work in this domain is manifold, because the efficient utilization of
SIMD (Single Instruction Multiple Data) instructions in database systems is a very active
research field [Ha18, La16, LB15, PRR15, SWL11, Un18, ZR02].

For example, SIMD instructions are frequently applied in lightweight data compression
algorithms [Da17, LB15]. In this specific domain, null suppression (NS) is the most studied
lightweight compression approach, whereby the basic idea is the omission of leading zeros in
the bit representation of integers [LB15, SGL10]. There are different techniques addressing
the efficient implementation using SIMD instructions [Da17, LB15, SGL10]. However,
most of the vectorized implementations of lightweight data compression algorithms have
been developed for a fixed vector width of 128 bits (corresponding to Intel’s SIMD extension
SSE). In [Ha18], we systematically investigated the impact of different SIMD instruction
set extensions with vector sizes of 128-, 256-, and 512-bits on the behavior of lightweight
data compression algorithms. To obtain implementations for wider vector sizes (AVX2
and AVX-512), the 128-bit implementation can be used as foundation. In a straightforward
transformation, the 128-bit SIMD operations can be substituted by the corresponding
operations for 256 or 512-bit vectors. As we have shown, this is possible in almost all
cases, since many instructions offered by SSE are also offered by AVX2 and AVX-512 on
wider vectors. Fundamentally, two effects are observable: (i) NS algorithms working on
wider vector registers are more vulnerable to outliers in the data, which can affect both,
the compression ratio as well as the performance negatively and (ii) the speed ups are
generally sub-optimal in most cases, since the algorithms quickly become memory-bound
when the computations are accelerated through wider vector registers processing more
data elements at once. To overcome that, novel approaches are necessary. In [Un18], we
presented a novel approach for RLE encoding using Conflict Detection. Aside from our
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work, [La18] introduced efficient refill algorithms for vector registers by using the latest
SIMD instruction set, AVX-512. On the other hand, SIMD instructions are also used in other
database operations like scans [LP13], aggregations [ZR02], hashing [PRR15, RAD15]
or joins [Ba13]. To best of our knowledge, none of these approaches uses AVX-512 CD,
although the operations could benefit from CD.

From a hashing perspective, the papers [PRR15], [RAD15] and [Be18] are highly relevant.
The state-of-the-art vectorized implementation of linear probing is presented in [PRR15] as
described in Section 2. Richter et al. [RAD15] exhaustively studied a variety of common
hash table implementations—including linear probing—in a five-dimensional requirements
space: (i) data-distribution, (ii) load factor, (iii) dataset size, (iv) read/write-ratio, and (v)
un/successful-ratio. As they have shown, there exists no single best-performing hash table
implementation and each hash table implementation has its own application area. In [Be18],
the authors translated the state-of-the-art vectorized implementation of linear probing to
OpenCL with the aim to reduce code complexity and to ensure portability. For that, they
realized essential primitives like Gather, Scatter, Selective Load and Selective Store in
OpenCL. It would be interesting to see how the translation of the Conflict Detection

would look like.

6 Conclusion and Future Work

Hash tables are a core data structure in in-memory database systems, because they are
fundamental for many database operators like hash-based join and aggregation. In recent
years, the efficient vectorized implementation using SIMD (Single Instruction Multiple
Data) instructions has attracted a lot of attention. Generally, all hash table implementations
need to address what happens when collisions occur. In order to do that, the collisions have
to be detected first. There are two types of collisions: (i) key duplicates and (ii) hash value
duplicates (hash collisions). The second type is more complicated than the first type. In this
paper, we investigated linear probing as a heavily applied hash table implementation and we
presented an extension of the state-of-the-art vectorized implementation with a hardware-
supported duplicate or collision detection. For that, we use novel SIMD instructions which
have been introduced with Intel’s SIMD instruction set extension AVX-512. As we have
shown, our approach outperforms the state-of-the-art vectorized version for the key handling,
but introduces novel challenges for the value handling.

Further research should investigate different methods of value handling. The usage of
dynamic sized buffers should be replaced through a fixed sized buffer. Based on that, costly
memory reallocations and copy operations can be reduced as well as handling the values
could be done using SIMD scatter instructions. One opportunity for that would be to process
the given dataset twice, collecting statistics for the dataset within the first run. Then, this
information can be used in a further step to allocate a constant sized value store which can
hold up all values having to be inserted. As a side effect of this approach, the result of the
first run can be used further e.g., for database operators like aggregation.
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LinDP++: Generalizing Linearized DP to Crossproducts
and Non-Inner Joins

Bernhard Radke1, Thomas Neumann2

Abstract: Choosing the best join order is one of the main tasks of query optimization, as join ordering
can easily affect query execution times by large factors. Finding the optimal join order is NP-hard in
general, which means that the best known algorithms have exponential worst case complexity. As a
consequence only relatively modest problems can be solved exactly, which is a problem for today’s
large, machine generated queries. Two developments have improved the situation: If we disallow
crossproducts, graph-based DP algorithms have pushed the boundary of solvable problems to a few
dozen relations. Beyond that, the linearized DP strategy, where an optimal left-deep plan is used to
linearize the search space of a subsequent DP, has proven to work very well up to a hundred relations
or more.

However, these strategies have limitations: Graph-based DP intentionally does not consider implicit
crossproducts, which is almost always ok but sometimes undesirable, as in some cases such crossprod-
ucts are beneficial. Even more severe, linearized DP can handle neither crossproducts nor non-inner
joins, which is a serious limitation. Large queries with, e. g., outer joins are quite common and having
to fall back on simple greedy heuristics in this case is highly undesirable.

In this work we remove both limitations: First, we generalize the underlying linearization strategy to
handle non-inner joins, which allows us to linearize the search space of arbitrary queries. And second,
we explicitly recognize potential crossproduct opportunities, and expose them to the join ordering
strategies by augmenting the query graph. This results in a very generic join ordering framework that
can handle arbitrary queries and produces excellent results over the whole range of query sizes.

1 Introduction

One of the most important tasks of query optimization is join ordering. Due to the
multiplicative nature of joins, changes in join order can easily affect query execution times
by large integer factors [Le18]. Unfortunately, finding the optimal join order is NP-hard in
general [IK84] and no exact algorithms with better than exponential worst case optimization
time are known for the general case. This is problematic because queries tend to get larger,
at least in the long tail. Today, most queries are not written by humans but by machines, and
queries that join a hundred relations or more are not that uncommon [Vo18]. To put that
into perspective, PostgreSQL for example switches from dynamic programming (DP) to a
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heuristic if the query contains 12 relations or more, which means that none of the larger
queries will be optimized exactly.

One reason for that is their somewhat simplistic DP strategy. DP strategies that exploit the
structure of the query graph for example can handle larger queries [MN08], but even there
the exponential nature of the problem limits query sizes to about 30 relations, depending
upon on the structure of the query graph. For even larger queries most approaches fall back
to simple heuristics. An alternative to that is the relatively recent linearized DP strategy
[NR18]. The idea is to linearize the search space by first picking a good (ideally optimal)
relative order of relations, and then use a polynomial time DP step to construct the optimal
bushy tree for that relative order. Of course we do not know the optimal order for the general
solution, but we can use the IK/KBZ algorithm [IK84, KBZ86] to construct the optimal
left-deep order in polynomial time. In practice this leads to excellent results, producing
optimal or near-optimal solutions even for large queries with very low optimization time.

However, the IK/KBZ algorithm supports only inner joins, which is a problem for practical
usage. Outer, semi, and anti joins are quite common: In the real-world workload presented
by Vogelsgesang et al. [Vo18], about 20% of the join queries do contain at least one
outer join with a maximum of 247 outer joins in a single query. Having to fall back to
simple heuristics just because the query contains a single outer join is not very satisfying.
Similar problems occur with complex predicates, for example predicates of the form
R1.A+ R2.B = R3.C + R4.D. These complex predicates are rare, but they can be formulated
in SQL. In the query graph they form a hyperedge, connecting sets of relations with sets of
relations, which is also not supported by IK/KBZ. Note that non-inner joins can be expressed
by using hyperedges, too [MFE13], thus both problems are closely related from an optimizer
perspective. These restrictions are very unfortunate, as now queries with simple inner joins
can be optimized very efficiently, but adding just one non-inner join or one complex join
predicate forces the system to switch to simple heuristics, resulting in clearly inferior plans.

Furthermore, graph-based DP as well as linearized DP ignore crossproducts. Usually this is
a good idea. The search space without crossproducts is much smaller, and in most cases
crossproducts are a bad idea. However, sometimes they can indeed be helpful if some input
relations or intermediate results are known to be very small. Even then, crossproducts
should be used prudently as mis-estimations about input cardinalities can lead to terrible
execution times due to the O(n2) nature of a crossproduct. And considering crossproducts
in the presence of non-inner joins is dangerous as that can lead to wrong results. Consider
e. g. the query (A Z B) Z A.x=C.y C and assume B = ∅. Performing a crossproduct between
B and C before evaluating the outer join would cause an empty result, whereas the original
query yields the complete relation C. Nevertheless, if we make sure that a crossproduct
does not bypass non-inner joins and we are certain about the input cardinalities (e. g.
when a primary key is bound), crossproducts can sometimes significantly improve query
performance [OL90]. Having support for crossproducts in “safe” cases is thus highly
desirable.
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In this paper we generalize the recently published linearized DP [NR18] by removing both
limitations. Our generalized LinDP++ strategy is capable of ordering non-inner joins, which
allows it to handle all kinds of join queries. We achieve this using a recursive precedence-
graph decomposition at hyperedges, which allows IK/KBZ to handle hypergraphs. In
addition we present a fast heuristic that explicitly enriches the search space to also consider
safe crossproducts without causing the search space to grow exponentially. The combination
of these two components results in a fast polynomial time heuristic for join ordering that
finds very good plans, explicitly investigates relevant crossproducts, and handles non-inner
joins correctly. Experimental comparisons with slow exact DP strategies show that the
resulting plans are close to optimal. And the algorithm can scale to queries with a hundred
relations or more, which is far beyond what normal DP algorithms can do. For practical
usage this is a great improvement, as we no longer have to fall back to weaker approaches
for certain classes of queries.

The rest of this paper is structured as follows: First we summarize prior work in Section 2.
The extension of linearized DP to non-inner joins is described in Section 3. In Section 4
we investigate how join ordering can be extended to take beneficial crossproducts into
consideration. We evaluate runtime characteristics and result quality of LinDP++ in Section 5
before we draw a conclusion and point out directions for future research in Section 6.

2 Related Work

Join ordering has first been tackled by Selinger et al. in [Se79]. They proposed a dynamic
programming (DP) strategy that generates an optimal linear join tree. Optimal solutions
for subproblems of increasing size are built bottom up by combining optimal solutions for
smaller subproblems. Since then there has been lots of follow-up work of which we discuss
the most relevant techniques in the following.

An obvious improvement over the initial DP is to consider bushy trees as well. Furthermore,
for a DP algorithm to work it is not necessary to enumerate alternatives increasing in size.
Other enumeration schemes work as well (e. g. integer order enumeration [VM96]), as long
as optimal solutions for subproblems are generated prior to their usage in larger problems.
All of these dynamic programming variants can be implemented to consider crossproducts.
In this case, however, all possible crossproducts would implicitly be enumerated. This
results in exponential complexity of the algorithms and disregards the actual structure of the
query. In addition to this increase in complexity, crossproducts between arbitrary relations
can produce incorrect query results in the presence of outer joins.

The most efficient DP algorithms take the query graph into account. By design, such
algorithms generate only execution plans without crossproducts. With the reordering
constraints induced by outer joins encoded into the query graph, they can also validly reorder
across outer joins [MN08]. Besides bottom-up enumeration there also exist variants that
perform the enumeration top-down, thereby enabling more aggressive pruning [FM13]. As
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these algorithms strictly follow the structure of the query graph, they per se do not generate
crossproducts. crossproducts can, however, explicitly be taken into account by adding edges
to the query graph and updating the reordering constraints of outer joins.

Another approach to incorporate the reordering constraints imposed by non-inner joins
is to add compensation operators [WC18]. These operators correct errors introduced by
crossproducts across outer joins by removing or modifying spurious tuples. Materializing
these spurious tuples and manipulating them, however, creates overhead at query runtime.

Hardware trends have motivated research on parallelizing dynamic programming [Ha08].
However, linearly increasing the compute power cannot compensate for the exponential
growth of the search space. Doubling e. g. the compute power only allows queries with one
additional join to be optimized exactly in a similar, reasonable amount of time.

Lately, the use of linear programming for join ordering has been proposed [TK17]. The
mixed integer linear program (MILP) that they generate encodes relations, cardinalities,
and costs. The solution of the MILP can then be interpreted as a linear join tree. As they do
not fully constrain the MILP to the query graph, the solution may contain crossproducts.
For queries with outer joins this can again lead to invalid execution plans.

Many commercial systems find a good join order by applying transformations onto the initial
execution plan [Gr95]. These transformative approaches have the advantage that relational
equivalences can directly be translated into transformation rules. Direct application of
equivalences enables the algorithms to take care of reordering constraints as transformation
rules can be disabled as required. However, these algorithms are considerably slower than
DP style algorithms and avoiding to generate trees multiple times is non-trivial. These issues
become even more prominent if additional rules to generate crossproducts are introduced.

Besides exact algorithms that give an optimal tree, a large number of heuristics have
been proposed especially to handle large queries. One well known heuristic is the genetic
algorithm [SMK97], a variant of which is used by PostgreSQL for queries containing more
than 12 joins. The genetic meta-heuristic starts with a population of randomly generated
execution plans. For a number of generations, crossover and mutation is applied and the
best plans of the resulting population survive the generation.

Another interesting algorithm is Greedy Operator Ordering (GOO) [Fe98]. This heuristic
builds a bushy join tree bottom up by picking the pair of relations whose join result is
minimal. The picked pair is then merged into a single relation representing the join. Repeated
application of this procedure finally results in a single relation representing a complete join
tree. GOO is fast even for large queries and usually gives decent plans despite it’s greediness.

Iterative Dynamic Programming (IDP) [KS00] is a combination of DP and GOO. It has
proven to work well especially for really large queries. By using DP to refine expensive
parts of a join tree generated by a greedy algorithm, plan costs can be significantly reduced.
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In [NR18] we described linearized DP, a heuristic for join ordering on large queries. We
avoid the exponential complexity of a full dynamic programming strategy by restricting the
DP algorithm to a reduced, linearized search space. Utilizing this technique we bridged the
gap between the small queries which can be optimized exactly and the really large queries,
where only greedy heuristics have acceptable runtime. While this approach gives excellent
results for regular queries, its inability to handle outer joins is a major drawback which we
tackle in this paper.

3 Search Space Linearization

Dynamic Programming (DP) algorithms can be used to solve the join ordering problem
exactly, but the exponential worst case complexity of all known algorithms limits their use
to relatively small queries. The exact complexity depends upon the structure of the explored
search space: A join query Q induces an undirected query graph G = (V, E), where V is the
set of relations, and E is the set of join possibilities between relations. In the general case,
or when the query graph forms a clique, the best known algorithm has a time complexity
in O(3n), which is infeasible for large n. But when the query graphs forms a linear chain
and if crossproducts are not allowed, the optimal solution can be found in O(n3) [MN06],
which is tractable even for large n.

This observation recently led to the concept of linearized DP [NR18]. The key idea is as
follows: Assume that we would know the optimal join order. Then we could take the relative
order of the relations in the optimal join tree and linearize the search space by restricting the
DP algorithm to consider only sub-chains of that relative order. Given the optimal relative
order as input the DP phase can construct the optimal bushy tree in O(n3) [NR18].

Of course we do not know the optimal join order, and thus we do not know the optimal
relative order, either. But for a large class of queries we can construct the optimal left-deep
tree in polynomial time using the IK/KBZ algorithm [IK84, KBZ86]. This gives us a relative
order of relations, too, which we can then use for search space linearization. Using the
IK/KBZ solutions as seed for search space linearization is a heuristic, as we can cut the
optimal solution from the search space, but 1) the resulting plan is never worse than the
optimal left-deep plan, and 2) it is usually close to the true optimal solution in practice, with
much lower optimization time [NR18]. Note that while IK/KBZ requires the cost function
to have Adjacent Sequence Interchange (ASI) property [MS79], the subsequent DP phase
can use any cost function that adheres to the bellman principle.

The main limitation of this technique is that IK/KBZ cannot handle arbitrary queries.
First, it requires an acyclic query graph. We can avoid that problem by first constructing
a minimum spanning tree before executing IK/KBZ. The intuition behind this is that less
selective joins are less likely to be part of the optimal join tree, thus dropping edges that
correspond to such joins to break cycles is usually safe. Note that the DP phase of the
algorithm can again operate on the original, complete query graph potentially including
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Algorithm 1 The IKKBZ algorithm [IK84, KBZ86]
IKKBZ(Q = (V, E))
// construct an optimal left-deep tree for the acyclic query graph Q

b = ∅
for each s ∈ V

Pv = IKKBZ-precedence(Q, s, ∅)
while Pv is not a chain

pick v′ in Pv whose children are chains
IKKBZ-normalize each child chain of v′
merge the child chains by rank

if b = ∅ ∨ C(Pv ) < C(b)
b = Pv

return b

IKKBZ-precedence(Q(V, E), v, X)
// build a precedence tree by directing edges away from a node v ∈ V

Pv = v
for each e ∈ E : (e = (v, u) ∨ e = (u, v)) ∧ u < X

add IKKBZ-precedence(Q, u, X + v) as child of Pv
return Pv

IKKBZ-normalize(c)
//normalize a chain of relations

while ∃i: rank(c[i])>rank(c[i + 1])
merge c[i] and c[i + 1] into a compound relation

cycles. More severely, IK/KBZ cannot handle hyperedges in the query graph, which would
be necessary to support non-inner joins and complex join predicates. For example the join
query (A Z B) Z (C Z D) will have the regular edges (A, B), (C, D), and the hyperedge
({A, B}, {C, D}), which captures the reordering constraints of inner joins and outer joins.
Note that this is a fundamental problem: The algorithm constructs left-deep trees, but that
query graph has no valid left-deep solution, all solutions must be bushy. In order to apply
the idea of search space linearization to queries with non-inner joins we must therefore
extend IK/KBZ to handle hyperedges.

In the following we first briefly repeat how regular search-space linearization works, and
then show an extension to handle hyperedges.

3.1 Regular Search Space Linearization

Before discussing the linearization for hypergraphs, let us briefly reiterate, how the
linearization of regular graphs works. The IK/KBZ algorithm [IK84, KBZ86] constructs an
optimal left-deep join tree, which is then used as relative relation order in the linearized DP.
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As input the algorithm gets an acyclic query graph. For cyclic query graphs we construct a
minimum spanning tree first.

The pseudo-code for the IK/KBZ algorithm is shown in Algorithm 1. It chooses each
relation s as start node once, and then runs the complete construction algorithm given
that start node. For each s, it first constructs the directed precedence graph Pv rooted in s
by directing all join edges away from s. That precedence graph indicates which relations
have to be joined first before other joins become feasible. That is, all valid join orders
adhere to the partial order induced by the precedence graph. Then the algorithm tries to sort
all relations by the cost/benefit ratio of performing the join with a relation. This ratio is
called rank [IK84]. If we get conflicts between the rank order and the order imposed by the
precedence graph, i. e., if we would like to join with R1 before R2, but the precedence graph
requires that R2 is joined before R1, the IKKBZ-normalize function takes both relations and
combines them into a compound relation, because we know that both must occur next to
each other in the optimal solution [IK84]. The remaining relations are ordered by rank until
we get a total order.

The traditional IK/KBZ algorithm returns the cheapest of these n total orders, which is
guaranteed to be an optimal left-deep execution plan. For the linearized DP we take the
total order and use it to restrict the search space considered by the DP phase [NR18]. Note
that we get better results by running the DP phase not only on the order in the cheapest plan,
but on all Pv orders. The reason for that is that the optimal bushy order can be different
from the optimal left-deep order. The different Pv orders are the optimal left-deep orders
given a certain start node; by considering all of them we give the DP algorithm a chance to
recognize orders that are more expensive left-deep but cheaper in bushy form.

3.2 Precendence for Hypergraphs

The IK/KBZ algorithm is only capable of producing linearizations for regular, acyclic
graphs. When generalizing it to handle hypergraphs we first have to construct a precedence
graph, too, which is a bit non-intuitive for hyperedges. The hyperedges have to be directed
away from the start node, but note that a hyperedge connects a set of relations with a set of
relations. To express that, a directed hyperedge is defined similar to the definition used by
Gallo et al. [GLP93]:

Definition 1. In a directed hypergraph H = (V, E), a directed edge e from T ⊆ V to H ⊆ V
is an ordered pair e = (T, H), where T is said to be the tail and H the head of the edge.

We differentiate two types of edges during precedence graph construction: backward
hyperedges b = (T, H) : |T | > 1 and forward hyperedges f = (T, H) : |H | > 1. Note that
an edge can be both a backward and a forward edge.
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A B

C

E F

D

Fig. 1: A query graph with a hyperedge ({C, D}, {E})

For backward hyperedges all relations in the tail set T have to be available before any
relation of the head H can be joined. Such edges, thus, have to be postponed until all tail
relations are covered by the precedence graph. If all relations in T lie on a single path from
the start relation s to the last visited relation of T we can simply append the backward edge
to that relation, because we know that all other relations must have been joined before. If
that is not the case, i. e., if some relations lie on different paths from the start relation we
still attach the edge to the last visited relation of T , but we mark it as partial. We cannot
statically guarantee that all relations in T will be available when considering the join and
must re-check that when merging child chains.

Consider for example the query graph shown in Fig. 1. When building the precedence graph
rooted in B, the backward hyperedge ({C, D}, {E}) has to be handled. If w.l.o.g D is visited
after C during construction, then E is added as a child of D. Note that E is partial here, as
it additionally requires C, which is not part of the path from B to D. All other edges are
regular and handled as in IK/KBZ which results in the precedence graph given in Fig. 2.

For forward hyperedges, all relations in the head set H must be available on the right-hand
side of the join. In particular, there exists no left-deep solution, the final solution must be
bushy and contain a join with a super-set of H on the right hand side. The key insight here
is that the query graph has to be acyclic anyways to apply IK/KBZ. Thus, if we cut the
graph at the forward hyperedge we get exactly two disconnected sub-graphs, which can be
optimized independently. We call the head of such a forward edge a group and optimize it
recursively when encountering a forward edge during precedence graph construction. Note
that the solution of a group is independent of the currently investigated start relation and can
therefore be reused across start relations. When integrating the recursive solution into the
precedence graph we could add all relations in the sub-graph as one compound relation, but
that would be overly restrictive. Instead, only the minimal subchain that covers the groups
relations is added as compound relation and the rest is kept as individual relations. Due to
the recursive nature of this scheme, individual relations here can be compound relations
from other hyperedges, of course.

An example of a precedence graph dealing with a forward hyperedge is shown in Fig. 3.
This is again a precedence graph for the query in Fig. 1, this time rooted in E. When the
forward hyperedge ({E}, {C, D}) is encountered, the group {C, D} has to be solved. The
solution of the group, which covers at least the relations B, C and D, forms a compound
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B

A

C

D E F

Fig. 2: Generalized precedence hypergraph of the graph shown in Fig. 1 rooted in B. E is partial and
additionally requires C.

E

B,C, D A

F

Fig. 3: Generalized precedence hypergraph of the graph shown in Fig. 1 rooted in E. {B,C, D}, the
compound solution to the group of the forward hyperedge ({E}, {C, D}) is appended to E

node and is appended as child of E. Note that the solution to {C, D} would additionally
include A if rank(A) < max(rank(B), rank(C), rank(D)).

If an edge is both, a backward and a forward hyperedge, both strategies are combined:
Application of the edge has to be postponed until the complete tail is available and the
solution for the head group must be inserted when the tail is completely included.

3.3 Linearization using Precedence Hypergraphs

Using the generalized precedence graph we can now run a modified IK/KBZ algorithm
to find a linearization. Similar to the original IK/KBZ algorithm, this is achieved by
merging the nodes in subchains ascending in their rank. One difference is that nodes might
already be compound relations (if forward-edges are encountered), but that does not require
code changes. Backward edges are more difficult, as they have to be recognized during
normalization: A sequence AB must not be normalized if B is partial, as this would prevent
interleaving other nodes that are required by B between A and B. Instead, the nodes are kept
separate in the precedence graph. The rank in the subchain of B is no longer monotonic
here, which requires some care during implementation, but in practice B is merged as soon
as possible after A.

The modifications to IK/KBZ making it hypergraph aware are given in Algorithm 2, where
IKKBZ-precedence is called as IKKBZ-precedence(Q, ∅, {s}, ∅) for each start node s.

As an example, let us now linearize the search space of the query depicted in Fig. 1 for
start relation E (cardinalities and selectivities are given in Tab. 1). The algorithm starts
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Algorithm 2 IKKBZ procedures generalized to hypergraphs
IKKBZ-solve-group(Q(V, E), I,G, X)
// solve a group G

if |G | = 1 return G
if memoized(G) return memoized(G)
b = ∅
for each s ∈ G

Pv = IKKBZ-precedence(Q, ∅, s, X ∪ I + s)
while Pv is not a chain

pick v′ in Pv whose children are chains
IKKBZ-normalize each child chain of v′
merge the child chains by rank

if b = ∅ ∨ C(Pv ) < C(b)
b = Pv

r = smallest subsequence of b that covers all g ∈ G
memoize r as solution for G
return r

IKKBZ-precedence(Q(V, E), I,G, X)
// build a precedence tree by directing edges away from a node representing the group G

Pv = IKKBZ-solve-group((V − (G ∪ X ), E), I,G, X ∪ I)
mark all nodes in Pv
for each e ∈ E : (e = (U,W ) ∨ e = (W,U)) ∧U ⊆ Pv ∧ ∀w ∈ W : w < X

if ∃!u ∈ U : ¬isMarked(u) add IKKBZ-precedence(Q,U,W, X +U) as child of Pv
else postpone e

for each postponed edge (e = (U,W ) ∨ e = (W,U)) ∧ ∀w ∈ W : w < X ∧ ∀u ∈ U :isMarked(u)
add IKKBZ-precedence(Q,U,W, X +U) as child of Pv

return Pv

IKKBZ-normalize(c)
//normalize a chain of relations

while ∃i: rank(c[i])>rank(c[i + 1]) ∧¬isPartial(c[i + 1])
merge c[i] and c[i + 1] into a compound relation

building the precedence graph at the start relation E and directs all edges away from E. This
is immediately possible for the edge (E, F). The forward hyperedge ({E}, {C, D}) however,
requires to solve the group {C, D} first. This is done by recursively linearizing the precedence
graphs for the subgraph covering {A, B,C, D} rooted in C respectively D. Those precedence
graphs, annotated with ranks and their respective linearizations are depicted in Fig 5. After
cost comparison, CBDA is selected as the best solution for the group, from which the
algorithm picks the subchain CBD. The intermediate result of CBD has a cardinality of
200 which gives a rank of 199/200 for the group solution. Finally, the edge (B, A) is again
regular and A is simply added as child of the compound node B,C, D. This completes the
construction of the precedence graph which is depicted with annotated ranks in Fig. 4a.

The second phase of the algorithm then builds a total order of relations based on this
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Relations Cardinality
A 100
B 100
C 50
D 50
E 100
F 120

Join edge Selectivity
(A,B) 0.4
(B,C) 0.02
(B,D) 0.04

({C,D},E) 0.01
(E,F) 0.5

Tab. 1: Cardinalities and selectivities for the example query (Fig. 1)

E

B,C, D A

F

199/200 39/40

59/60

(a) initial

E

B,C, D, A

F

7999/8200

59/60

(b) normalized
Fig. 4: The initial global precedence graph rooted in E for the example query in Fig. 1 and its
normalization. Ranks are annotated in blue.

C B

A

D

39/40

1/2

1/2

(a) rooted in C, linearization CBDA

D B

A

C

39/40

3/4

0

(b) rooted in D, linearization DBC A

Fig. 5: Sub-precedence graphs when solving group {C, D} rooted in C respectively D. Ranks are
annotated in blue.

precedence graph. The algorithm descends into the tree until it encounters a node whose
children are chains, which is immediately the case for the root node E. Before merging
the child chains into a total order, any contradictory sequences UV within the chains are
normalized if V is not partial. In the example, there is a contradictory sequence between
the compound relation BCD and A. These two nodes are normalized into a compound
node and the new rank computed accordingly (see Fig. 4b). After this normalization step
all contradictions are resolved and the algorithm continues with merging the children of
E. This results in the linearization ECBDAF. Based on this linearized search space, the
polynomial time DP algorithm finally constructs the logical execution plan depicted in
Fig. 6. Overall, the algorithm would build execution plans based on all linearizations for the
different start relations and select the one with the lowest cost.

Using this modified IK/KBZ algorithm we can now linearize the search space of arbitrary
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Fig. 6: Logical execution plan based on the linearization ECBDAF

queries, including queries with non-inner joins and complex join predicates. If the query
becomes too large for the DP step (for example more than 100 or 150 relations, depending
on the available hardware) we can fall back to an iterative dynamic programming strategy
using LinDP++ as inner algorithm, as discussed in [NR18].

4 Considering Potentially Beneficial Crossproducts

Having introduced a technique to handle non-inner joins in the previous section we now
turn our attention onto the usefulness of crossproducts. Usually, when a join ordering
algorithm does consider crossproducts, it considers all of them. Unfortunately this increases
the search space dramatically, and increases the optimization time to O(3n), regardless of
the structure of the query graph. And most of these considered crossproducts will be useless:
A crossproduct L × R is inherently a O(|L | |R|) operation, while a hash join can be executed
ideally in linear time. Which means that crossproducts are only attractive if at least one of its
inputs is reasonably small. On the other hand crossproducts can sometimes be used to avoid
repeated joins with large relations (by building the crossproduct of small relations first). We
would like to capture this (rare, but useful) use case, without paying the exponential costs of
considering all crossproducts. In this section we therefore introduce a cheap heuristic to
detect potentially beneficial crossproducts. We use that information to make them explicit
in the query graph: If a crossproduct between R1 and R2 is considered beneficial we add an
artificial crossproduct edge with selectivity 1 between R1 and R2 to the query graph. The
DP phase of LinDP++ will consider this edge during plan construction and will utilize the
crossproduct if beneficial. Note that the heuristic itself is not tied to LinDP++, it could be
used by any query graph based optimization algorithm, like, for example, DPhyp.

When finding crossproduct candidates we have two problems: First, finding good candidates
has to be reasonably cheap, and second, we must be careful in the presence of non-inner
joins, as adding crossproducts there can lead to wrong results. For example in the query
R1 Z (R2 Z R3 Z R4) we must not introduce a crossproduct between R1 and R4, but we
could introduce a crossproduct between R2 and R4. We solve that problem by analyzing
the paths between two relations: We only consider crossproducts between two relations Ri
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and Rj if there exists a path of regular (i. e., inner join) edges between them. This avoids
bypassing non-inner joins with crossproducts.

Intuitively, a crossproduct is potentially beneficial if it allows to cheaply bypass a sequence
of expensive join operations. Analyzing all paths between all pairs of relations is com-
putationally expensive and not feasible in practice. However, restricting the analysis to
paths of length two gives polynomial optimization time and still catches many cases where
a crossproduct could result in a better plan: For a query Q we investigate all pairs of
neighboring edges e1 = (u, v) ∈ Q and e2 = (v,w) ∈ Q. We augment Q with an artificial
crossproduct edge (v,w) of selectivity 1 if the cardinality of the crossproduct |u × w | is less
than the result sizes of both of the joins:

|u × w | < |u Z v | ∧ |u × w | < |v Z w |

For the Cout cost function [CM95] this criterion gives all potentially beneficial crossproducts
to bypass paths of length two while still keeping optimization complexity reasonable. Of
course there could be even longer paths where bypassing joins via crossproducts would
result in cheaper plans. Our experimental evaluation (Section 5), however suggests, that
investigating paths of length two covers most of the important crossproducts, and has
negligible overhead. If one wants to be more aggressive with crossproducts we could
consider even longer paths if the relations are particular small (for example a single tuple).
But this leads to diminishing return compared to the optimization time, which is why we
used only paths of length two in our experiments.

Note that crossproducts should be introduced very conservatively, especially if cardinality
estimates are inaccurate. A crossproduct is inherently quadratic in nature, and if an input
relation has estimated cardinality of 1 and a real cardinality of 10,000 (which can easily
happen in practice), the performance impact will be disastrous. On the other hand the
cardinality is sometimes known exactly, for example if the primary key is bound or if the
input is the result of a group-by query with known group count, which makes the introduction
safe. For base tables the available statistics can sometimes provide reasonably tight upper
bounds for the input size, which also makes the computation safe if the upper bound is
used in the formula above. This essential prudence reduces the number of cases where we
will consider crossproducts, but nevertheless there remain queries where crossproducts are
attractive and safe, and we can and should consider them during join tree construction.

Consider for example the query graph with cardinalities and selectivities given in Fig. 7a.
The optimal execution plan without crossproducts for this query has costs of 1.84M and is
depicted in Fig. 8a. When applying the crossproduct heuristic, the query graph is augmented
with two additional edges (A,C) and (D, F) as shown in Fig. 7b. While these two additional
edges only marginally enlarge the search space, costs are cut by almost 50% to 0.94M using
the plan shown in Fig. 8b. Note that even considering all possible crossproducts, although a
much larger search space is explored, does not uncover a cheaper plan. Further note that
LinDP++ generates the same plan, despite exploring a reduced, linearized search space.
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Fig. 8: Optimal execution plans for the query graphs depicted in Fig. 7

5 Evaluation

In this section we present the results of an extensive experimental analysis of the techniques
described in this paper. We compare LinDP++ against a multitude of different join ordering
algorithms including DPhyp [MN08], Greedy Operator Ordering (GOO) [Fe98], Iterative
Dynamic Programming [KS00] using DPhyp as inner algorithm, Quickpick [WP00],
genetic algorithms [SMK97], query simplification [Ne09], minsel [Sw89], and linearized
DP [NR18]. The algorithms were used to optimize the queries of the following well
known standard benchmarks using the Cout [CM95] cost function: TPC-H [Tra17b] and
TPC-DS [Tra17a], LDBC BI [An14], the Join Order Benchmark (JOB) [Le18], and the
SQLite test suite [Hi15].

The query graphs of the standard benchmark queries unfortunately contain only a small
number of hyperedges, most of them do not contain any hyperedges at all. Furthermore,
the queries are fairly small and can all easily be optimized by a full hypergraph based DP
algorithm [NR18]. Nevertheless, large queries with outer joins are a reality we have to
deal with [Vo18]. To thoroughly assess our approach also for larger queries with non-inner
joins we thus additionally evaluate LinDP++ on a synthetic workload of large randomly
generated queries. We use the same set of tree queries used in [NR18] which was generated
using the procedure described in [Ne09]. The set contains 100 different random queries
per size class. Sizes range from 10 to 100 relations per query, which gives a total of 1,000
queries. Hyperedges are introduced to the queries by randomly adding artificial reordering
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Algorithm TPC-H TPC-DS LDBC JOB SQLite
DPhyp 0.4 90 1.2 227 2.2K
GOO 0.8 9.5 2.2 13.7 61
linearized DP 1.4 18.7 4.4 33.4 4.7K
LinDP++ 1.6 19.9 4.4 36.2 4.7K

Tab. 2: Total optimization time (ms) for standard benchmarks

constraints between neighboring joins. All algorithms were ran single-threaded with a
timeout of 60 seconds on a 4 socket Intel Xeon E7-4870 v2 at a clock rate of 2.3 GHz
with 1 TB of main memory attached. When comparing the quality of the plans for a query
generated by different algorithms we report normalized costs, i. e. the factor by which a
plan is more expensive than the best plan found by any of the algorithms.

5.1 Hypergraph Handling

The algorithm described in this paper targets query sizes far beyond what exact algorithms
with exponential runtime can solve in a reasonable amount of time. Thus we start by
analyzing the runtime characteristics of LinDP++.

For completeness reasons we first report numbers for all considered standard benchmarks
even though their queries are all rather small and a full graph based DP would be the
algorithm of choice here. In Tab. 2 we summarize optimization time of DPhyp, GOO,
linearizedDP, and LinDP++ for all considered benchmarks. Most of the queries are optimized
almost instantly and optimization times of LinDP++ are comparable to those of linearized
DP. The only benchmark where optimization time becomes noticeable is the SQLite test
suite, which contains more than 700 queries on up to 64 relations. But even the largest query
of the SQLite test suite is optimized by LinDP++ in 27ms. Regarding the quality of the plans
generated by LinDP++: 93% of the plans are indeed optimal, 6% of them are suboptimal by
at most a factor of 2 and only 10 of the 1159 execution plans are worse than that. Note: we
compare plans to the best plan found when considering all valid crossproducts here.

Once queries become more complex and exact optimization becomes infeasible, search
space linearization helps to keep optimization times reasonable. With LinDP++ we are now
able to linearize the search space of queries with non-inner joins, a class of queries that could
not be handled by linearized DP. To see whether this ability to linearize hypergraph queries
comes at the expense of optimization performance we compare linearized DP on regular
queries with LinDP++ on hypergraph queries with the same number of relations. Figure 9
shows median, minimum and maximum optimization time per size class for linearized DP
and LinDP++. The overhead incurred by hypergraph handling is negligible and LinDP++ is
just as well able to optimize queries on 100 relations within 100ms on average.
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Fig. 10: Distribution of normalized costs of LinDP++ plans compared to the plans the hypergraph
aware greedy GOO/DPhyp fallback of linearized DP generates for queries on up to 100 relations.

The original adaptive optimization framework [NR18] had to fall back to the greedy
iterative DP with DPhyp as hypergraph aware inner algorithm (GOO/DPhyp) for large
queries with non-inner joins. Depending on the structure of the query graph, this could
already be the case for hypergraph queries touching as few as 14 relations. Using the
generalized LinDP++ technique we can avoid the greediness for these queries and generate
significantly better plans. Figure 10 compares the normalized costs of the plans generated by
LinDP++ with the ones GOO/DPhyp generates for the synthetic workload with hyperedges.
On average, plan costs are within 2% of the best plan and 814 plans are indeed the best
known plans for their respective query and normalized costs of 123 plans are within 10% of
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Fig. 11: Normalized costs of plans when either all valid crossproducts or some explicit crossproduct
edges as suggested by the heuristic are considered. Costs are normalized to the optimal plan without
crossproducts.

the best. The remaining execution plans have normalized costs below 2 with the exception
of one query, for which the plan is 2.4 times as expensive as the best known plan. In contrast
to that, 139 plans generated by GOO/DPhyp already have normalized cost worse than 2 and
costs of 54 plans are worse than the best plan by a factor of 10 or more.

5.2 Crossproduct Benefits

Investigating the effectiveness of the crossproduct heuristic described in Section 4 on the
queries of the standard benchmarks shows that crossproducts can indeed improve execution
plans. Figure 11 summarizes the costs of plans normalized to the optimal plan without
crossproducts. We compare these normalized costs when considering all crossproducts
with those when considering only the crossproducts suggested by our heuristic. On
average, introducing crossproduct edges improves plan cost by up to 18%, depending on
the benchmark. Nevertheless, 90% of the execution plans remain the same even when
considering all valid crossproducts. This confirms our statement, that the vast majority of
possible crossproducts is irrelevant and should not be considered. However, while plan
improvements are minimal for most queries, a maximum cost reduction of a factor of 14.4
reconfirms the claim of Ono and Lohman [OL90], that some crossproducts can significantly
improve plan quality. The figure also shows, that our simple heuristic indeed already covers
many of the relevant crossproducts. Only the Join Order Benchmark would benefit from
additional crossproducts that bypass larger chains of joins (mostly of length 3). Extensively
investigating all crossproduct possibilities during join ordering is thus neither required to
get good plans nor feasible in terms of optimization complexity.
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crossproducts are never considered during the linearization phase of LinDP++, as they
are eliminated when removing cycles from the query graph. However, even though they
are ignored by the first phase, the second phase does consider them and plan costs are
reduced almost as much as with a full DP algorithm. Figure 12 shows the differences in cost
improvements comparing LinDP++ against full DPhyp, both operating on the augmented
query graph. Despite the reduced search space, which gives much better optimization times,
most of the beneficial crossproducts are discovered and plan costs are within 1% of the
DPhyp solutions on average.

6 Conclusion

In this paper we eliminate a severe limitation of the recently proposed adaptive join ordering
framework [NR18]. While generating high quality execution plans for many large queries
using search space linearization, the framework had to fall back to a greedy heuristic as soon
as a large query contained a single outer join. The generalized algorithm LinDP++ described
in this paper enables linearization of the search space of arbitrary queries, including those
with non-inner joins. We experimentally show that the join orders generated by LinDP++
are clearly superior to those generated by the greedy fallback of the original framework.

LinDP++ in addition is equiped with a fast heuristic to detect promising opportunities to
perform a crossproduct. Despite considering some crossproducts, LinDP++ deliberately
avoids looking at all crossproducts which would result in exponential search space size.
Furthermore, the heuristic ensures that any considered crossproduct obeys all reordering
constraints induced by non-inner joins. We demonstrate the effectiveness of this heuristic on
the queries of major database benchmarks. The heuristic detects most relevant crossproduct
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opportunities while keeping the search space small and thus optimization time reasonable.
Our experiments further verify that considering all valid crossproducts is not worth the
dramatically increased optimization time, as the additionally considered crossproducts
rarely lead to an additional cost reduction.

Even a polynomial time heuristic like LinDP++ becomes too expensive at some point.
At that scale, iterative dynamic programming has proven to be an effective technique, as
it allows to gracefully tune down plan quality in favor of acceptable optimization times.
According to our experiments however, the chosen greedy algorithm – Greedy Operator
Ordering (GOO) – seems to also have quality issues with non-inner joins. To ensure high
quality execution plans even at that scale we thus would like to investigate alternatives or
improve GOO in this setting.

This project has received funding from the European Research Council (ERC) under the
Euroean Union’s Horizon 2020 research and innovation programme (grant agreement No
725286).
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Waves of misery after index creation

Nikolaus Glombiewski1, Bernhard Seeger2, Goetz Graefe3

Abstract: After creation of a new b-tree, the ordinary course of database updates and index
maintenance causes waves of node splits. Thus, a new index may at first speed up database query
processing but then the first “wave of misery” requires effort for frequent node splits and imposes
spikes of buffer pool contention and of I/O. Waves of misery continue over multiple instances although
eventually the waves widen, flatten, and spread further apart. Free space in each node left during index
creation fails to prevent the problem; it merely delays the onset of the first wave. We have found a
theoretically sound way to avoiding these waves of misery as well as some simple and practical means
to reduce their amplitude to negligible levels. Experiments demonstrate that these techniques are also
effective. Waves of misery occur in databases and in key-value stores, in primary and in secondary
b-tree indexes, after load operations, and after b-tree reorganization or rebuild. The same remedies
apply with equal effect.

Keywords: Indexing, Bulk Loading, B-tree

1 Introduction

The purpose of adding an index to a database table is to improve the performance of
query processing. Unfortunately, after an initial “honey moon” of using a new index and
of enjoying fast queries, the index may grow and require many node splits – thus creating
a spike in buffer pool contention and I/O activity. In other words, the index may actually
reduce query performance or at least fail to achieve the expected performance. Consider
the following example. First, a new secondary b-tree index enables fast look-ups and fast
ordered scans. In order to absorb updates without node splits, each node might start with
10% free space – often a parameter of index creation. However, once the table and the
secondary index approach 10% growth, many of the b-tree leaf nodes require splitting.
Thus, there is a wave of split activity with contention for the data structures for free space
management, for the buffer pool, and for the I/O devices. Once most of the original index
leaves are split, this activity subsides until the table and index grow above two times the
original contents, whereupon another wave of splits happens. During each wave of splits,
both update and query performance suffer, as do buffer pool contention and space utilization
1 Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany,

glombien@mathematik.uni-marburg.de
2 Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany,

seeger@mathematik.uni-marburg.de
3 Google Inc., Madison WI, USA, goetzgraefe@gmail.com

cba doi:10.18420/btw2019-06

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 77

https://creativecommons.org/licenses/by-sa/4.0/
glombien@mathematik.uni-marburg.de
seeger@mathematik.uni-marburg.de
goetzgraefe@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-06


2 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

in memory and on storage. Figure 1 illustrates the effect in a b-tree with 8 million initial
index entries and insertion batches of 10,000 entries, with leaf splits per insertion batch
varying from 0 to over 600. The details of the experiment are given in the experimental
section. In order to reduce these wave of splits, alternative strategies for the initial bulk
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Fig. 1: Waves of Misery

loading of b-trees are needed. The main contributions of this paper are a theoretical analysis
and solution for reducing splits as well as a variety of practical solutions that can easily be
integrated into existing bulk-loading techniques.

In the remainder of this paper, the next section reviews related prior work. After a section
illuminating the extent of the problem, two sections suggest both theoretically sound
remedies and simple practical remedies or approaches to the problem. An evaluation section
is then followed by a summary and suggestions for future research.

2 Related prior work

This section reviews relevant aspects of the well-known b-tree index structure. Knowledgeable
readers may feel free to skip ahead.

2.1 B-trees

B-tree indexes are ubiquitous in databases, key-value stores, file systems, and information
retrieval. There are many variants and optimizations [Gr11]; we review only those most
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relevant to the new techniques proposed below. Suffice it to say that b-tree keys can be
multiple columns (compound indexes), hash values (ordered hash indexes enable efficient
creation, effective interpolation search, and easy phantom protection), space-filling curves
(spatial indexes for multi-dimensional data and query predicates), or heterogeneous keys
(merged indexes or master-detail clustering); and that both keys and values can be compressed,
e.g., as bit vector filters instead of a set of row identifiers. B-tree creation benefits from
sorting but sorting can also benefit from b-trees: runs in external merge sort in the form
of b-trees, or even all runs within a single partitioned b-tree [Gr03] or a linear partitioned
b-tree, enable effective read-ahead during a merge as well as query processing while a merge
step is still incomplete. This is the foundation of log-structured merge-trees, discussed later.
Sorted data permit efficient binary search; b-trees cache in their root node the first few keys
inspected in any binary search (or reasonably good representatives for those key values), in
the root’s immediate children the next few keys inspected in a binary search, etc. In order to
maximize the caching effect by minimizing key sizes, Bayer and Unterauer suggested suffix
truncation when splitting a leaf node: rather than split rigidly into halves, i.e., at the 50%
key, choose the shortest possible key value separating, say, the 40% and 60% keys [BU77].
Similar split techniques are also known from UB-trees [Ra00] and bulk-loading of R-trees
[ASW12].

In order to avoid node splits immediately after index creation, e.g., during the first insertion
into a new index, many implementation leave free space within each b-tree node. For a
pretty typical example, Microsoft SQL Server supports two free space parameters during
creation and reorganization of a b-tree index. The first one controls how much free space
is left within each b-tree node, both leaf nodes and branch nodes (except along the right
edge of the b-tree). The second parameter controls the number of empty pages, or more
specifically the percentage of empty pages in the sequence of b-tree pages. These empty
pages will be allocated during node splits. Leaving empty pages in this way ensures fast
scans on traditional hard disk drives even after many insertions and node splits. SQL Server
does not support free space fractions different for leaf and branch pages or free space
fractions per key range.

In addition to the ‘fill factor’ option, the ‘create index’ statement in Microsoft SQL Server
includes the option ‘pad index,’ which specifies whether to apply the fill factor not only to
leaf nodes but also to branch nodes. Sybase supports the ‘fill factor’ option and a related
option ‘max rows per page.’ The Oracle database and IBM DB2 support an index option
‘percent free’, which is the complement to the fill factor in SQL Server. The Oracle database
also support many related options regarding the number of pages reserved for future index
growth. Many other database systems support the Oracle or IBM syntax for free space
within indexes. The aspect important in the present context is that all products support a
fixed amount of free space in all index leaves, which causes waves of node splits.
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2.2 Uneven page utilization and fringe analysis

Instead of using a fixed amount of free space, more flexible rules for the initial assignment of
records to pages are required to mitigate or even avoid the waves of misery. A theoretically
sound rule presented in this paper dates back to an analytical framework called fringe
analysis [Ya78] that is originally used to prove the expected storage utilization of b-trees and
other search trees. The framework of fringe analysis has been elaborated in [Ei82] and later
applied to the analysis of various versions of b-trees [BL89]. However, none of the previous
studies addressed the problem of bulk loading and the waves of misery identified in our work.
Closely related to fringe analysis is spiral hashing [Ma79] where the utilization of the pages
follows a logarithmic pattern. This avoids the undesirable oscillating search performance of
linear hashing [La88] because the page with the highest expected load is always split next.
However, the goal of spiral hashing is to guarantee a constant expected search performance
while our approach addresses the problems of constant insertion performance and buffer
contention.

2.3 Write-optimized b-trees

Traditional b-trees incur a high write penalty: modifying a single byte, field, or record forces
a random page write to persistent storage. Write-optimized b-trees [Gr04] attempt to reduce
this cost by turning the random write into a sequential write. More specifically, they employ
append-only storage at page granularity, tracking new page storage locations within the
b-tree structure, i.e., each page movement requires a pointer update in a parent page. Thus,
write-optimized b-trees encompass the most crucial function of a flash translation layer
(FTL). They do not permit neighbor pointers among sibling nodes; nonetheless, they permit
comprehensive consistency checks (online/continuous or offline/utility) by fence keys in
each page, i.e., copies of branch keys in ancestor pages. Write-optimized b-trees can suffer
from poor scan performance on storage device with high access latency (e.g., seek and
rotation delays). A possible optimization divides the key range into segments, stores each
segment in continuous storage, and recycles replaced pages within a segment. The key range
per segment may be dynamic, just as the key range per leaf node is dynamic in a traditional
b-tree. The resulting design combines elements and advantages of write-optimized b-trees
and of O’Neil’s SB-trees [ON92]. On flash storage, segments may coincide with an erasure
block.

2.4 Log-structured merge forests

Write-optimized b-trees optimize I/O patterns but still employ update-in-place within b-tree
nodes (database pages). Log-structured merge-trees [ON96] employ random access only
within memory but write to persistent storage only in append-only sequential patterns, each
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page containing only new records. Thus, it seems that log-structured merge-trees solve the
problem of write amplification. Log-structured merge indexes turn updates into insertions of
replacement records and deletions into insertions of “tombstone” or “anti-matter” records.
With only insertions remaining, the principal algorithm is that of an external merge sort,
with runs in b-tree format and with the merge pattern optimized for both sorting and
querying. On one hand, a high fan-in and few merge levels permit efficient sorting; on the
other hand, as queries must search each one in the set (forest) of b-trees, efficient query
processing demands eager merging and thus a low fan-in in each merge step. Bit vector
filtering may reduce the number of b-trees a specific query needs to search, but merging
in log-structured merge trees is generally less efficient than in external merge sort. In fact,
small and sub-optimal merge fan-insertion can multiply the number of merge levels and
thus the amount of I/O compared to an optimal merge sort. A second principal weakness of
existing designs and implementations is that log-structured merge forests induce bursts of
system activity in the form of merging. In other words, they don’t avoid “waves of misery”
but merely replace one kind with another [Gr19].

2.5 Summary of related prior work

Among traditional b-trees, write-optimized b-trees, and log-structured merge-trees, tradi-
tional b-trees and write-optimized b-trees offer the best query latency (single partition search),
traditional b-trees and log-structured merge-trees the best storage utilization, write-optimized
b-trees and log-structured merge-trees the highest write bandwidth (sequential writes only),
and log-structured merge-trees the highest insertion bandwidth. Traditional b-trees and
write-optimized b-trees suffer from the waves of misery addressed here; log-structured
merge-trees have different waves of misery.

3 Problem assessment

While the introduction describes the problem in general terms and illustrates that the
problem indeed exists, the present section illustrates when the problem occurs, when it does
not, what characteristics or key value distributions cause the problem, etc. The following
sections offer a deeper understanding as well as one particular solution; the following section
offers more practical approaches and solutions. For b-tree leaf splits to occur in substantial
frequency, the index (and its underlying table or data collection) must grow. A b-tree with
little update activity and with little growth do not exhibit the issues discussed here. Little
or moderate update activity (without overall growth) can be absorbed without splits if the
initial index creation left free space in each node, as discussed in the preceding section. On
the other hand, most databases have at least some tables and indexes that capture continuous
business activity, whether those are banking transactions, web activity, sensor readings
from internet-of-things devices, or other types of events. For b-tree leaf splits to occur
in discernable waves, the key value distributions in the initial b-tree contents and in the
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set of insertions must match. The higher their correlation, the sharper the waves. It is not
required that this distribution be uniform or any other particular form. Figure 2 illustrates
these points. If both initial key value distribution and insertions follow a normal or uniform
distribution, there are fairly sharp waves of node splits that even overlap in Figure 2. If, on
the other hand, their distributions differ, the waves are much less distinct. In a b-tree on
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Fig. 2: Development of leaf splits for varying key distributions

hash values, a high correlation between these distributions is extremely likely. B-trees on
hash values offer several advantages (over other traditional hash indexes), e.g., efficient
creation after sorting future index entries, simple implementation of phantom protection
(serializable concurrency control) by locking gaps between existing index entries, efficient
merge joins after index scans, and more. Note that b-tree nodes with near-uniform key
values permit interpolation search (instead of binary search) and that a b-tree root and its
immediate descendent nodes can be cached as a single super-large node in memory. Thus,
b-trees on hash values offer advantages but suffer from waves of leaf splits just as much
as other b-trees, perhaps even more so because hash functions are specifically designed to
produce uniform distributions and thus equal distributions in initial contents and insertions.

While free space left in each new b-tree node during index creation can absorb moderate
update activity, it cannot absorb long-term growth. Initial free space merely delays the first
wave of node splits, and it perhaps widens and weakens the first and subsequent waves, but it
does not prevent them. Figure 3 highlights this point: even with as little as 50% initial space
utilization (and thus also 50% free space on each index leaf), distinct waves occur. Thus, the
facilities found in commercial relational database products and their commands for index
creation do not prevent the waves of node splits addressed in the following sections.

The diagram in Figure 4 illustrates that index size matters. In a very small index (e.g., 1,000
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Fig. 3: Development of leaf splits for varying initial page utilizations
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Fig. 4: Development of leaf splits for varying initial dataset sizes
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leaf nodes), batches of 10,000 insertions force waves of node splits in rapid succession.
They widen and weaken after a few waves. In contrast, in very large index (e.g., 500,000
leaf nodes), many batches are required to fill the initial free space in each node, but then
there are distinct, high, and wide waves of node splits impacting database components such
as the buffer pool for a longer period of time.

4 Sound remedies

The goal of this section is to provide a theoretically sound solution for loading b-trees for
which succeeding insertions will trigger a split with a constant probability. Thus, there are
no waves of misery. We limit our discussion first to the leaf level and later extend it to
the upper levels of the tree. We assume records of constant size such that every leaf has a
capacity of B records. For the sake of readability (and because of space limitations) let B
being odd. Thus, a split of an overflowing page results into two pages each with (B+1)/2
records. A record has a unique comparable key that provides the ordering required for the
b-tree.

The basic idea of the following approach is to keep the filling degree of the leaf pages
in balance. Given a b-tree with n records, let f di (n) denote the number of pages with i
records, (B + 1)/2 ≤ i ≤ B. Then, the probability that the next insertion triggers a split
is B ∗ f dn(B)/(n + 1). As already shown in the introduction, this probability provides an
oscillating behavior, our waves of misery, in case of extreme differences among f di (n). It
is also easy to see that the other extreme of a uniform fill degree with f di (n) = f d j (n),
(B + 1)/2 ≤ i, j ≤ B and i , j, is not the theoretically sound solution because there are too
many full pages and too less pages with a low utilization. The sound solution is somewhere
between these two extremes such that the number of less populated pages is higher than the
one of more populated ones.

A key idea of our algorithm is to employ the steady-state probability pj that a page with
j records occurs in the sound solution, (B + 1)/2 ≤ j ≤ B. In an iterative manner, the
algorithm randomly determines j with probability pj , (B + 1)/2 ≤ j ≤ B, and assigns
the next j records from the input to a new page. The iteration stops when the number of
remaining records is less than (3B + 1)/2. Then the algorithm performs in the following
way. If the remaining number of records is at most B, these records are stored in one leaf.
Otherwise, two pages are created over which the records are equally distributed. Overall,
this algorithm guarantees that all pages are at least half full as required for a traditional
b-tree.

In order to analyze the split occurrence of the b-tree after loading, we assume equal
distributions such that the distribution of insertions mirrors the key value distributions of
the records in the b-tree. More formally, a b-tree with n records partitions the key domain
into n + 1 empty intervals and the probability an insertion hitting such an empty interval is
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1/(n + 1). Note that this model is entirely different from the restrictive uniform distribution
assumption.

Theorem 1 Let us consider a b-tree with N records being created by our loading algorithm
such that the probability qj of the next insertion hitting a page with j records is 1

α( j+1) .
Here, α = HB −H(B+3)/2 denotes a weight parameter, where Hj =

∑
1≤i≤ j 1/i is the partial

harmonic series of size j. Furthermore, records are continuously inserted into the initial
b-tree assuming equal distributions (i.e., insertion distribution mirrors the initial loading
distribution). Then, the following two statements are fulfilled:

• First, the probability that a record insertion triggers a split of a leaf is constant, i.e.,
there are no waves of misery.

• Second, the probability pj that a leaf consists of j records is given by pj =
B ·ln(2)
j ( j+1) .

Sketch of the proof: The proof follows the basic ideas of fringe analysis [BL89; Ei82;
Ya78]. In the following, we provide a rough summary and refer the interested reader
to the original literature. For the following fringe analysis, we restrict our discussion to
the leaf pages of the b-tree. The number of records partition the leaves into classes Ci ,
(B+ 1)/2 ≤ j ≤ B. Class Ci consists of all the pages with i records. For each class Ci , f i (n)
denotes a counter for the corresponding number of leaf pages in a b-tree with n records. Let
qi (n) denote the probability that an insertion will be in a page of class Ci . It follows that
qi (n) = i · f i (n)/(n + 1) since there are a total of i · f i (n) records in pages of class Ci and
every record is a left boundary of an empty interval where the next insertion may occur
with probability 1/(n + 1). Note that we make a negligible simplification because the first
interval has not a record as its left boundary. All these probabilities are collected in a vector
~q(n). The basic idea of the fringe analysis is to keep track of this vector over a sequence of
insertions. By using a quadratic transition matrix T with (B+1)/2 columns and rows it is
possible to compute ~q(n + 1) from ~q(n) in a recursive way ([Ei82]):

~q(n + 1) = (I +
1

n + 1
T ) × ~q(n) (1)

Here I denotes the identity matrix. The steady-state ~q = (q(B+1)2, . . . , qB) of this recursive
equation is then given by the solution of T × ~q = ~0. In [Ei82], it is shown that this results in

qj = 1/( j + 1) (2)

for j = (B + 1)/2, . . . , B. Because the leaf pages are filled in our initially loaded b-tree
with N records such that the probability ~q(N + 1) = ~q, it follows that ~q(N + k) = ~q for
k = 1, 2, . . .. In particular, the probability qB (N + k) = qB remains constant for k = 1, 2, . . .
and so does the probability of a split. Thus, the first statement of Theorem 1 is fulfilled.
For the proof of the second statement, we make use of qj (n) · (n + 1)/ j being the expected
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number of buckets with j records [Ei82]. Moreover, (n+1)/(B · ln 2) is the expected number
of pages in a b-tree with n records because the expected storage utilization of a b-tree is ln 2.
The corresponding quotient of the two expected values is then B · ln(2)/ j ( j + 1). In fact,
this quotient is asymptotically equal to pj , the probability of a page comprising j records
[BL89]. Thus, the second statement is also fulfilled, and our iterative loading algorithm is
equipped with a theoretically sound rule for determining the filling degree of the next page.

So far, the discussion is limited to the leaf level only. Waves of misery still may occur for the
index levels when a threshold-based loading approach is used. However, it is easy to see that
our algorithm is also directly applicable to every index level. Also note that the algorithm
runs online on an input stream, and therefore, the entire tree, including all index levels, is
built from left to right as it is known from the standard loading algorithm of b-trees.

The probability vector introduced in Equation 2 is also known as the steady-state solution of
the recursive equation. It is the foundation to show that the expected storage utilization is ln 2
[Ya78]. Thus, the loading algorithm also creates b-trees with an expected storage utilization
of ln 2. This result can be guaranteed by changing the algorithm to a deterministic one
where the ratio of pages with i records, (B + 1)/2 ≤ i ≤ B exactly matches the probabilities.
Then, the loaded b-tree guarantees a storage utilization of ln 2. Unfortunately, there is no
steady-state solution with a higher storage utilization for the loaded b-tree. In order to obtain
a higher storage utilization and a b-tree without waves of miseries, it is required to change
the split policy of the b-tree by using partial expansions or elastic pages [BL89]. This is a
direct extension of our approach and is not further elaborated in the paper.

The analysis in this section assumes that the key value distribution in the set of insertions
mirrors that of initial b-tree contents. Moreover, it assumes that an overall space utilization
of ln(2) ≈ 69% is sufficient for the application. Therefore, the following section offers some
practical approaches that do not require these assumptions. The subsequent section offers
an evaluation of both the techniques above and those below.

5 Practical remedies

With waves of nodes splits occurring in practice, although often not recognized, practical
remedies are required that fit into scalable data center operations. For example, limiting
initial or steady-state storage utilization to 69% is unacceptable. Therefore, many b-tree
implementations attempt load balancing before splitting two nodes into three; and many
database administrators frequently reorganize (rebuild) their indexes to reset free space per
node to, say, 10%. Note that splitting 2-to-3 or even k to k+1 does not avoid waves of misery.

Even if the goal is to achieve, say, 10% free space in each node, it is not required to achieve
10% free space rigidly and precisely. Instead, the same overall objective is accomplished
by leaving a different amount of free space in each node, chosen from a uniform random
distribution from 0% to 20%, from 5% to 15%, or anything similar.
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Another possible approach is to make this very systematic: 1st node 0% free space, 2nd
node 1%, etc. to 21st node 20%; then restarting with 0% free space, etc. This approach
favors some range queries and disfavors others, so an alternative assigns 0% free space to
the 1st node, 20% to the 2nd node, 1% to the 3rd node, 19% to the 4th node, etc.

An entirely different approach assigns free space not numerically but by following the logic
of suffix truncation (suffix compression) [BU77]. Originally conceived for splitting nodes
in the middle, it can be adapted to index creation and reorganization when dealing with
non-numeric keys. For example, instead of leaving precisely 10% free space, the key values
at 80% and at 100% are compared, the shortest possible key value for the b-tree branch
node determined, and the key values distributed to the current and next node according to
this branch key. If there is no correlation between the shortest key value and its position,
this approach promises a distribution of node utilization similar to the random approach
above, with the compression effect added.

Finally, multiple of these techniques may be combined. For example, suffix truncation for
the 1st node may look at the key values at the 80% and 100% positions, for the 2nd node at
70% and 90%, for the 3rd node at 79% and 99%, for the 4th node at 71% and 91%, etc.
Other combinations may also be possible.

6 Evaluation

All experiments were conducted on a workstation equipped with an AMD Ryzen7 2700X
CPU (8 cores, 16 threads) and 16GB of memory, running an Ubuntu Linux (18.04, kernel
version 4.16). All of strategies were implemented using the Java indexing library XXL
[Se01]. If not stated otherwise the b-tree was initially loaded using 100,000 pages of 8KB.
The tree holds records consisting out of 21 integer values (totaling 84 bytes) of which 20
values are uniformly random. The last value is the key and is being randomly sampled
according to a normal probability distribution. The loading phase is succeeded with 60
million record insertions. The results are shown based on the statistics of a batch of 10,000
insert operations. Having batches of 10,000 records is not uncommon and allows for a
reduction of statistical noise. In the following, the practicality of the sound remedies, which
are ideal for 69% utilization, are evaluated first. Afterwards, the various practical remedies
also suitable for higher utilization requirements are analyzed.

6.1 Sound Remedies

To get a better understanding of the meaning of the sound remedies, the distribution of free
space among all pages for an ideal solution (i.e., a b-tree in a steady state) and the proposed
algorithm of the sound remedies section need to be evaluated. Naturally, in the ideal case,
the overall space utilization amounts to ln(2) ≈ 69%. Figure 5 depicts the results based on
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Fig. 5: Initial Page Distributions

the different utilization (x-axis) and the amount of pages having them (y-axis). The ideal
solution shows the basic notion of the steady state: There are a few pages ready to be split
right away (100% utilization, no free space), a lot pages not even near their split point (50%)
and having all other utilization values in between them represented in the tree on a gradual
slope. The sound remedy has the same features, but features some slight spikes in the slope.
This is due to the the asymptotic nature of the algorithm and its inherent randomness -
utilization is picked at random based on the described probability function. The latter is an
important feature of the algorithm due to range queries: If the slope is perfect, a certain
range of pages will have more free space than other pages. Thus, those ranges require more
pages to be read.
As shown in Figure 6, the sound remedy also performs well in practice, if its assumptions
are met. The x-axis represents the progression of insert batches while the y-axis shows the
amount of leaf splits measured during each batch. While the constant strategy of having
each page having the same utilization shows clear waves of splits, the sound remedy begins
in the steady state and never leaves it.

6.2 Practical Remedies

Based on Section 5, three loading strategies were implemented that can easily be adapted
into most systems in order to reduce the waves of misery. The most important parameters
are the amount of data items to load and a target number of pages along with the overall
space utilization. The analysis for each of the strategies is presented in turn. First, results for
the linear strategy that systematically assigns free space to each page are shown. Second,
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Fig. 6: Leaf Splits over time for ideal theoretical conditions (69% page utilization)

results for the random strategy that randomly assigns free space are presented. Third, a
combination of both those strategies (hybrid strategy) is evaluated. Afterwards, the impact
waves of misery can have on the buffer pool are discussed. The final subsection features
the results on range query processing. As with the sound remedies, the constant strategy of
uniformly loading each page with the same space utilization serves as a baseline for each
evaluation.

6.2.1 Linear Strategy

The linear strategy assigns pages according to a linear function starting at 100% page
utilization. The gradient and lower end of the function is computed based on the desired
utilization and the amount of pages. In order to support range queries, values from the higher
and lower end of the function are picked in an alternating fashion until both ends meet. At
this point, all data has been successfully loaded into the tree. Figure 7 compares the impact
of insertion of various initial utilization (70%, 80% and 90%) for the linear strategy. The
y-axis shows the leaf splits while the x-axis indicates the total amount of batches inserted
into the b-tree. Even at a high utilization of 90%, the linear strategy showcases slightly
better leaf split performance than the constant strategy at 70%. Naturally, this means that
achieving a similar split behavior requires less overall storage space for the same amount of
data. Furthermore, the lower the utilization, the more the impact of waves is reduced. Even
at 80%, the behaviour is somewhat close to the steady state and there are only short bursts
of splits present.
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Fig. 7: Leaf Splits over time for linear strategies

6.2.2 Random Strategy

The random strategy chooses the page utilization of each successively loaded page randomly
around the range of the given overall desired storage utilization. Due to randomness, the
final page count may differ from the expected page count given the desired utilization, but
those differences are expected to be negligible. Results presented in Figure 8 are based on a
desired utilization of 80% with the same axis labeling as in Figure 7. The different lines
present a varying range from which the random function chooses, i.e., Random 5% Range
picks values from about 75% to 85% utilization while Random 20% Range picks values
from 100% to 60%. A small range of 5% shows surprisingly little benefit compared to the
constant strategy. However, wider ranges improve the desired effect significantly and tamper
the waves of misery.

6.2.3 Hybrid Strategy

Both the linear strategy and the random strategy can significantly reduce the waves of
misery and thus offer a good solution to implement in most systems. However, the strategies
still show some slight waves when compared to the sound remedies at 69%. This is due
to their initial load distribution. Similar to Figure 8, the results in Figure 9 showcases the
page utilization distributions for the random and linear strategies in comparison to the ideal
at 69% overall utilization. The utilization is on the x-axis and the amount of pages having
it on the y-axis. The best result for the random strategy requires a random range of 31%,
resulting in pages with less than 50% utilization. On the flip side, a lower range of 10%
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Fig. 8: Leaf Splits over time for random strategies
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Fig. 9: Comparing the ideal initial page distribu-
tion with linear and random strategies
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Fig. 10: Comparing the ideal initial page distribu-
tion with the hybrid strategy
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does not lead to underful pages, but does not feature the overall range of different page
utilization required for steady split rates. While the linear strategy features the right range
of page utilization, their distribution is constant and thus not ideal.
To mitigate these deficiencies, a hybrid strategy which combines both ideas from linear and
random was implemented. In order to reduce the rigid constant distribution of the linear
strategy while keeping its overall range, only half of the pages are loaded according to this
strategy. For the other half, randomness is applied as follows: Utilization is first randomly
chosen between 50% and 100%. Afterwards, this range is narrowed linearly (i.e., lesser
filled pages become more likely) until the bulk loading is complete. The resulting initial
page utilization distribution is depicted in Figure 10. Clearly, combining those multiple
simple strategies leads to a good approximation of the ideal solution.
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Fig. 11: Leaf Splits over time for hybrid strategy
at 69% page utilization
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Fig. 12: Leaf Splits over time for hybrid strategy
at 80% page utilization

Figure 11 verifies this statement by showcasing results for the insertion experiment for
the first 4,000 insert batches at an overall target page utilization of 69%. The random
strategy using a range of 31%, the best candidate for its class in terms of splits, is used as
a point of comparison. The hybrid strategy outperforms it and is in the steady state from
the get-go. The same experiment was repeated for 80% utilization (Figure 12). Since the
b-tree does not have the theoretically ideal target utilization, the hybrid strategy does suffer
from slight waves. However, it is still able to outperform the random strategy and overall
has significantly reduced the impact of splits. Furthermore, while this experiment focuses
on numeric keys, the hybrid strategy can be adjusted for non-numeric keys by using suffix
truncation instead of randomly choosing keys within the ranges.
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6.2.4 Buffer Pool Utilization

Up until now, the evaluation focused on split frequencies, which are a natural indicator
of I/Os and buffer pool contentions. To showcase the effects on the actual buffer, the
experiments were verified by deploying an LRU buffer and measuring its statistics. To
analyze leaf splits separately, separate buffers for inner and leaf nodes were used.
The first experiment utilizes a buffer with 10,000 pages and compares the sound remedy
strategy with a constant strategy with a target utilization of 69%. Figure 13 showcases

0 1000 2000 3000 4000

50

55

60

65

70

75

80

85

90

95

Constant 69% Sound Remedy

Insert Batch (Batchsize 10,000)

B
uf

fe
r 

U
ti

li
za

ti
on

 in
 %
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Fig. 14: Buffer pool utilization over time for 80%
page utilization

the results. Here, the y-axis shows the buffer utilization, i.e. the quotient of used buffer
pool bytes to totally available raw bytes. Clearly, the waves of misery also appear in the
buffer utilization for the constant strategy while the algorithm based on the sound remedies
eliminates them. The experiment was repeated for a higher overall utilization of 80%. This
time, the constant strategy is compared to a random strategy featuring a range of 20%. As
Figure 14 shows, waves for the constant strategy are even higher than at 69%. Furthermore,
the random strategy reduces them just as it reduced the amount of leaf splits.

Finally, both constant and random strategies at 80% overall space utilization were compared
for different buffer sizes based on buffer evictions, i.e. leaf pages being written out from
the buffer onto disk due to other reads or writes requesting another page. Figure 15 depicts
the total amount of evictions (y-axis) per batch (x-axis) while having varying buffer sizes
(10,000, 20,000 and 100,000 pages) for each strategy. At 10,000 and 20,000 maximum
buffer capacity, the waves of misery in form of increased spike of write operations are
clearly visible for the constant strategy. Meanwhile, the random strategy almost eliminates
the effects. For a larger buffer size of 100,000 pages, the additional writes are obviously
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absorbed into buffer pool, causing only buffer contention and additional split operations,
but no spikes in I/Os. Nevertheless, since the b-tree increases in size, more pages have to be
constantly written out. The random strategy allows for a more gradual increase. Meanwhile,
the constant strategy shows sharper steps at the points of the waves of misery since there is
a sudden increase in new pages.

6.2.5 Range Queries

Since the proposed strategies do not load pages with a uniform free space, this obviously has
some impact on range queries. For example, in the simple case of uniform key distribution,
there is a chance that the same range span may hit varying degrees of full pages for different
key ranges in the key space, resulting in more page reads and a negative performance impact.

To analyze this impact, the whole key space of a tree was queried using a succession of
jumping range queries. First, a tree was loaded with 500,000 pages at a targeted utilization
of 80% using an uniform key distribution ranging from the integer key 0 to the integer
key of 100 million. Afterwards the range is successively queried with key ranges spanning
100,000 values starting from the first key, then querying the next 100,000 values, etc. until
the last key is reached. Figure 16 features the results of this experiment for variations of
the linear strategy. The starting value of the range query is depicted on the x-axis and the
number of (leaf) pages accessed in the query on the y-axis. The strict linear strategy refers
to a linear distribution which does not alternate between page sizes. It performs best for the
first couple of ranges, because those ranges have the most full pages. On the flip side, it
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deteriorates for last ranges, since those ranges feature less occupied pages. The alternating
linear strategy reduces this variation in performance and constantly accesses 500 pages
for each read operations. We also repeated this experiment for the constant strategy, which
performs about the same as alternating linear strategy. Furthermore, the random strategy
also performs in the same ballpark, but, as expected, has slightly more spikes due to its
randomness.

7 Summary and suggestions for future work

In summary, research in the past has overlooked the waves of node splits starting soon after
b-tree creation, load, or reorganization. There are multiple means for avoiding or reducing
them; many of them are both simple and effective. Among them, a free space target plus
suffix truncation during leaf splits (as recommended decades ago in the context of prefix
b-trees) offer the best combination of multiple advantages. Put differently, while suffix
truncation during leaf splits has always been a good idea for minimizing the number of
branch nodes and for speeding up root-to-leaf traversals, it is now clear that it is also a good
idea and an effective means for avoiding multiple waves of misery after each index creation,
load operation, and reorganization. Ongoing research focuses on “waves of misery” in
log-structured b-tree forests [Gr19]. Future work will further research “waves of misery” on
b-tree branch nodes, waves of node splits for specific key calculations such as space-filling
curves, their forms and impacts in index and storage structures other than b-trees, specific
forms of waves after specific load sequences such as sorting before loading R-trees, and
what remedies may apply in the context of those index and storage structures.
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Eliminating the Bandwidth Bottleneck of Central Query
Dispatching Through TCP Connection Hand-Over
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Abstract: In scale-out database architectures, client queries must be routed to individual backend
database servers for processing. In dynamic database systems, where backend servers join and leave a
cluster or data partitions move between servers, clients do not know which server to send queries to.
Using a central dispatcher, all queries and responses are routed via a single node. In a system with
many high-performance backends, such a central node can become the system bottleneck. This paper
compares three different approaches for query dispatching in terms of scaling network throughput and
processing flexibility. Off-the-shelf TCP/HTTP load-balancers cannot dispatch individual queries
arriving over a single connection to different backend servers, unless they are extended to understand
the database wire protocol. For small response sizes up to 4 KB, a purpose-built query dispatcher
delivers the highest throughput. For larger responses (i.e., BLOBs or data sets for external analysis),
a novel approach for network proxying that transparently maps TCP connections between backend
servers performs best.We propose hybrid query dispatching that performs a TCP connection hand-over
on demand when returning large database results.

Keywords: Scale-Out Database Systems, Query Dispatching, Load-Balancing

1 Query Dispatching

In scale-out database systems, queries must be routed to individual backend servers. Clients
may send queries directly to individual backends (see Figure 1a). In this case, they have to
select a suitable server with respect to load-balancing and data distribution. An alternative
approach uses one or multiple dedicated controller nodes (“dispatchers”), which act as
central load-balancers (see Figure 1b).

Client 1

Client m

DB Backend 1

DB Backend n

… …

(a) Direct communication.

DB Backend 1

DB Backend n

Dispatcher

Client 1

Client m

… …

(b) Central dispatcher.
Fig. 1: Query dispatching architectures.
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TCP/IP is the most common communication protocol to exchange information in shared-
nothing architectures. Likewise, database systems use wire protocols over TCP/IP. Without
dispatchers, clients communicate directly with backend servers, using one or more TCP
connections for each. With central dispatchers, the dispatchers mediate client communication
with backend servers, often terminating client TCP connections and maintaining a separate
set of (persistent) TCP connections with the backend servers. Dispatchers introduce
overhead, but also provide several advantages. They allow for simpler clients that remain
unaware of individual backend servers, their load levels, and the deployed physical design,
i.e., partitioning and replication. This is advantageous for elastic and dynamic systems,
because servers can transparently join or leave a cluster and data can be repartitioned on the
fly. Such flexible database backends have increased in importance [Cu10, Se16, RJ17].

Dispatchers can be used independently of particular database systems, which may have
different communication characteristics. Workloads for transactional systems and key-value
stores are characterized by simple read and write queries (or get and put operations). Message
sizes comprise usually up to a few kilo bytes, but larger data object comprising mega bytes
of data may occur from time to time. The in-memory database Silo can process almost 700K
TPC-C transactions per second [Tu13]. Analytical workloads are characterized by more
complex queries with varying response sizes for which the query execution time dominates
communication costs most of the time. However, Raasveldt et al. claim that transferring
large amounts of data from databases to clients is common for complex statistical analyses
or machine learning [RM17] in the application.

The existence of a database bandwidth bottleneck depends on the query characteristics,
especially the ratio of database processing and result set sizes. Comparing the speed of a
single 10 Gb network interface controller (NIC) and 8 CPU cores accessing main memory
with 10GB/s, we informally claim that the network is 64 times slower in this scenario.
Resulting, a reasonably well-programmed result-set serialization can produce messages that
are an order of magnitude larger than those which can be send. (Note that serialization can be
parallelized and carried out asynchronously to messages transfer.) In systems with multiple
backend servers, a central query dispatcher can further constrain the data throughput.
Prism [Ha17] eliminates the dispatcher bottleneck by redirecting client connections to
individual backend servers on a query level. Redirecting TCP connections adds overhead
for packet transformations but pays off for large data transfers.

Contributions: In this paper, we investigate database query dispatching for large messages.
We integrated Prism into the in-memory database Hyrise [Gr10] and compare the perfor-
mance of Prism against two approaches with the state-of-the-art architecture for central
dispatchers, i.e., using two separate TCP connections, one between client and dispatcher, the
other between dispatcher and backend. The first approach is the purpose-built Hyrise query
dispatcher [Sc15]; the second is the off-the-shelf TCP/HTTP load-balancer HAProxy [Ta].
We investigate for which message sizes the Prism architecture outperforms the classical
dispatcher architecture. In case message sizes are known in advance, Prism’s connection
redirection can be carried out on demand.
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Outline: The remainder of this paper proceeds with an introduction of the compared
dispatcher implementation in Section 2. In Section 3, we evaluate the performance of
implementations. Section 4 discusses the results and most important aspects of query-based
load-balancing. Section 5 describes related work, and Section 6 concludes the paper.

2 Dispatcher Implementations
To evaluate the different dispatcher implementations, we use a cluster of Hyrise [Gr10]
database instances that implement lazy master replication. Load-balancing can be imple-
mented at connection, transaction, or query level [CCA08]. While query processing at
backends is independent of load-balancing, a dispatcher has to understand the message
format in order to perform transaction- and query-level load-balancing. Hyrise uses JSON-
encoded query plans encapsulated in HTTP request bodies. Other databases use different
message-based protocols [RM17]. The Hyrise dispatcher and Prism can be extended to
implement these wire protocols, because their underlying architectures are database-agnostic.

2.1 Hyrise Dispatcher

The Hyrise dispatcher is a purpose-built query load-balancer for Hyrise database clus-
ters [Sc15]. Using purpose-build dispatchers for different database systems in common,
because they have to understand the database wire protocol. To the best of our knowledge,
all central query dispatchers send client queries and database responses over two separate
TCP connections successively: the first between the client and the dispatcher; the second
between the dispatcher and a database backend.

The Hyrise dispatcher uses the Berkeley socket API with a buffering mechanism that avoids
copying data inside the user space. Client requests are first read into a buffer, after which
the dispatcher parses the requests and forwards queries to a suitable backend. The Hyrise
dispatcher uses the nodejs/http-parser3 for parsing client requests and extracting queries.
Writes go to the master, while reads can go to any node, and tables loads are replicated across
all database instances. Query responses are returned to clients also via the Hyrise dispatcher.
The current implementation of the Hyrise dispatcher uses one thread per client connection.
This implementation was sufficient for the experimental analysis, which uses a small number
of persistent client connections. However, we observed some thread interference, especially
when not pinning threads to CPU cores.

2.2 HAProxy

HAProxy [Ta] is a popular and general-purpose TCP/HTTP load-balancer. It has a similar
design as the Hyrise dispatcher with separate TCP connection between clients and dispatcher
3 https://github.com/nodejs/http-parser
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Fig. 2: Prism software architecture, based on [Ha17].

as well as dispatcher and backends. Including an off-the-shelf solution in the evaluation is
interesting, because it is consistently updated for performance and support of new features.
However, it requires some customization in order to adapt it to the specific scenario.

HAProxy can perform routing and processing decisions based on aspects of an HTTP
request, such as the request URI. Following, HAProxy can be used for Hyrise clusters
as long as the distinction between reads (to be distributed between replicas) and writes
(to be delivered to the master) can be made without a deep inspection of HTTP request
bodies. When it comes to load-balancing of application-level protocols other than HTTP
(as for other databases), HAProxy is limited to TCP connection load-balancing. Resulting,
HAProxy and possibly other off-the-shelf load-balancers cannot be used with database
clusters that partition data or replicate only subsets of the data.

2.3 Prism

In analogy to an optical prism, Prism [Ha17] transparently splits a single TCP connection,
breaking out different application-level requests and forwarding them to different backend
servers by means of reprogrammable software-defined networking (SDN) switches, such as
P4 [Bo14] hardware switches or software switches, such as mSwitch [Ho15]. By default, the
mSwitch kernel software switch operates in learning bridge mode, but allows for dynamic
packet forwarding decisions by ancillary modules, such as the kernel component of Prism.

Figure 2 shows Prism’s software architecture. Prism logically consists of a controller, which
handles TCP handshaking and parses client request headers, and a programmable switch,
which the controller reprograms to route TCP packets containing request and response
payloads directly between a backend server and the client. After a backend server has
handled a request, the controller resumes handing off the client’s TCP connection. Compared
to traditional proxy approaches, Prism significantly reduces load on the controller, because
the majority of packets is exchanged directly between clients and backends. Eliminating the
controller as a central bottleneck for most of the communication also means that connections
can take better advantage of typical multi-connected datacenter fabrics, significantly
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Fig. 3: Topologies for the evaluations, based on [Ha17].

improving performance. Dispatching at the switch level does incur some overheads, due
to the need to reprogram switches and performing connection hand-offs, making Prism
primarily suitable for larger messages. In most scenarios, the Prism connection hand-off
only becomes possible after the complete query is received at the controller. Although the
bandwidth for queries to the database is not increased in this case, database results can be
sent with higher overall bandwidth. Details of Prism, e.g., the connection hand-over and
TLS support, are described in [Ha17].

3 Evaluation

We integrated Prism into Hyrise. This integration is transparent to clients, but required
changes to the database server, which has to be able to hand-over TCP connections with
the Prism controller (see Figure 2). In this section, we compare the query dispatching
performance of Prism, the Hyrise dispatcher, and HAProxy. We describe the experimental
setup in Section 3.1. The results are presented in Section 3.2.

3.1 Experimental Setup
Our experimental setup is similar to the one employed for evaluating Prism [Ha17], but
extends the experiments with 40G Ethernet. It is comprised of six nodes: two clients, two back-
ends and two “dispatcher” machines acting as either software switches or Hyrise/HAProxy
dispatchers, depending on whether measurements using 10 or 40G networking are conducted.
Figure 3a depicts the logical topology used for the Hyrise dispatcher and HAProxy tests,
Figure 3b likewise for Prism. Using only two clients and backend servers is no architectural
limitation, but a result of limited own network hardware resources and the impossibility of
running the experiments in public clouds due to insufficient hardware control.

The client machines are equipped with one Intel Xeon E5-2680 v2 CPU clocked at 2.8 GHz,
64 GB of 1333 MHz DRAM and Linux 4.11 kernels with Ubuntu 17.04. Backends have
two Intel Xeon E5-2650 packages clocked at 2.0 GHz and 128 GB of 1333 MHz memory,
running Linux 4.8 kernels with Ubuntu 16.10. The remaining “dispatcher” machines have
one Intel Xeon E5-2680 v2 CPU clocked at 2.8 GHz, 64 GB of 1600 MHz DRAM, running
Linux 4.8 with Ubuntu 16.10.
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For the 10G experiments, all machines use Intel 82599ES dual-port NICs, connected through
an Arista 7050QX-32-F switch. For the 40G experiments, the “dispatcher” nodes have
Intel XL710-QDA2 dual-port NICs, while backends and clients use Mellanox ConnectX-3
MCX354A-FCB NICs. All 40G cards are directly connected, because of insufficient 40G
ports on the Arista switch. The Ethernet MTU is set to the default of 1500 B in all cases.

Depending on which dispatcher approach is being measured, one “dispatcher” node is
configured to run mSwitch, either in Prism mode or as a learning bridge. This allows for a
fair comparison between the Prism and non-Prism scenarios, by using a software switch
in all cases. A baseline netperf4 TCP network benchmark results in 19.5 Gb/s maximum
throughput for 128 MB of bulk data over the 40G setup with the Mellanox adapters, i.e., the
bottleneck is not the software switch. Full wire speed is achieved with 10G.

The backends are running Hyrise on all 16 cores, one acts as master with the other as replica.
In order to make sure that Hyrise itself is not the bottleneck, a minimal stored procedure
returns a database result with the requested number of bytes. The single-threaded Prism
controller executes bound to a single core on the same “dispatcher” machine as mSwitch. For
experiments not involving Prism, the other “dispatcher” node is either running the Hyrise
dispatcher with its client threads bound to four cores or HAProxy 1.7.9 in a multiprocess
configuration with both its backend and frontend processes also bound to four cores.

Measurement data is obtained on the clients by running one single-threaded instance of the
wrk5 HTTP benchmark tool. Client transactions result in response payload sizes between
1 B and 128 MB, which are sampled for 20 s using one persistent connection each. The
results of the two clients then are aggregated.

3.2 Experimental Results

Figure 4 shows the throughput results for the different dispatcher approaches for the 10 and
40G experiments. A subset of the results is summarized in Table 1. Throughput is provided
in terms of HTTP payload in all cases, i.e., from the client/user perspective. The main
result is that, for payload sizes over 1 MB, Prism outperforms the other two dispatchers by
up to 2× (the number of client/backend nodes). This is because for the Hyrise dispatcher
and HAProxy, each payload byte needs to traverse the dispatcher (see Figures 1b and 3a,
respectively), which in a typical datacenter fabric is connected via a single 10 or 40G link to
the top-of-rack switch. This limits both cases to at most 10 Gb/s and 40 Gb/s, respectively.

In the 10G experiment, the Hyrise dispatcher and HAProxy achieve almost the physical limit
of 10 Gb/s for payload sizes over 16 MB. However, the maximum measured throughput in
the 40G experiment is only 18.9 Gb/s for the Hyrise dispatcher and 19.4 Gb/s for HAProxy,
demonstrating the overheads that limit performance over today’s faster network fabrics.

4 http://www.netperf.org/
5 https://github.com/wg/wrk
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Result Prism Dispatcher HAProxy
Payload Unit 10G 40G 10G 40G 10G 40G

1 B Mb/s 0.10 0.08 0.14 0.11 0.09 0.11
8 B Mb/s 0.79 0.64 1.2 0.88 0.74 0.60

64 B Mb/s 6.3 5.1 9.3 7.0 5.8 4.8
512 B Mb/s 50 41 63 55 42 44

4 KB Mb/s 378 321 396 324 303 248
32 KB Gb/s 2.4 2.2 1.7 2.1 1.4 1.3

256 KB Gb/s 7.2 9.1 6.1 10.4 4.8 9.5
1 MB Gb/s 9.39 17.2 8.4 16.9 7.5 10.1
2 MB Gb/s 11.9 20.3 9.0 18.9 8.4 9.9

16 MB Gb/s 17.7 37.8 9.5 18.1 9.3 17.7
128 MB Gb/s 18.8 39.1 9.6 17.9 9.6 19.4

Tab. 1: Selected throughput measurements from Figure 4.

Prism does not share this limitation, because clients and backend servers are communicating
directly after a TCP connection has been redirected, i.e., responses are directly sent to
the clients, taking advantage of the inherent fan-out in the fabric. Consequently, Prism
throughput is only limited by the speed of the network fabric (10G or 40G) or the processing
capacity of the backends, whichever is lower. In the 10G case, Prism achieves 18.8 Gb/s,
which is close to the physical limit of 2 × 10 Gb/s and twice as high as for the Hyrise
dispatcher and HAProxy. In the 40G case, Prism reaches 39.1 Gb/s, again about twice as
high as the other two dispatcher approaches.

For payload sizes below 4 KB, the Hyrise dispatcher outperforms Prism’s and HAProxy’s
throughput by up to 1.5×. For small responses, Prism cannot amortize the connection
hand-off overheads. We observed that HAProxy’s performance for small payload sizes is
reduced by interprocess communication overheads (see Section 4 for more details), which
appear to be higher than for the Hyrise dispatcher.

No Dispatcher Prism Dispatcher HAProxy
10G 40G 10G 40G 10G 40G 10G 40G

59µs 70µs 161µs 214µs 104µs 144 µs 167µs 151µs

Tab. 2: Average user latencies for querying 1B payload.

To evaluate the overhead of query dispatching in comparison to direct client-backend
communication, Table 2 shows the user perceived query latencies for 1 B payloads. Latency
is measured from sending the request until the reception of the response, including network
transmission and database processing times. Without an intermediate dispatcher, the latency
is about 59 µs in the 10G and 70 µs in the 40G experiment. Adding a dispatcher, increases
the latency by about 45 µs to 144 µs depending on the dispatching approach and NIC type.
Among the dispatching approaches, the latency of the Hyrise dispatcher is the lowest.
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4 Discussion

In this section, we discuss several aspects of query-based load-balancing. First, we summarize
our research findings (see Section 4.1). Based on these, we propose a hybrid query
dispatching approach in Section 4.2. In the following, we discuss the scalability of central
query dispatching in Section 4.3.

4.1 Research Findings

The experiments show that no single dispatcher approach is best across all payload sizes.
The Hyrise dispatcher performs best for small payloads, because the overhead of Prism’s
connection hand-over does not amortize if the payload fits into a few network packets. Prism
outperforms the Hyrise dispatcher for larger payloads, because the majority of payload bytes
can be directly handled by the switch.

HAProxy was not able to compete with either of the two, despite a lot of effort on fine-
tuning its configuration. Although a single-process HAProxy configuration delivered best
throughputs for small payload sizes below 0.5 KB compared to multiprocess setups, it peaked
at only 10 Gb/s for payloads above 2 MB in the 40G case. Further, we did not observe any
performance benefits from HAProxy taking advantage of socket splicing [MB99] compared
to the Hyrise dispatcher, which has to copy all data to and from user space. These findings
indicate that although an off-the-shelf load-balancer can be used, it has severe performance
limitations, besides its lack of flexibility (see Section 2.2).

4.2 Hybrid Approach

Based on our measurements, we propose a hybrid load-balancing approach, which uses
Prism for queries returning large results and the Hyrise dispatcher for all other requests.
This requires knowledge about response sizes of individual queries, which can be calculated
(or estimated) during the result set serialization. Hence, the connection hand-off has to be
postponed until the response size is determined and must be initiated by the backend.

4.3 Scalability

Additional throughput can be achieved with additional and/or faster hardware. First, we can
scale-up the dispatcher with additional and/or faster NICs. However, this requires efficient
software to actually take advantage of the hardware. Due to its improved usage of hardware
and preexisting software, Prism is expected to provide the best price-performance ratio in
this regard.
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Further, we can hide multiple dispatchers behind a virtual IP, using network-level load-
balancing as the first and query-level load-balancing as the second step. Network-level
load-balancers can additionally aggregate multiple requests to avoid the network overhead
for many connections sending small messages. Especially transactional databases, which
are able to process millions of small queries per second, require query batching [Tu13].

5 Related Work

Efficient query dispatching is a research field combining database and network aspects. On the
database side, clustered databases with a single entry point require query dispatching. Cecchet
et al. summarize different approaches for replicated databases and discuss load-balancing
alternatives [CCA08]. Database load-balancing research focuses on equal distribution of
load, such as the Tashkent+ load-balancer [EDZ07], rather than efficient load-balancing
from a networking perspective. Consequently, there is a lack of focus on throughput and
latency measurements. Our work investigates scenarios where query dispatching and the
relaying of database responses can become the bottleneck. These scenarios range from
thousands of small transactions [Tu13] as one extreme to large data transfers from the
database [RM17] as the other extreme. Besides networking as database client interface, high
performance networks are a relevant topic for distributed query processing [Bi16, Rö15].
Associated research includes microbenchmarks for single connection RDMA and Ethernet,
but no switching measurements that are relevant for query load-balancing.

On the networking side, the focus in recent years has been on large-scale network-level
load-balancing, especially on distributing the ingress load of hyperscalar datacenters onto
backend servers at connection-open time. Proxy approaches, in which an intermediary
remains in the communication path and can therefore provide finer-grained operations than
simple load-balancing, have somewhat fallen out of favor, due to their perceived higher
overheads. Hayakawa et al. present related work in this space [Ha17].

6 Conclusion

Many scale-out database systems use a central query load-balancer that decides where to
send individual client queries. For clusters serving many thousands of requests and returning
large objects or data sets, the query dispatcher and the network fabric connecting it to
the clients and backend servers can become a bandwidth bottleneck. Prism redirects TCP
connections and allows database backends to directly respond to clients without changing
the clients. We integrated Prism into an in-memory database and compared its performance
against the common dispatching architecture in which each query and result is routed via
a single node. The traditional dispatcher architecture provided the highest throughput for
small database responses, whereas the Prism approach significantly outperformed it for
larger payloads. We propose to use a hybrid load-balancing approach that uses Prism’s
connection hand-over on demand for large payloads.
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Abstract: Große Datenmengen in Wirtschaft und Wissenschaft werden klassischerweise in Daten-
banksystemen verwaltet. Um die Daten für maschinelles Lernen sowie für die Datenanalyse zu nutzen,
ist ein zeitintensiver zyklischer Transformations- und Verschiebeprozess nötig, da die Daten hierfür
in anderen Formaten oder schlicht in anderen Plattformen vorliegen müssen. Forschungsarbeiten
der letzten Jahre widmen sich der Aufgabe, Datenverwaltung und Datenanalyse in einem System zu
integrieren, um teure Datentransfers zu vermeiden.

Diese Arbeit untersucht die Leistungsfähigkeit gespeicherter Prozeduren (stored procedures) zur
Implementierung von Data-Mining-Algorithmen in Datenbanksystemen. Grundlage hierfür bildet
HyPerScript, die PL/SQL-ähnliche Skriptsprache des Hauptspeicherdatenbanksystems HyPer. Ins-
besondere evaluieren wir die prototypische Implementierung von fünf Algorithmen, die ganz ohne
separates Datenanalysesystem auskommt.

1 Einleitung

Mit wachsenden Leistungsanforderungen bei der Datenverarbeitung gewinnen sowohl
Hauptspeicher-Datenbanksysteme für die Datenhaltung als auch die automatisierte Verarbei-
tung großer Datenmengen an Bedeutung. Wenn beide Domänen kombiniert werden, entfällt
das zyklische Extrahieren, Transformieren und Laden von Daten (sogenannter ETL-Prozess).
Somit können die Daten in Echtzeit statt um die Prozessdauer verspätet analysiert werden.
Datenbanksysteme bieten prozedurale Sprachen wie PL/SQL bis hin zu in C geschriebene
Erweiterungen an, um innerhalb des Datenbanksystems Algorithmen zu spezifizieren.

Neben der Möglichkeit, Algorithmen in beliebigen prozeduralen Sprachen zu implementie-
ren, integrieren verschiedene Datenbanksysteme Data-Mining-Algorithmen direkt. Für auf
PostgreSQL basierende Datenbanksysteme stellt MADlib eine Bibliothek an Funktionen zur
Datenanalyse bereit. Das Projektziel ist, eine Bibliothek an Erweiterungen bereitzustellen,
die an die Pakete aus GNU R angelehnt ist. Für eine Echtzeitdatenanalyse in Hauptspei-
cherdatenbanksystemen stellt HyPer Operatoren für die Assoziationsanalyse mit Apriori,
Clusteranalyse mit k-Means und DBSCAN und Graphanalyse mit PageRank bereit. Diese
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Operatoren sind Teil der Algebra und werden von HyPer in die ganzheitliche Anfrageoptimie-
rung eingebunden. Vordefinierte Operatoren kommen dem Anspruch, Datenbanksysteme
um beliebige Anwendungslogik zu erweitern, nur begrenzt nach.

Um Datenbanksysteme für beliebige Algorithmen und maschinelles Lernen zu erweitern
ohne jeweils einen Operator zu implementieren, ist eine domänenspezifische Sprache
nötig, die prozedurale Konstrukte mit eingebettetem SQL bereitstellt. Eine prozedurale
Skriptsprache kombiniert mit der deklarativen Anfragesprache SQL ermöglicht nutzerseitig
definierte Funktionen (user defined function, UDF) in kompakterer Darstellung als rein
imperative Sprachen.

Weitere Vorteile einer Skriptsprache, bei der die Anwendungslogik in das Datenbanksystem
hinein verlagert wird, sind die Integration in die Anfrageoptimierung des Datenbanksystems
und ein geringerer Transfer von Daten. Als gespeicherte Prozeduren sind UDFs Teil des
Anfrageplans und somit Teil der ganzheitlichen Anfrageoptimierung. Zudem erlaubt die
Leistungssteigerung der Datenbankserver durch Verwendung moderner Hardware, diese
für mehr als nur reine Datenverwaltungsaufgaben zu verwenden. Damit Datenbankserver
mehr Anwendungslogik übernehmen können, muss es für Datenbankanwender möglich
sein, Algorithmen für die Zielsprache universell zu entwickeln. Um den Funktionsumfang
einer solchen Skriptsprache identifizieren zu können, ist relevant, wie sich Algorithmen
abstrahieren lassen und welche Bausteine dafür unabdingbar sind.

In dieser Arbeit identifizieren wir notwendige Bausteine, indem wir ausgewählte Data-
Mining/Machine-Learning-Algorithmen (Apriori, DBSCAN, k-Means, PageRank, Lineare
Regression) in HyPerScript, der Skriptsprache des Hauptspeicherdatenbanksystems HyPer,
implementieren. Anschließend vergleichen wir die Laufzeit und Skalierbarkeit der Algorith-
men im Vergleich zu bereits implementierten Operatoren [Pa17], die das Datenbanksystem
bereitstellt. Die Arbeit liefert folgende Beiträge:

• Die Vorstellung von HyPerScript als exemplarische Erweiterung eines Hauptspeicher-
datenbanksystems, die es Nutzern erlaubt, Funktionen in um prozedurale Ausdrücke
erweitertem SQL zu formulieren.

• Die beispielhafte Beschreibung einer betriebswirtschaftlichen Anwendung in der
Form einer TPC-C-Anfrage in HyPerScript. Dabei handelt es sich um den primären
Anwendungsfall der Skriptsprache.

• Die Erweiterung von SQL um einen Tensor-Datentyp, um bestimmte Datenanalyse-
Algorithmen zu ermöglichen.

• Die Analyse des Potentials einer Skriptsprache in Datenbanksystemen, um beliebige
Algorithmen zu formulieren; demonstriert an den Algorithmen PageRank, Apriori,
lineare Regression, k-Means und DBSCAN, die bereits als feststehende Operatoren
in HyPer existieren.
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• Eine umfangreiche Evaluierung von HyPerScript-Funktionen als stored procedures
im Vergleich zu implementierten Operatoren.

Eine umfassende und performante domänenspezifische Skriptsprache bildet die Grundlage
für die Entwicklung einer deklarativen Sprache. Eine auf SQL basierende, prozedural-
deklarative Sprache ermöglicht Datenanalysten, unabhängig vom darunterliegenden System
zu programmieren. Die Plattformunabhängigkeit und die Wiederverwendbarkeit von SQL
erhöht den Anreiz, komplexe Algorithmen bereits im Datenbanksystem auszuführen.

Die Arbeit ist wie folgt gegliedert: Nach einem Überblick über verwandte Arbeiten und
einer Einführung in HyPerScript erfolgt eine Vorstellung der implementierten Algorithmen.
Die Evaluation beurteilt die Leistungsfähigkeit der Skriptsprache im Vergleich zu den in
HyPer integrierten Operatoren. Die Zusammenfassung diskutiert die Ergebnisse in Hinblick
spezifischer Sprachen für die Datenanalyse.

2 Verwandte Arbeiten

Im Folgenden erläutern wir aktuell in der Praxis relevante Systeme und den Stand der
Forschung, Algorithmen zur Wissensgewinnung in Datenbanksysteme zu integrieren.

Die code-kompilierenden, SQL-basierten Hauptspeicherdatenbanksysteme EmptyHea-
ded [Ab17] und HyPer [KN11] unterstützen bereits einige Data-Mining-Algorithmen. Dazu
stellt EmptyHeaded eine Schnittstelle für SQL-Abfragen und andere Algorithmen bereit,
die in einer übergeordneten Sprache wie Python adressiert werden. Das dieser Arbeit
zugrundeliegende Hauptspeicherdatenbanksystem HyPer ist ein hybrides OLTP und OLAP
Datenbanksystem, welches parallel Echtzeit-Transaktionen verarbeiten sowie mehrfache
analysierende Anfragen ausführen kann. Es war bahnbrechend für die Kompilierung anstelle
von Interpretation von SQL-Anfragen [Ne11], bietet einige Data-Mining-Algorithmen als
feststehende Operatoren als Teil der Algebra an und integriert sie somit in die Anfrageopti-
mierung [Pa17; Th15].

Die für statistische Analysen verbreitete Open-Source-Anwendung GNU R 7 bietet Module
wie für die hier behandelten Algorithmen an, die sich über eine eigene Kommandozeile
steuern lassen. Diese Module sind vergleichbar mit den in HyPer angebotenen Operatoren,
denn beide (sowohl die Module als auch die Operatoren) repräsentieren Bausteine mit einer
hart kodierten Funktionalität. Wenn man neue Bausteine hinzufügen oder die bestehenden
verändern möchte, so müssen in C++ neue Pakete (GNU R) bzw. neue Operatoren (HyPer)
entwickelt werden. Die Alternative zur Neuentwicklung stellen in R definierbare Funktionen
dar, für die prozedurale Sprachkonstrukte wie Schleifen und weitere Kontrollstrukturen
bereitstehen. Das Gegenstück, um Funktionen in Datenbanksystemen zu definieren, sind
die in den nachfolgenden Kapitel vorgestellten stored procedures mit HyPerScript.

7 R http://www.r-project.org/
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Neben GNU R existieren weitere Programme, wie das davon für performante Datenanalysen
abgeleitete Julia8, das, wie unser HyPerScript, LLVM-Code generiert. Für maschinelles Ler-
nen, etwa, um neuronale Netze zu trainieren, sind Python mit SciPy9 oder TensorFlow [Ab16]
ausgelegt.

Ein vergleichbarer Ansatz zu mit HyPerScript kompilierten Funktionen benennen Crot-
ty et. al. [Cr15]. Ihr Ansatz kompiliert, kombiniert und optimiert beliebige Funktionen (User
Defined Functions) zu LLVM-Code, um Vektorinstruktionen und Pipelining auf Datensätzen
zu nutzen. Eine Gemeinsamkeit ist die Kompilierung der nutzerseitig definierten Funktionen
zu LLVM-Code (obwohl das Suffix „Script“ in HyPerScript fälschlicherweise zur Annahme
verleitet, die Funktionen würden interpretiert). Um eine bessere Laufzeit von PostgreSQL
zu erhalten, kompiliert der Ansatz in [BG16; BG17] SQL-Anfragen zu LLVM-Code. Eine
weitere Modifikation von PostgreSQL ist die Erweiterung von PL/pgSQL um Funktionen
höherer Ordnung [GSU13; GU13]. Die Integration algebraischer Datentypen in relationale
Datenbanksysteme [Gi13] stellt eine weitere Herausforderung dar.

Eine zu HyPerScript vergleichbare Programmiersprache bietet SAP HANA mit SQLS-
cript [BMM13]. SQLScript erweitert SQL um prozedurale und funktionale Prozeduren,
erlaubt MapReduce auf analytischen Anfragen und erweitert Rekursion für die Graphanalyse.
Alternativ zu prozeduralen Erweiterungen erweitert FunSQL [Bi12] SQL um funktionale
Konstrukte. Die Erweiterung intendiert, ähnlich wie diese Arbeit, die Verlagerung von
Applikationslogik auf Datenbankserver.

Um Applikationlogik auf Datenbankserver verlagern zu können, hilft eine eigene Sprache,
die zu SQL übersetzt. Ein Beispiel hierfür ist Ferry [Sc10], eine Metasprache mit den
Konstrukten for, where, group by, order by und return. Ferry wird zuerst aus gängigen
Skript- oder Programmiersprachen erzeugt und anschließend in SQL übersetzt.

3 HyPerScript
HyPerScript ist die prozedurale Sprache zu HyPer, analog zu PL/SQL in Oracle [Lo08], zu
PL/pgSQL10 in PostgreSQL oder zu SQLScript in SAP HANA [BMM13]. Für transaktionale
Anwendungen in HyPer entwickelt, erlaubt HyPerScript es, TPC-C-, TPC-E- und TPC-H-
Benchmarks auszuführen. Außerdem können mit der um prozedurale Ausdrücke erweiterten
SQL-Syntax beliebige Algorithmen formuliert werden.

Die in HyPerScript definierten Prozeduren werden während der Kompilierungsphase
in LLVM-Code übersetzt. List. 1 zeigt die Sprachspezifikation in EBNF. HyPerScript
verwendet die im SQL:2003-Standard [Ei04] spezifizierten Sprachkonstrukte inklusive
Fensterfunktionen (window functions). Die SQL-Befehle lassen sich in prozedurale Kon-
strukten wie Schleifen (while<Bedingung>{...}) und Iterationen (select index from
8 Julia http://julialang.org/
9 SciPy http://www.scipy.org/
10 PL/pgSQL https://www.postgresql.org/docs/10/static/plpgsql.html
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Statement = ( ( VarDeclaration | VarDefinition | TableDeclaration

| SelectStatement | EmbeddedSQL | ReturnStatement

| IfStatement | WhileStatement | ControlStatement | FunctionCall ) ";" )* ;

VarDeclaration = "var" NAME Type "=" Expression ;

VarDefinition = NAME "=" Expression ;

TableDeclaration = "table" NAME "(" NAME Type ("," NAME Type)* ")";

SelectStatement = SQLSelect ("{" Statement "}") ("else" "{" Statement "}" ) ;

EmbeddedSQL = SQLInsert | SQLUpdate | SQLDelete | CSVCopy ;

ReturnStatement = "return" NAME | "rollback" ;

IfStatement = "if" "(" Expression ")" "{" Statement "}" "else" "{" Statement "}" ;

ControlStatement = "break" | "continue" ;

WhileStatement = "while" "(" Expression ")" "{" Statement "}" ;

FunctionCall = NAME "(" Expression ("," Expression )* ")";

List. 1: Sprachdefinition von HyPerScript: SQL{Select,Insert,Update,Delete} entsprechen den
SQL:2003-Befehlen, Type den SQL-Datentypen, Expression den SQL-Ausdrücken. Neben klassischen
Ausdrücken prozeduraler Sprachen ermöglicht EmbeddedSQL auf einzelnen Tupeln der SQL-Anfrage
zu operieren.

create or replace function insert_until(anzahl integer not null) as $$
select index as i from sequence(0,anzahl){
var rand = random(100); if (rand = 13) { continue }; insert into sample(rand));

}

$$ language ’hyperscript’ strict;

List. 2: Beispielhafte User-Defined-Function mit HyPerScript: Hier werden anzahl viele Zufallszahlen
in eine Relation namens sample eingefügt, randomisiert zwischen 0 und 100, eine Zahl 13 soll
übersprungen werden.

sequence(1,10){...}) mit den Steuerungsbefehlen break und continue und Bedingungen
(if(<Bedingung>){...}) einbinden. Zusätzlich lassen sich temporäre Tabellen erstellen,
auf Basis der SQL-Datentypen Variablen deklarieren und definieren (var foo int[]=’{}’)
und ebenfalls als Parameter beim Funktionsaufruf mit übergeben oder zurückgeben.

List. 2 demonstriert eine beispielhafte Anwendung von HyPerScript. Mittels deklarativem
SQL wird ein Intervall definiert, das hier als Iteration ähnlich einer For-Schleife genutzt
wird. Auf die einzelnen Ergebnistupel kann innerhalb des Geltungbereiches zugegriffen und
diese auch wieder in SQL-Befehlen verwendet werden. In diesem Fall wird eine Relation
namens sample mit Zufallswerten befüllt.

3.1 HyPerScript mit Tensoroperationen

Zusätzlich zu prozeduralen Kontrollbefehlen erachten wir Tensoroperationen als elementar
für die Eignung von Datenbanksystemen für maschinelles Lernen, um zum Beispiel lineare
Regression numerisch zu lösen. Daher verwendet HyPer einen zu Tensoren erweiterten Array-
Datentyp, der als Attribut in Datenbankschemata Tensoren von beispielsweise Ganzzahlen
oder Gleitkommazahlen erlaubt. Die Array-Operationen erfolgen auf den Attributen von
Relationen als Teil der Projektion im SELECT-Teil einer SQL-Anfrage. Das umschließt die
folgenden Anwendungen auf Tensoren:
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1. Algebra: Dazu gehören Tensorprodukt, -addition, -subtraktion und das Skalarprodukt,
das Invertieren, Transponieren und Potenzieren von Tensoren.

2. Erzeugen: Neben dem Initialisieren mit ARRAY[<WERTE>] bzw. {<WERTE>}, benötigen
wir die Identitätsmatrix array_id(<Dimension>) und einen Tensor gefüllt mit einem
angegebenen Wert (array_fill(<WERT>,<Dimensionen>)).

3. Zugriff: Zugriff erfolgt über array_access(<ARRAY>,<Indizes>) bzw.
ARRAY[<Index>]. Die Funktion zum Schneiden array_slice(<ARRAY>,<Indizes>)
erlaubt eine Teilmenge eines Arrays zu extrahieren, um Daten zum Beispiel in Test-
und Trainingsmenge zu teilen.

4. Verändern: Nach Erzeugung der Tensoren müssen einzelne Elemente effizient verän-
dert werden, dazu dient array_set(<ARRAY>,<WERT>,<Indizes>). Das Gegenstück
zum oben erwähnten Schneiden ist das Konkatenieren von Arrays <ARRAY>||<ARRAY>.

5. Mengenoperationen: Um Teilmengen von Arrays zu identifizieren, braucht ein
Datenbanksystem Mengenoperationen wie A ⊆ B als <ARRAY> <@ <ARRAY>. Um
Elemente in einer Teilmenge zu finden, steht a ∈ A als a ANY= A zur Verfügung.

6. Normalisieren: unnest(<ARRAY>) als Gegenstück zum Initialisieren von Arrays
extrahiert die Elemente in einzelne Tupel.

Die eingeführten Tensoroperationen erlauben die Verarbeitungen von Datensätzen aggregiert
zu Tensoren. Als Beispielanwendungen mit Tensoren sind in List. 3 die Kreuzvalidierung
auf einem Datensatz und in List. 4 die binäre Exponentiation in HyPerScript angeführt.
Die binäre Exponentiation benötigt die Identitätsmatrix und die Multiplikation und steht
stellvertretend für die C++-Implementierung im Datenbanksystem. Die aufgeführte einfache
Kreuzvalidierung schneidet aus dem Datensatz jedes Tupel einmal heraus, um dieses
als Testmenge und die restlichen als Trainingsmenge zu verwenden. Darauf wird lineare
Regression (in einer eigenen Funktion) angewendet, um die optimalen Gewichte zu berechnen.
Mit diesen wird der Vorhersagefehler auf dem herausgeschnitten Datensatz bestimmt.

create or replace function linearregression(x float[][], y float[][]) returns float[] as $$
return (array_transpose(x)*x)^-1*(array_transpose(x)*y);

$$ language ’hyperscript’ strict;
create or replace function cross_validate(x float[][], y float[][]) returns float as $$
var error=0; var n=array_length(x,2); var m=array_length(x,1);

select index i from sequence(2,n-1){
var weights_o=linearregression(array_slice(x,1,i-1,1,m)||array_slice(x,i+1,n,1,m),

array_slice(y,1,i-1,1,n)||array_slice(y,i+1,n,1,1));

error=error+((array_slice(x,i,i,1,m)*weights_o)[1][1]-y[i][1])^2;

}

error=error/(n-2); return error;

$$ language ’hyperscript’ strict;

List. 3: Einfache Kreuzvalidierung in HyPerScript: Mittels array_slice() und der Konkatenation
wird schrittweise eine Zeile aus dem Datensatz herausgeschnitten und als Testdatensatz verwendet.
array_slice() erwartet als Argument den Tensor und für jede Dimension die Start- sowie Endposition.
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create or replace function pow(a_in float[][], e_in int) returns float[] as $$
var a=a_in; var e=e_in; if( e<0 ) { e=e*-1; a=array_transpose(a); }

var mask = 1<<63; var result = array_identity(array_ndims(a));

while(mask>0){ result=result*result; if( e&mask>0 ){ result=result*a; } mask=mask>>1; }

return result;

$$ language ’hyperscript’ strict;

List. 4: Binäre Exponentiation pow() von Tensoren implementiert in HyPerScript: als Eingabe wird ein
Tensor und ein Exponent erwartet, eine Schleife mit Multiplikationen berechnet die Exponentiation.

3.2 HyPerScript für betriebswirtschaftlich transaktionale Anwendungen

HyPerScript erlaubt über die SQL-Schnittstelle betriebswirtschaftlich transaktionale Anwen-
dungen auszuführen. Beispiele hierfür sind die TPC-C-, TPC-E- und TPC-H-Benchmarks
des Transaction Processing Performance Councils11. So modelliert der TPC-C-Benchmark
ein Handelsunternehmen mit eingehenden Aufträgen (New-Order) von Kunden und misst,
wie viele schreibende Transaktionen ein Datenbanksystem pro Zeiteinheit verarbeiten kann.

create type newOrderPosition as (line_number int not null,supware int not null,itemid int not null, qty
int not null);

create function newOrder (w_id int not null, d_id smallint not null, c_id int not null, positions setof
newOrderPosition not null, datetime timestamp not null) as $$

select w_tax from warehouse w where w.w_id=w_id;
select c_discount from customer c where c_w_id=w_id and c_d_id=d_id and c.c_id=c_id;
select d_next_o_id as o_id,d_tax from district d where d_w_id=w_id and d.d_id=d_id;
update district set d_next_o_id=o_id+1 where d_w_id=w_id and district.d_id=d_id;
select count(*) as cnt from positions;
select case when count(*)=0 then 1 else 0 end as all_local from positions where supware<>w_id;
insert into "order" values (o_id,d_id,w_id,c_id,datetime,null,cnt,all_local);
insert into neworder values (o_id,d_id,w_id);
update stock
set s_quantity=case when s_quantity>=qty+10 then s_quantity-qty else s_quantity+91-qty end,

s_remote_cnt=s_remote_cnt+case when supware<>w_id then 1 else 0 end,
s_order_cnt=s_order_cnt+1, s_ytd=s_ytd+qty

from positions where s_w_id=supware and s_i_id=itemid;
insert into orderline

select o_id,d_id,w_id,line_number,itemid,supware,null,qty,
qty*i_price*(1.0+w_tax+d_tax)*(1.0-c_discount),

case d_id when 1 then s_dist_01 when 2 then s_dist_02 when 3 then s_dist_03 when 4 then
s_dist_04 when 5 then s_dist_05 when 6 then s_dist_06 when 7 then s_dist_07 when
8 then s_dist_08 when 9 then s_dist_09 when 10 then s_dist_10 end

from positions, item, stock
where itemid=i_id
and s_w_id=supware and s_i_id=itemid

returning count(*) as inserted;
if (inserted<cnt) rollback;

$$ language ’hyperscript’ strict;

List. 5: HyPerScript-Funktion newOrder() des TPC-C-Benchmarks: Die Funktion nimmt eine Menge
von Bestellpositionen positions für ein Warenhaus w_id eines Distrikts d_id von einem Kunden
c_id entgegen.

List. 5 zeigt die zugehörige Prozedur in HyPerScript. Die Prozedur nimmt einen neuen
Auftrag aus mehreren Bestellpositionen (setof) für ein Warenhaus (w_id) von einem

11 http://www.tpc.org
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Kunden (c_id) in einem Distrikt (d_id) entgegen. Zunächst wird dieser Auftrag in der
Datenbank angelegt. Anschließend aktualisiert die Prozedur die Lagerbestände in stock
und fügt die Bestellposition zusammen mit dem berechneten Preis in orderline ein.

HyPerScript ermöglicht Attributwerte von SQL-Anfragen in Variablen zwischenzuspeichern,
um sie so wiederverwenden zu können. So werden beispielsweise der Steuersatz des Waren-
hauses und der Kundenrabatt in den Variablen w_tay und c_discount zwischengespeichert
und beim Einfügen in die Relation orderline wiederverwendet.

Das Beispiel prüft die Atomarität und Konsistenz für Transaktionen, die implizit durch die
Verwendung eines Datenbanksystems gegeben ist. So überprüft die Prozedur am Ende, ob
die Bestellungen erfolgreich in orderline eingefügt worden sind (die Zahl der eingefügten
Bestellungen valide ist) und setzt andernfalls die Transaktion zurück (rollback). Außerdem
verdeutlicht das Beispiel die kompakte Schreibweise: Die HyPerScript-Prozedur kommt mit
weniger als 40 Zeilen aus, während ein C++-Programm für dieselbe Funktion deutlich mehr
Zeilen beansprucht12.

4 HyPerScript für Datenanalysealgorithmen

Neben den klassischen transaktionalen Anwendungen ermöglicht HyPerScript auch die
Ausführung beliebiger Algorithmen im Datenbanksystem. In diesen Kapitel stellen wir
dazu beispielhaft Formulierungen einiger Algorithmen zur Datenanalyse dar. Um möglichst
verschiedene Bereiche der Datenanalyse abzudecken, wählen wir grundlegende Algorithmen
aus Assoziationsanalyse (Apriori-Algorithmus), Clustering (k-Means und DBSCAN),
Graphmetriken (PageRank) und Regression (lineare Regression). Modernes SQL – mit
Fensterfunktionen (window functions) und rekursiven temporären Tabellen (recursive
common table expressions) – ist bereits Turing-vollständig. Mit HyPerScript lassen sich
Algorithmen jedoch teils deutlich kompakter und verständlicher formulieren.

Dabei folgen die HyPerScript-Formulierungen jeweils folgendem Aufbau: Für jeden Al-
gorithmus wird ein Schema als eigener Namensbereich definiert. Bei Aufruf der UDF
<Schemaname>.run() wird der Algorithmus ausgeführt. Das Ergebnis des Algorithmus wird
in eine Relation desselben Namensbereiches materialisiert. Die Logik der Algorithmen
wird großteils in SQL-Funktionen ausgedrückt. Die UDF <Schemaname>.run() stellt diese
Funktionen zum eigentlichen Algorithmus zusammen, beispielsweise durch iterativen
Aufruf bis ein Abbruchkriterium erreicht wird.

Alle hier untersuchten Algorithmen sind in HyPer bereits als Operatoren vorhanden [Pa17;
Th15]. Das heißt, sie wurden, ähnlich wie relationale Operatoren (etwa Hash-Join oder Aggre-
gation), im Datenbankkern implementiert und lassen sich kombinieren, um SQL-Anfragen
abzubilden. Die folgenden Abschnitte erläutern jeweils kurz den gewählten Algorithmus,
stellen die Formulierung in HyPerScript dar und beschreiben die Vergleichsoperatoren. Im

12 vgl.: https://github.com/evanj/tpccbench/blob/master/tpcctables.cc
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anschließenden Evaluationskapitel werden Operatoren und HyPerScript-Formulierungen
miteinander verglichen.

4.1 Assoziationsanalyse

Der 1993 eingeführte Apriori-Algorithmus [AIS93] ist der bekannteste Vertreter im Bereich
der Assoziationsanalyse. Er basiert auf Warenkorbdaten, die als Tupel aus Transaktions-
nummer (tid) und Waren abgelegt werden (sales: {[tid, item]}). Zuerst zählt er häufig
vorkommende Item-Mengen, die mit einer minimalen relativen Häufigkeit (Support) von
mindestens s0 in allen Warenkörben vorkommen und bildet anschließend Assoziationsregeln
daraus. Die Item-Mengen wachsen mit jeder Iteration um ein Element beginnend mit
der einelementigen Menge. Dabei ist die Anzahl der Iterationen und zu überprüfender
Mengen durch das Apriori-Prinzip begrenzt. Das Prinzip besagt, dass Mengen an Items,
deren Teilmengen nicht häufig auftreten, selbst nicht häufig auftretend sein können. List. 6
zeigt den Aufruf des integrierten Operators wie der Skript-Funktion mit einem minimalen
Support von 10 %, deren genaue Funktionsweisen kurz erklärt werden.

-- nativer Operator:

select * from apriori((table aprioriscript.sales),0.1,1);
-- HyPerScript

select aprioriscript.findFI(10); select * from aprioriscript.frequentitemsets;

List. 6: Aufruf des Apriori-Algorithmus als Operator wie als gespeicherte Prozedur.
Die Implementierung in HyPerScript (siehe List. 7) basiert auf zu Warenkörben aggregierten,
häufig auftretenden Item-Mengen, die mit rekursivem SQL iterativ erweitert werden. Hier
werden die Arrays als Mengen verwendet und in jeder Iteration um ein Element erweitert.
Anschließend wird die Häufigkeit der Tupel gezählt. Dazu wird jedes Itemset mit jedem
Warenkorb anhand des Mengenoperators Tupel <@ Warenkorb verglichen.

create or replace function aprioriscript.findFrequentItemsets(minsupp integer not null) as $$
with recursive -- Erzeugung von Warenkörben
transactions (tid, bucket) as (select tid, array_agg(item) from aprioriscript.sales group by tid),
-- häufig auftretende 1-Item-Mengen

sales_supp as (select item from aprioriscript.sales group by item having count(*) >= minsupp),
frequentitemsets as ( -- Items mit support >= minsupp
(select distinct array[p.item]::integer[] as items from sales_supp p) -- 1-Item-Mengen L1 ∈ L1
union all ( -- erweitere Item-Mengen um ein Element: Lk−1 erweitert

select distinct array_append(t.items,p.item::integer)::integer[] -- Lk

from frequentitemsets t, sales_supp p
where minsupp <= ( -- zähle Support

select count(*) from transactions t2 -- Ck ∈ Ck . support(Ck ) >= minsupp ⇒ C ∈ Lk

where array_append(t.items,p.item::integer)::integer[] <@ ( t2.bucket )
) and t.items[(select count(*) from unnest(t.items))]<p.item -- nur sortierte Arrays

))

insert into aprioriscript.frequentitemsets (select * from frequentitemsets);
$$ language ’hyperscript’ strict;

List. 7: Ermittlung der häufig auftretenden Item-Mengen für den Apriori-Algorithmus: Die Funktion
erhält den minimalen Support s0 als Parameter übergeben und berechnet eine rekursiv wachsende
Relation mit häufigen Itemsets, beginnend bei den einelementigen, also den Waren als einelementige
Arrays.
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Der in HyPer implementierte Operator basiert auf der Speicherung der Elemente in
einem mit jeder Iteration wachsenden Präfixbaum. Besonderheiten der Implementierung in
HyPer sind die Parallelität pro Iterationsschritt sowie die Behandlung von Duplikaten. So
berücksichtigen die Assoziationsregeln die Häufigkeit gleicher Elemente in Warenkörben.

4.2 Clustering

Ein weiterer wichtiger Bereich der Datenanalyse ist Clustering, also die Gruppierung
ähnlicher Datenpunkte. Mit k-Means [Ll82] und DBSCAN [Sc17] formulieren wir zwei
klassische Clustering-Algorithmen in HyPerScript, die über ganz unterschiedliche Iterations-
muster verfügen. k-Means weist in jeder Iteration jeden Datenpunkt dem nächstgelegenen
Cluster zu. Durch die Zuweisung verändert sich der Mittelpunkt der Cluster, wodurch sich
in der nächsten Iteration wiederum Zuordnungen ändern können. DBSCAN hingegen prüft
für jeden Datenpunkt, ob in der Nähe ausreichend viele andere Datenpunkte liegen. Falls
ja und falls diese Datenpunkte bereits einem Cluster zugeordnet wurden, wird auch der
aktuell betrachtete Datenpunkt dem Cluster hinzugefügt. Andernfalls wird ein neuer Cluster
begründet. Falls sich nicht genug andere Datenpunkte in der Nähe befinden, wird der aktuell
betrachtete Datenpunkt als Noise deklariert. Anschließend wird der nächste Datenpunkt
geprüft. List. 8 zeigt den Aufruf der beiden Clustering-Algorithmen sowohl als Operator
wie als Skript-Funktion.

-- nativer Operator:

select * from kmeans((select x,y from kmeansscript.points),
(select x,y from kmeansscript.points LIMIT 5));

select * from dbscan((select x,y from dbscanscript.points),20,2);
-- HyPerScript:

select kmeansscript.run(5);
select dbscanscript.run(20,2);

List. 8: Aufruf der Clustering-Algorithmen in HyPer: Eingabedaten des k-Means-Operators sind die
Datenpunkte und die initialen Zentren (im dargestellten Fall k = 5 zufällig gewählte Datenpunkte).
Eingabe des DBSCAN-Operators sind ebenfalls die Datenpunkte, sowie als Parameter der Suchradius
für nahegelegene Datenpunkte ε und die minimale Anzahl an Punkten pro Cluster minPts. Parameter
für die HyPerScript-Funktionsaufrufe sind ebenfalls k für k-Means und ε sowie minPts für DBSCAN.

Die HyPerScript-Implementierung für k-Means (s. List. 9) basiert auf der in HyPer besonders
effizient implementierten Fensterfunktion (window function) [Le15], die pro Datenpunkt
eine Rangfolge der nächstgelegenen Clusterzentren berechnet. Aus den Mittelwerten der
zugeordneten Punkte werden dann die neuen Clusterzentren bestimmt. Diese zwei Schritte
werden wiederholt, bis die Zuordnung der Datenpunkte zu Clustern stabil ist.

Die DBSCAN-Implementierung [Hu17] (s. List. 10) basiert auf der rekursiven Erweiterung
von Clustern: Zuerst bildet jeder Punkt einen eigenen Cluster. Anschließend werden Cluster,
die weniger als ε weit voneinander entfernt liegen, vereinigt. Sowohl k-Means als auch
DBSCAN liegen als in HyPer implementierte Operatoren vor. Der k-Means-Operator [Pa17]
erhält als Eingabe die Datenpunkte sowie k initiale Clusterzentren. Im Normalfall wird
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create or replace function kmeansscript.run(centers integer not null) as $$
truncate kmeansscript.clusters;
insert into kmeansscript.clusters(select id,x,y,0 from (select *,rank() over (order by id) from

kmeansscript.points) where rank <= centers);
while (true){

select kmeansscript.computeCenters() as c_count;
if(c_count = 0){ break; }

}

$$ language ’hyperscript’ strict;
create or replace function kmeansscript.computeCenters() returns integer not null as $$

table clusters_tmp(cid int, x float, y float, count int);
insert into clusters_tmp (select cid, avg(px), avg(py), count(*) from (

select cid, p.x as px, p.y as py, rank() OVER ( partition by p.id
order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc, (c.x*c.x+c.y*c.y) asc)

from kmeansscript.points p, kmeansscript.clusters c ) x where x.rank=1 group by cid);
select count(*) as c_count from (select * from kmeansscript.clusters except select * from

clusters_tmp);

truncate kmeansscript.clusters; -- lösche alte Daten
insert into kmeansscript.clusters (select * from clusters_tmp);
return c_count; -- gebe Anzahl der geänderten Zentren zurück

$$ language ’hyperscript’ strict;

List. 9: Fixpunktiteration für k-Means: Die SQL-Funktion computeCenters() berechnet die
Clusterzentren – im Beispiel als avg(px), avg(py) – und nutzt die Fensterfunktion rank(), um
alle Datenpunkte dem jeweils nächstgelegenen Clusterzentrum zuzuordnen. Die Rahmenfunktion
run() ruft computeCenters() so oft auf, bis in einer Iteration kein Datenpunkt mehr einem anderen
Clusterzentrum zugeordnet wird.

create or replace function dbscanscript.run(eps float, minPoints int) as $$
select count(*) as maxiter from dbscanscript.points;
select index from sequence (1,maxiter){

select dbscanscript.insertCluster(index,eps,minPoints,maxiter) as cond;
if(cond=0){ break; }

}

$$ language ’hyperscript’ strict;
create or replace function dbscanscript.insertCluster(clusterid int not null, eps float not null,

minPoints int not null, maxiter int not null) returns int not null as $$
table pointstmp (id int, x float, y float);
insert into pointsTmp(select * from dbscanscript.points except (select id,x,y from dbscanscript.

pointsclustered) LIMIT 1);
select count(*) as ret from dbscanscript.pointstmp;
select index from sequence(1,maxiter){

select count(*) as newc from pointsTmp c, dbscanscript.points p
where (p.x-c.x)^2+(p.y-c.y)^2<eps^2 and c.id<>p.id;

insert into pointsTmp(
select * from (select * from dbscanscript.points except select * from pointsTmp) c where exists

(select * from pointsTmp p where (p.x-c.x)^2+(p.y-c.y)^2<eps^2 and c.id<>p.id)
);

if(newc=0){ break; }

ret=ret+newc;

}

if(ret < minPoints) { clusterid=NULL; }
insert into dbscanscript.pointsclustered(select *,clusterid, false from dbscanscript.pointstmp);
return ret;

$$ language ’hyperscript’ strict;

List. 10: DBSCAN: Die Rahmenfunktion run() ruft insertCluster() auf: Pro Iteration ensteht ein
neuer Cluster mit der als ersten Parameter angegebenen ID. Die Funktion insertCluster() nimmt
pro Aufruf einen noch keinem Cluster zugewiesenen Punkt als neuen Cluster und erweitert diesen, bis
er sich nicht mehr verändert. Die Funktion gibt die Anzahl der sich im Cluster befindlichen Punkte
zurück. Die Anzahl der Iterationen ist limitiert durch die Anzahl aller Punkte.
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der Operator parallel aufgerufen, das heißt die Datenpunkte liegen auf mehrere Threads
verteilt vor. Die initialen Clusterzentren werden dann zunächst in jeden Thread repliziert,
anschließend ordnet jeder Thread lokal seine Datenpunkte den nächstgelegenen Cluster-
zentren zu. Zur Ermittlung der neuen Clusterzentren müssen die Ergebnisse aller Threads
zusammengefügt werden, jedoch werden die Ergebnisse bereits threadlokal aggregiert, um
die Menge der zu übertragenen Daten sowie die Menge synchronisierter Berechnungen zu
minimieren. Die neuen Clusterzentren werden nun wieder in alle Threads repliziert und
die nächste Iteration beginnt, solange sich noch Clusterzuordnungen ändern. Der Operator
generiert LLVM-Code, sodass der Algorithmus nahtlos in SQL-Anfragen hineinkompiliert
werden kann und teure Funktionsaufrufe vermieden werden.

Der DBSCAN-Operator erhält als Eingabe die Datenpunkte sowie die Parameter ε und
minPts. Für jeden unbesuchten Datenpunkt wird geprüft, ob genügend (minPts) andere
Datenpunkte in der ε-Umgebung des Datenpunktes liegen, und welchem Cluster diese
zugeordnet sind. Je nach Ergebnis dieser Prüfung wird der Datenpunkt einem Cluster
zugeordnet, als Noise deklariert oder ein neuer Cluster wird begründet. Auch dieser
Operator generiert LLVM-Code, ist im Gegensatz zu k-Means in HyPer jedoch nicht parallel
implementiert.

4.3 Lineare Regression

Lineare Regression ist ein Optimierungsproblem um Labels vorherzusagen, dem ein lineares
Modell m(x) = w ∗ x +w0 auf Daten x mit Gewichten w zugrunde liegt. Lineare Regression
lässt sich als Optimierungsproblem mittels Gradientenabstiegsverfahren lösen. Der in HyPer
implementierte Operator nutzt diesen Ansatz. Wir haben das Gradientenabstiegsverfahren
mit festem Gradienten bei linearer Regression ebenfalls in HyPerScript implementiert. Als
Alternative zu einem Optimierungsverfahren ist lineare Regression numerisch mit dem
Gleichungssystem ®w = (X ′T X ′)−1X ′T ®y lösbar. List. 11 zeigt den Aufruf der verschiedenen
Varianten.

-- nativer Operator:

select * from linearregression((select x_1, x_2, y from linregscript.sample));
-- HyPerScript:

select linregscript.run();
-- mit Matrixoperationen:

select (array_transpose(x)*x)^-1*(array_transpose(x)*y)
from (select array_agg(x) x from (select ARRAY[1,x_1,x_2] as x from linregscript.sample) sx) tx,

(select array_agg(y) y from (select ARRAY[y] y from linregscript.sample) sy) ty;

List. 11: Aufruf linearer Regression in HyPer: als Operator wie als gespeicherte Prozedur und komplett
mit Matrixoperationen.

List. 12 zeigt den Gradientenabstieg programmiert in HyPerScript. Dazu haben wir den
Gradienten hart kodiert, den wir in jeder Iteration für jedes Tupel berechnen. Als Besonderheit
dieser Implementierung hängen die Rückgabewerte nur von den Eingabeparametern ab
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(sind immutable, bzw. stable bei Lesezugriff auf die Datenbasis). Das ist möglich, da eine
temporäre Tabelle (table) als Funktionsparameter mit übergeben werden kann (setof).

create or replace function linregscript.iterate(tuples float[] not null, y float not null, weights float
[] not null, learningrate float not null) returns float[] not null as $$

var gradient=array_access(weights,1);

select index as i from sequence(1,array_length(tuples,1)){
gradient = gradient + tuples[i]*weights[i+1];

}

gradient = gradient-y;

var ret=array_set(weights,array_access(weights,1)-learningrate*gradient*2,1);

select index as i from sequence(1,array_length(tuples,1)){
ret=array_set(ret,weights[i+1]-learningrate*gradient*2*tuples[i],i+1);

}

return ret;

$$ language ’hyperscript’ strict immutable;

create type features as (a float, b float, c float);
create or replace function linregscript.gradientdescent(tuples setof features, learningrate float not

null, maxIter int not null) returns float[] not null as $$
var weights=’{1,1,1}’::float[];
select index as i from sequence(1,maxIter){

select a,b,c from tuples{
weights=linregscript.iterate(ARRAY[a,b],c,weights,learningrate);

}

}

return weights;

$$ language ’hyperscript’ strict stable;

create or replace function linregscript.run(learningrate float not null, maxIter int not null) returns
float[] not null as $$

table sample(a float, b float, c float);
insert into sample (select x_1,x_2,y from linregscript.sample);
var weights=linregscript.run(sample,learningrate,maxIter);

$$ language ’hyperscript’ strict stable;

List. 12: Stochastischer Gradientenabstieg mit linearer Regression in HyPerScript: Eine Funktion
iterate() berechnet den Fehler pro Tupel mit den angegebenen Gewichten und gibt die optimierten
Gewichte zurück. Eine Rahmenfunktion iteriert über alle Tupel, die die Lernrate und die Anzahl der
Iterationen als Argumente erwartet.

Der HyPer-Operator unterstützt Parallelität, indem er wahlweise durch ein Flag parallelisiert
zuerst lokale Gewichte berechnet oder die optimalen Gewichte pro eingehendem Tupel
vorberechnet. Der Implementierung des Gradientenabstiegs in C++ gleicht der HyPerScript-
Prozedur.

4.4 PageRank

PageRank ist ein Algorithmus für gerichtete Graphen, der ursprünglich zur Bestimmung der
Wichtigkeit von Internetseiten gedient hat [BP98]. Eine Internetseite (Knoten) gilt dabei als
wichtig, wenn wichtige Internetseiten auf sie verweisen (gerichtete Kanten). In jeder Iteration
verteilt jeder Knoten einen Teil (1 − α) seines PageRank-Wertes gleichwertig über die
ausgehenden Kanten auf die nächsten Knoten, und erhält entsprechend die Werte der auf ihn
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verweisenden Knoten. Die Summe der eingehenden Werte ist der neue PageRank-Wert des
Knotens. List. 13 zeigt den Aufruf von PageRank mittels Operators wie als Skript-Funktion,
jeweils ohne Dämpfung.

-- nativer Operator:

select * from pagerank((table pagerankscript.edges),0);
-- HyPerScript:

select pagerankscript.run(0); select * from pagerankscript.pagerank;

List. 13: Aufruf von PageRank in HyPer: Sowohl der Operator als auch die HyPerScript-Formulierung
benötigen als Eingabe die Kanten sowie den Dämpfungsfaktor α = 0.

Die Berechnung der neuen PageRank-Werte lässt sich in SQL durch einen Join mit den
Vorgängerknoten sowie eine Summen-Aggregation abbilden. Zur einfachen Formulierung
der Iteration benötigen wir die Schleifen aus HyPerScript (s. List. 14).

create or replace function pagerankscript.computePR(alpha float not null) returns int not null as $$
table pr_tmp(node int, edges int);
insert into pr_tmp (
select VTo, alpha*(cast((select count(*) from pagerankscript.pagerank) as float))

+(1-alpha)*sum(Beitrag)
from (select e.VTo, p.Pagerank/(select count (*) from pagerankscript.edges x where x.VFrom=e.VFrom)

as Beitrag from pagerankscript.edges e, pagerankscript.pagerank p where e.VFrom=p.Node) i
group by VTo);

select count(*) as c_count from (select * from pagerankscript.pagerank except select * from pr_tmp);
truncate pagerankscript.pagerank;
insert into pagerankscript.pagerank (select * from pr_tmp);
return c_count; -- gebe Anzahl der geänderten Werte zurück

$$ language ’hyperscript’ strict;

create or replace function pagerankscript.run(alpha float not null, maxIterations int not null) as $$
select index as i from sequence(0,maxIterations) {

select pagerankscript.computePR(alpha) as c_count;
if(c_count = 0){ break; }

}

$$ language ’hyperscript’ strict;

List. 14: Approximation für PageRank: Die Rahmenfunktion run() ruft die Berechnung der PageRank-
Werte computePR() solange auf, bis die Werte stabil sind. Die SQL-Funktion computePR() berechnet
die PageRank-Werte aller Knoten mittels Aggregation. Dabei behält jeder Knoten den Anteil α
seines alten PageRank-Wertes, und verteilt den Rest auf die durch ausgehende Kanten direkt mit ihm
verbundenen Knoten.

Auch PageRank liegt als in HyPer implementierter Operator vor [Th15]. Die Besonderheit
dieses Operators ist die Erzeugung eines temporären Indexes, der schnellen Zugriff auf
die Vorgängerknoten erlaubt. Während der Ausführung des Algorithmus muss dann nicht
mehr auf die Eingabedaten zugegriffen werden, sondern lediglich der Index verwendet
und die PageRank-Werte aktualisiert werden. Dies kann von mehreren Threads parallel
durchgeführt werden. Lediglich ein Synchronisationspunkt am Ende jeder Iteration ist nötig,
um den Threads zu signalisieren, dass von nun an die neuen PageRank-Werte genutzt werden.
Im folgenden Kapitel werden die Laufzeiten der Operatoren mit denen der vorgestellten
HyPerScript-Implementierungen verglichen.
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5 Evaluation

Die Evaluation vergleicht die Leistungsfähigkeit von mit HyPerScript erstellten Prozeduren
und von Operatoren im Datenbankkern. Alle Experimente wurden auf einem Rechner mit
Intel Xeon E5-2660 v2 CPU Prozessor (20 Kerne mit jeweils 2,20 GHz) und 256 GB DDR4
RAM gemessen, als Betriebssystem diente Ubuntu 17.04. Für den Apriori-Algorithmus
wurden 100 verschiedenen Waren in 1000 Warenkörben synthetisch hergestellt. Die Anzahl
der Elemente pro Warenkorb variierte gleichverteilt im Intervall [0,10]. Für Clustering
erzeugten wir 106 Punkte, deren x- wie y-Koordinaten gleichverteilt im Intervall [0,106]
lagen. PageRank arbeitete auf 105 Knoten mit genauso vielen Kanten, für lineare Regres-
sionen erzeugten wir 106 Tupel. Alle Experimente wurden dreimal wiederholt und für die
Messungen der Median verwendet.
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Abb. 1: Laufzeit für Assoziationsanalyse mit Apriori bei konstant 20 Rechenkernen: Abhängigkeit
vom minimalen Support s0 als Parameter von Apriori. Je größer s0, desto strenger die Auswahl
assoziierter Produkte, da weniger Kandidaten.

Für den Apriori-Algorithmus veränderten wir den minimalen Support (je größer, desto
weniger häufige Item-Mengen existieren, s. Abb. 1). Mit wachsendem minimalen Support
gleichen sich die Laufzeiten an, da die Zahl häufiger Item-Mengen abnimmt.

Die Laufzeiten der Clustering-Algorithmen wachsen linear mit der Eingabegröße
(s. Abb. 2a, 3). Der k-Means-Algorithmus berechnet um 30 % schneller mit Hinzunahme
eines weiteren Kernes (s. Abb. 2b). Die Parallelität des darunterliegenden Datenbanksystems
gewährleistet die implizite parallele Ausführung des als Prozedur implementierten k-Means-
Algorithmus; der k-Means-Operator ist explizit parallelisiert angelegt. Weder DBSCAN als
Operator, noch als gespeicherte Prozedur unterstützen Skalierung. Während der Operator
keine parallele Berechnung unterstützt, skalieren die verwendeten SQL-Anfragen in der
HyPerScript-Prozedur schlecht, da pro (nicht parallelisierter) Iteration nur ein Tupel als
neuer Cluster initialisiert wird.
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(a) k-Means: Eingabegröße.
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(b) k-Means: Skalierung.

Abb. 2: Laufzeit für Clustering-Algorithmus k-Means mit fünf Zentren: (a) Laufzeit in Abhängigkeit
von der Eingabegröße bei konstant 20 Rechenkernen sowie (b) in Abhängigkeit von der zur Verfügung
stehenden Rechenkerne.
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Abb. 3: Laufzeit für Clustering-Algorithmus DBSCAN mit ε = 20 und minPts = 2: Laufzeit in
Abhängigkeit von der Eingabegröße bei konstant 20 Rechenkernen.

Lineare Regression mit Gradientenabstieg in HyPerScript ist für bis etwa 100 Tupel schneller
als der implementierte Operator (s. Abb. 4a). Beide Versionen sind gleich stukturiert,
beide materialisieren zuerst die Tupel lokal und berechnen anschließend die optimalen
Gewichte mit festem Gradienten. Allerdings kompiliert HyPerScript beide Schritte zu
LLVM-Code basierend auf den Datenbanktypen, während der Operator C++-Funktionen auf
den Basistypen aufruft. Bei wenigen Tupeln überwiegt der Aufwand durch Funktionsaufrufe,
bei vielen Tupeln der Aufwand durch die Nutzung komplexer Datentypen.

Die Laufzeit des in HyPerScript implementierten PageRank-Algorithmus ist bei wenigen
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Abb. 4: Laufzeit bei jeweils konstant 20 Rechenkernen von (a) linearer Regression bei einer Lernrate
von 0,85 und 45 Iterationen in Abhängigkeit der Größe zu trainierender Daten, sowie (b) zur
Berechnung des PageRank-Wertes bei Veränderung der Anzahl der Kanten.

Tupeln vergleichbar mit der des PageRank-Operators (s. Abb. 4b). Bei wenigen Kanten ist
die Stored-Procedure-Version des PageRank-Algorithmus sogar schneller als der optimierte
Operator von HyPer, verliert allerdings mit zunehmender Anzahl an Kanten. Bei wenigen
Kanten zeigt sich die Mehraufwand des integrierten Operators, da dieser ein Wörterbuch
für die Knoten anlegt und Kanten in einer dünnbesetzte Matrix als Compressed-Sparse-
Row (CSR) speichert. Mit zunehmender Kantenanzahl amortisieren sich der Mehraufwand
für das Wörterbuch und die CSR-Datenstruktur, sodass der Operator schneller als die
Skriptfunktion den PageRank-Wert berechnet.

Zusammenfassend zeigt die Evaluation, dass HyPerScript es ermöglicht, Prototypen zu
entwickeln, ohne die relationale Algebra des Datenbanksystems zu erweitern. Die Laufzeiten
der Prozeduren sind bei wenigen Tupeln vergleichbar zu derer der Operatoren der relationalen
Algebra, erlauben allerdings nur Parallelität, wenn die zugrundeliegenden SQL-Anfragen
entsprechend skalieren, wie es bei k-Means-Clustering zu sehen ist.

6 Zusammenfassung und Fazit

Skriptsprachen erlauben betriebswirtschaftlich transaktionale Anwendungen im Kern von
Datenbanksystemen auszuführen. Typische Anwendungsfälle von SQL-Skriptsprachen sind
die Implementierung von Datenbanktriggern und die serverseitige Ausführung von Teilen
einer Applikation. Letzteres wird beispielsweise bei der Ausführung von Benchmarks
benötigt, weshalb die große Mehrheit der Datenbanksysteme über solche prozeduralen SQL-
Erweiterungen verfügt. Auch in HyPer, dem dieser Arbeit zugrundeliegenden Hauptspeicher-
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datenbanksystem, wurde das prozedurale HyPerScript zunächst für die Leistungsbewertung
verwendet.

Ziel der vorliegenden Arbeit war, das Potenzial von SQL-Skriptsprachen für andere Anwen-
dungsfälle, insbesondere für Algorithmen zur Datenanalyse, auszuloten. Am Beispiel von
HyPerScript zeigten wir, dass nutzerseitig definierte Funktionen in Kombination mit prozedu-
ralen Ausdrücken eine kompakte Schreibweise von Algorithmen zur Datenanalyse erlauben.
So zeigten wir anhand einer Beispielimplementierung, dass eine TPC-C-Implementierung
in HyPerScript nur einen Bruchteil an Codezeilen einer Implementierung in einer rein
prozeduralen Sprache benötigt. Neben Schleifen und Konditionen halfen Tensoroperationen,
welche wir im Rahmen dieser Arbeit in HyPer integrierten, bei der numerischen Berechnung
linearer Regression wie bei der Assoziationsanalyse.

Durch die Ausführung von Datenanalysealgorithmen im Datenbanksystem statt auf einer
separaten Datenanalyseplattform werden teure ETL-Prozesse eingespart. Unsere Evaluation
zeigt, dass die in HyPerScript formulierten Algorithmen nicht mit der Schnelligkeit
hartkodierter Datenbankoperatoren mithalten können. Durch die kompakte Formulierung
und die hohe Flexibilität im Vergleich zu hartkodierten Operatoren ist HyPerScript jedoch
dennoch sinnvoll einsetzbar, um neue Algorithmen auf Datensätzen zu studieren ohne
den Datenbankkern zu verändern. Zwar ist eine korrekte Ausführung der Algorithmen
sichergestellt, deren Leistungsfähigkeit als Prozedur ist jedoch nachrangig. Eine SQL-nahe
Skriptsprache wie HyPerScript spricht in erster Linie Nutzer aus dem Datenbankbereich
an. Insofern ist HyPerScript erst als Beginn der Entwicklung einer universellen Sprache zu
sehen, die Datenwissenschaftler direkt auf Datenbanksystemen nutzen können, um Daten
aufzubereiten und zu analysieren.
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On-the-fly Reconfiguration of Query Plans for Stateful
Stream Processing Engines

Adrian Bartnik1, Bonaventura Del Monte2, Tilmann Rabl3, Volker Markl4

Abstract: Stream Processing Engines (SPEs) must tolerate the dynamic nature of unbounded data
streams and provide means to quickly adapt to fluctuations in the data rate. Many major SPEs
however provide very little functionality to adjust the execution of a potentially infinite streaming
query at runtime. Each modification requires a complete query restart, which involves an expensive
redistribution of the state of a query and may require external systems in order to guarantee correct
processing semantics. This results in significant downtime, which increase the operational cost of
those SPEs. We present a modification protocol that enables modifying specific operators as well
as the data flow of a running query while ensuring exactly-once processing semantics. We provide
an implementation for Apache Flink, which enables stateful operator migration across machines,
the introduction of new operators into a running query, and changes to a specific operator based on
external triggers. Our results on two benchmarks show that migrating operators for queries with small
state is as fast as using the savepoint mechanism of Flink. Migrating operators in the presence of
large state even outperforms the savepoint mechanism by a factor of more than 2.3. Introducing and
replacing operators at runtime is performed in less than 10 s. Our modification protocol demonstrates
the general feasibility of runtime modifications and opens the door for many other modification use
cases, such as online algorithm tweaking and up- or downscaling operator instances.

Keywords: Data Stream Processing, Resource Elasticity, Query Plan Maintenance, Fault Tolerance

1 Introduction

Stream processing engines (SPEs) have become an essential component of many business
use cases and need to reliably ensure correct processing of the incoming, high-speed
workload. However, the characteristics of a streaming workload may vary over time, since
it includes foreseeable and predictable changes within a time frame (e.g., the day and
night usage patterns for social media posts) but also bursty spikes in the case of irregular
events such as sport or weather events. The ability of an SPE to adapt to workload changes
at runtime is one aspect of elasticity. Currently, many SPEs (e.g., Apache Flink [Ca17],
Apache Storm [To14], and Apache Spark [Za13]) provide limited functionality to support
changes in their running configuration, if any at all. These systems allow modifications of a
running streaming query only by restarting its execution with a new configuration. However,
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this may violate SLAs when other, critical systems rely on the output of the SPEs and cannot
tolerate any downtime. As a result, end-users of those SPEs face potentially ever-running
streaming queries that they cannot alter at runtime. Motivated by this technical challenge,
our goal is to enable modifications of a running query at runtime, without stopping the SPE.
We analyze diverse modifications and we derive a set of generic protocols that alter the
physical plan of a running query. Our protocols enable introducing, tuning, and removing
operators in a running query. This opens the door for a new class of online optimizations.
Through our protocols, the SPE can tune the behavior of an operator, e.g., increasing its
number of network buffers to sustain higher incoming load. Our protocols also enables
the SPEs to migrate operators among different nodes, e.g., when a node is scheduled for
maintenance. This is particularly challenging for jobs with large state, which have long
recovery times. Finally, our protocols potentially allow in- or decreasing the degree of
parallelism of an operator, which is beneficial for the system to adapt to changes of the
incoming workload. Our contribution are as follows:
• Migration of stateless and stateful stream operators at runtime
• Introduction of new operators into a running streaming query
• Changing user defined functions of operators in running query
• Implementation of our protocols in Apache Flink
• Evaluation of our solution on Nexmark and a custom benchmark

This paper is structured as follows: we first provide background concepts in Section 2
and then we describe the design of our protocols in Section 3. After that, we present the
architecture of an SPE integrating our protocols in Section 4 and its new features in Section
5. In Section 6, we show the experimental evaluation of our system. In Section 7, we
conclude by summarizing our contributions and providing insight about future works that
our current work enables.

2 Background

In the following, we present the background concepts that lay the foundation to our work. In
particular, we provide an overview of data stream processing and a description of Apache
Flink with its checkpoint mechanism, which we use as building block for our techniques.

2.1 Data Stream Processing

Data stream processing enables continuous analysis of real-time, unbounded data. Although
SPEs are part of the data processing stack for more than a decade [ScZ05], only recently
the need for real-time big data processing has fostered the development of a new generation
of SPEs. Those new SPEs target massively parallel cloud infrastructures by extending the
batch-oriented MapReduce paradigm [DG04]. The new engines improve on MapReduce as
they consider low latency an important constraint. New SPEs adopt one of two processing
models: micro-batching and tuple-at-a-time processing.
The micro-batching model discretizes the processing of an unbounded stream in a series of
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finite chunks of data. While this approach ensures higher throughput, the size of each chunk
drastically impacts the latency of running queries [Za13, Ku15]. The tuple-at-a-time model
allows for a more fine-grained processing of incoming records, thus achieving lower latency.
This model still uses a batching mechanism at the physical level to ensure high throughput,
i.e., operators pack tuples into buffers [Ca17].
Regardless of the processing model, a natural way of modeling data flows in SPEs is by
means of a Directed Acyclic Graph (DAG), which contains source, processing, and sink
nodes. Source nodes continuously emit a stream of data elements, which are also commonly
referred to as tuples or records. A stream is a potentially unbounded sequence of tuples
generated continuously over time. Processing nodes consume, process, and emit new data
elements. A Sink consumes but does not forward any new elements, e.g., it writes its output
to disk. Source, processing, and sink nodes are connected through edges, which represent
the communication channels for the data exchange among operators.
Processing nodes are either stateful or state-less. For state-less nodes, the output only
depends on each incoming data element. In contrast, the output for stateful nodes depends
on the incoming data elements as well as on some internally managed state.

2.2 Apache Flink

Apache Flink is an open-source dataflow processing framework for batch and stream data
[Al14]. Flink uses the parallelization contract (PACT) programming model, a generalization
of the MapReduce programming model, and second order functions to perform concurrent
computations on distributed collections in parallel [Hü15]. Flink compiles submitted queries
into DAGs that it optimizes and executes on a cluster of nodes. Flink relies on pipelining
and buffering to avoid the materialization of intermediate results. Stream operators in Flink
exchange intermediate results via buffers, i.e., an operator sends its buffer downstream
when it is full or after a timeout. This enables processing data with high throughput and
low latency. Furthermore, Flink provides operator fusion [Hi14]. This ensures that fused
operators exchange tuples in a push-based fashion, whereas not-fused operators exchange
buffers in a pull-based fashion. Back-pressure occurs in Flink when an operator receives
more data than it can actually handle. Back-pressure is usually due to a temporary spike in
the incoming workload, garbage collection stalls, or network latency.

2.3 Fault Tolerance and Checkpointing in Apache Flink

Flink’s Checkpointing Mechanism consistently stores and recovers the state of a streaming
query [Ca17]. The mechanism ensures fault tolerance in the presence of failures, meaning
upon recovery, the program’s state eventually reflects the stream state from before the
failure. The checkpointing settings enable specifying message delivery guarantees, which
ensure that every record from the data stream is processed exactly-once, at-least-once, or
at-most-once. This mechanism lays the foundation for the Savepoint Mechanism, which
enables deliberately stopping and resuming a running query. When restarting from a
savepoint, Flink allows for updating aspects of the query itself, e.g., adding or removing
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operators as well as adjusting their degree of parallelism. The checkpointing mechanism
periodically triggers checkpoints of the streaming query, which act as independent snapshots
to which the system can fall back in case of a failure. For queries with small states, the
checkpoints have only negligible impact on the overall system performance. For queries with
large state, checkpointing may drastically affect the query performance, mainly because of
the time needed to copy the state on a persistent storage. In case of a program failure, Flink
stops and restarts the streaming query by resetting the operator state to the one captured in
the last successful checkpoint. The checkpointing mechanism requires a persistent stream
source (e.g., Apache Kafka) that allows for rewinding the stream to a specific point in time
and resend all subsequent messages for strict processing semantics. Non-replayable stream
sources instead loose intermediate records upon query restart.

3 Protocol Description

This section describes the main features of the migration protocol that enables runtime
modifications on a running streaming query. These are migrating stateful operator instances
across nodes, introducing new operators into a running query, and replacing user-defined
functions (UDFs) of operators.

3.1 System Model

Before we discuss the design of the migration protocols, we provide a description of our
system model. We assume that our SPE ingests an infinite set of tuples r1, r2, · · ·. A tuple
r j = (A, t) consists of a set of attributes A and a timestamp t. Each operator in our system
processes a tuple at a time through a UDF f (r j, S), where r j is the input tuple and S is
the current state of the operator. According to the semantic of its UDF, the operator emits
zero or more output tuples upon processing an input tuple. Each operator runs with its own
degree of parallelism. A logical query plan consists of a set of source, sink, and processing
operators, which the SPE models as nodes of a DAG. A physical query plan contains all the
parallel instances of all the operator. The SPE also represents this as a DAG. We refer to
a job as a running physical plan in the SPE. The edges of a DAG act as communication
channels between those machines and represent the data exchange among operators, which
follows three patterns. A parallel instance of an operator can 1. forward a record to a single
parallel instance of a downstream operator, 2. broadcast a record to all parallel instances of a
downstream operator, and 3. send a record downstream based on some partitioning function.
To support checkpointing, the SPE injects special markers mi through the sources into the
DAG, periodically or upon user request. Marker mi triggers the i-th checkpoint for a job.
Each parallel instance of an operator receives a marker on all its inbound communication
channels and reacts by snapshotting its state and forwarding the marker downstream. As
soon as all parallel instances successfully complete their snapshot, they asynchronously
send the checkpointed state to persistent storage (e.g., a distributed file system). As soon as
those asynchronous copies finish, the SPE marks the checkpoint as completed. Checkpoint
markers logically divide the processing of an input stream in finite sets of tuples. The
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SPEs guarantees exactly-once processing of each tuple in every set. The SPEs consists of a
coordinator process and several workers processes, which run on a cluster of nodes. Each
worker process has a set of execution slots that determines the number of parallel instances
of an operator it can run. In the rest of this section, we provide a thorough description of
our proposed protocols based on the system model presented above.

3.2 Migration Protocol Description

This first protocol enables the migration of operator instances across machines, e.g., when
detecting an upcoming hardware failure on a node in the cluster. Upon a migration request,
the SPE retrieves all operator instances on the faulty node and allocates resources for these
instances on others nodes. The SPE starts a migration by creating a special modification
marker that contains all necessary information to perform the migration and ingests it
into the DAG at the source operators (following the ideas of Del Monte [DM17]). Each
operator instance eventually receives these markers and decides whether it needs to react
on that migration marker. The key concept here is that a migration does not only affect
the actual migrating instances but also the up- and down-stream instances. The upstream
instances temporarily buffer their records during the migration duration as well as guarantee
processing semantics and maintain FIFO order. The migrating instances store their state
in persistent storage in order to consistently resume processing tuples once restarted on a
different worker. The downstream instances rewire their inbound communication channels
to correctly consume records from the migrated instances.

3.3 Modification Protocols Description

In addition to migrating operator instances, our protocol also enables the modifications
of the data flow, e.g., the introduction of new operator instances or replacing the operator
function in a running job. Both operations require the distribution of the UDFs in the cluster
at runtime. The SPE starts each modification similarly to a migration by ingesting the
modification marker at the source operators.

3.3.1 Introduction of New Operators

Upon receiving the modification marker, each operator checks how it needs to react. The
upstream operators have to start buffering their outgoing records. Then, they broadcast
the upcoming location of the newly introduced operator to all downstream operators. As
soon as all upstream operators have successfully acknowledged buffering, all new operator
instances will be started. Before the actual modification starts, the SPE distributes the UDFs
compiled code to the target nodes such that the operators can immediately start instantiating
those UDFs and processing records. The downstream operators instead attempt to connect
to the machine of the newly instantiated operator instances or fail otherwise.
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3.3.2 Changing the Operator Function

The last modification operation enables replacing the UDF of an operator at runtime. Similar
to introducing an operator, the user first needs to provide the SPEs with the new UDFs
compiled code for the operator to update The SPEs distributes the compiled code to all
nodes on which the target operator runs. The SPE then introduces a special modification
marker at the DAG sources that sets up all operator instances for the modification. Upon
receiving the checkpoint marker for that modification, each instance of the target operator
instantiates the new UDF and continues processing records.

4 System Architecture

Fig. 1: System Architecture. Our contributions are
marked in bold.

This section deals with our system architec-
ture that support the migration and modifica-
tion protocol from the previous section. We
explain the components that drive and su-
pervise the modifications as well as the inte-
gration with the checkpointing mechanism
of Apache Flink (Version 1.3.2). We first
provide an overview of the existing compo-
nents and then we illustrate our changes on
the coordinator and worker sides.

4.1 Vanilla Components Overview

The client sends modification control mes-
sages to the coordinator (i.e., the Job Man-
ager), which interacts with the Flink cluster.
It delegates and distributes the actions be-
tween all workers (i.e., the Task Manager),
that run the actual operator instances. These
control messages are not part of the actual

data flow and are realized as Remote Procedure Call (RPC) via the actor model [HBS73].
The actor model represents a system, in which all entities, namely actors, run concurrently
and solely communicate via message passing. The client, the Job and Task Managers use
the actor system to concurrently communicate via asynchronous messages. Apache Flink
handles the data exchange among parallel instances of two operators in a produce-consumer
relation through an internal protocol built on top of TCP. All operator instances on a Task
Manager share some of their resources, such as TCP connections via multiplexing as well
as common data sets and data structures. Each instance is responsible for establishing a
connection to its upstream instances in order to retrieve the input tuples. Flink leverages
either the Job Manager or a third-party storage system to persistently store the checkpoint
data. In Figure 1, we present a conceptual view of the resulting system architecture.
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4.2 Our Changes on the Coordinator Side

Besides controlling the health of every Task Manager and monitoring queries execution,
the Job Manager is responsible for the checkpoint mechanism. The existing Checkpoint
Coordinator handles all functionality related to the checkpointing mechanism, i.e., it triggers
checkpoints, supervises the lifecycle of a checkpoint, and may restart jobs based on past
savepoints. Similarly, our newly introduced Modification Coordinator handles processing
and validating modification commands as well as triggering and supervising the execution
of these modifications. The validation includes whether the requested modification is
applicable to the current, running job and some modification-specific checks. If successful,
the Modification Coordinator prepares a modification-specific trigger messages, which
it introduces in the data flow at source vertices of the target job. The coordinator keeps
track of all vertices contained in the DAG and their modification life-cycle. Should an error
occur during a modification, the coordinator aborts the current modification and notifies
involved operators about its cancellation. Each operator may react to a certain trigger
message or choose to ignore it, yet in any case it will acknowledge the reception to the
Modification Coordinator. Depending on whether all vertices successfully acknowledge
the trigger message as well as all subsequent, modification-specific state changes, the
coordinator eventually marks a modification as completed or as failed. Normally, a task
starts in the Created-state, gets Scheduled and Deployed by the Job Manager, processes all
its input in the Running and eventually finishes by entering the Finished state. A task may
fail for various reasons and subsequently enters the Failed state. Finally, if the SPE cancels
a task due to an external reason, it enters the Canceling and Canceled state consecutively.
We introduce two additional states, i.e., Pausing and Paused, which the task enters when the
SPEs triggers a migration. In case of stateful operators, the tasks checkpoint and submit
their state to a distributed persistent storage system.

4.3 Our Changes on the Worker Side

Each Task Manger executes tasks, which provide the environment for running the concrete
operator instances. A task is mainly responsible for establishing the connection between
Task Managers according to the up- and downstream operators, deserializing incoming
records, processing them, serializing output records, and placing them in outgoing queues.
The Job Manager determines the location of the up- and downstream operators in the job’s
initialization phase. The type of connections between operator instances depends on their
relative location. In the case both producing and consuming instances are located on the
same Task Manager, two instances transfer records through an in-memory queue. In the case
they run on different Task Managers, the producer sends its output records via the network.
When performing an operator migration, it is necessary to buffer intermediate records as
long as the new consuming operator is not yet ready to receive records. Therefore, we
implement a dedicated queue that is able to retain buffers while not blocking the upstream
producers. It holds the buffers as long as possible in memory but it can also spill these
buffers to disk. The spilling phase is asynchronous, i.e., writing to disk will not block. As
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soon as a new consuming operator starts, it first reads all spilled buffers and only afterwards
fetches newly-arrived buffers from memory to preserve FIFO semantic.

4.4 Query Plan Modifications

The protocol must at all times guarantee data integrity by not loosing any records or events
and maintain the processing semantics. For each single operator instance to modify, we need
to also consider its up- and downstream operators, since they should continue to process
records. Therefore, instead of handling each operator individually, the modification message
contains complete instructions for all operators. The logic for preparing this modification
message is located in the Modification Coordinator, each operator simply follows the
instructions contained in the modification message. We trigger the modification through
RPCs to the source vertices, whereas we rely on the dataflow channels to propagate the
modification message to remaining vertices with the same speed of records. Additionally,
by relying on Flink data flow mechanism, all messages maintain FIFO semantics and are
processed exactly once.

4.4.1 Upstream Operators

The checkpointing mechanism guarantees fault tolerance by aligning the checkpoint markers
for each incoming data stream in each operator. Each operator instance receives records and
events from the upstream operator. It also buffers pending records during the alignment
phase of a checkpoint. This phase occurs when an instance has not received all the markers
for its upstream instances and thus needs to buffer the incoming records for the blocked
channels. Therefore, in case an operator wants to migrate to a different Task Manager, the
SPE needs to migrate those buffers as well, increasing the state size. Because these buffers
are not part of the internally-managed state, we need to handle them separately. To this end,
the modification mechanism ensures that all upstream operators perform a custom alignment
procedure on the sending side. Modification messages contain an upcoming checkpoint id.
When the checkpoint with that id is triggered, the upstream operators broadcast checkpoint
barriers along with a modification acknowledge message to the migrating downstream
operators. This event signals to consumer operators that the upstream operator is spilling
all further records and events to disk. Hence, it is safe to expect no new buffers from this
operator instance. Synchronizing on a checkpoint on the sending side guarantees that no
data are currently in-flight between the operators and the target operator has no buffered
data. Therefore, it is safe to take further actions, such as pausing the operator for a migration.
However, this also means that the modification has to wait until that specific checkpoint is
acknowledged at the producing operators. The checkpointing interval determines how often
a checkpoint is triggered by the Checkpoint Coordinator. The duration of taking a specific
checkpoint depends on many factors, but most importantly on the number of operators in
the job and the actual state size. Therefore, for jobs with small state and a low checkpointing
interval, the SPE completes a modification trigger message in a matter of seconds. For jobs
with large state and thus long checkpointing interval, the waiting time for the checkpoint to
finish may be significantly longer than the duration of the actual modification itself.
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4.4.2 Target and Downstream Operators

If an operator reacts to a trigger message, it will transition into a new state according to
the specific modification and wait for further actions or events. Instances of downstream
operators generally only wait for the target operators to react. In case the location of the
target operator changes, such as during a migration, downstream instances receive the new
location in the last record and then update the connection to that new upstream instance
accordingly.

5 Protocol Implementation

The following section describes each modification operation in detail. These are migrating
operator instances across Task Managers, introducing new operators into a running job and
replacing user-defined functions of operators at runtime.

5.1 Operator Migration

In Figure 2, we provide an overview of the four steps involved in a migration. Upon a
migration request, the Modification Coordinator retrieves all operators on that specific Task
Manager and allocates new execution slots. It checks if enough resources are available, but
also assigns these new slots to each migrating operator. This step is essential as each slot
determines the location on which the operator instances will restart after state submission.
The Modification Coordinator creates the trigger message that contains instructions for
the involved operators and ingests it into the data flow through the source operators. This
message determines the operators to migrate as well as the upstream operators that react by
spilling their records to disk. Involved operators wait for the upcoming checkpoint marker
to trigger the actual migration. When the Checkpoint Coordinator introduces that marker
in Step 2, all upstream operators stop sending records to the migrating instances. Every
operator starts the migration sequence by collecting and transmitting its current state to the
Modification Coordinator as well as transitioning into the Pausing state. Additionally, it
sends its upcoming new location to all downstream operators, as shown in Step 3. Finally,
the task initiates the release of all allocated resources and enter the Paused state. As soon
as the Modification Coordinator receives the confirmation of a successful transition to the
Paused state, it restarts the operator. In Step 4, the Modification Coordinator attaches the
state location and starts the execution in the previously assigned task slot. In addition, it
will compute the new in- and outputs of the instance of the migrating operator based on
the updated location of all other migrating operators instances. We rely on the checkpoint
mechanism of Flink to collect and reassign the state of every operator.

5.2 Introduction of new Operators

The modification protocol also enables the modification of the data flow itself, in particular,
the introduction of new operators into a running query. The requirement for this modification
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Fig. 2: Overview of modification protocol procedure

is to provide the SPE with compiled code for the new operators. Apart from that, introducing
operators works similarly to migrating operator instances. The set of all upstream operators
is formed by all operator instances directly before the new operator. Similarly, the set of
downstream operators consists of all operators after the operator that should be inserted. As
soon as all upstream operators successfully acknowledge the spilling phase, the Modification
Coordinator deploys the new operator instances. The deployment payload also contains the
compiled code for the new operators. Prior to a modification, our protocol enforces that new
operators do not violate any type constraints of the up- and downstream operators.

5.3 Changing the Operator Function

This modification operation enables replacing the UDF of an operator at runtime. Similar to
introducing an operator at runtime, the user needs to provide the new code for the target
UDFs. The Modification Coordinator then introduces the modification message in the
dataflow containing the checkpoint id and the reference for the new UDF. Through this
reference, each Task Manager involved in the modification asynchronously fetches the actual
new code once. Afterwards, each operator instantiates the new UDF and registers a callback.
When the SPE completes the checkpoint with the ID specified in the modification message,
every Task Manager triggers the callback locally. The purpose of the callback is to replace
the operator function with the new one only when the SPE completes a global checkpoint.
The rationale behind this choice deals with guaranteeing exactly-once processing semantic.
We need to ensure that we consistently process each record with the new UDFs only after a
specific point in time.
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6 Evaluation

In the following, we present the empirical evaluation of our proposed modification protocols.
We use the Nexmark and a custom benchmark to evaluate our protocols. We present the
performance metrics for the operator migration, introduction a new operator; as well as the
replacement of UDFs. Finally, we discuss the results and findings of our work.

6.1 Data Generator

In order to minimize the dependencies and not benchmark external systems, we implement
a custom data generation and a message queuing system based on the work of Karimov et
al. [Ka18]. We prefer an external generator over consuming from an internal Flink source
because this may lead to unrealistic throughput and latency metrics as the source’s record
generation affects the overall system performance. In case of back-pressure, for instance,
Flink is not able to produce new data because of the unavailability of network buffers. We
use our data generator in all the following benchmarks to create a constant, non-fluctuating
workload.

6.2 Cluster Environment and Benchmark Setup

We run all the experiments on an 8-nodes cluster, each with 48 cores and 48 GB of memory.
Out of the 8 machines, one is dedicated to the Flink Job Manager, five run the Task Managers
and the remaining two machines host three data generator instances each. This ensures that
the generator instances do not interfere with neither the Job Manager nor the Task Managers.
Our benchmarks have a warm-up phase of 10 minutes, after which each modification is
triggered. For all benchmarks without windowing, we calculate the latency by subtracting
the record’s creation timestamp from its arrival time at the sink. If not mentioned otherwise,
the filesystem state backend is used for the checkpointing mechanism.

6.3 Workloads

This section introduces the workloads with which we have evaluated the migration protocol.

6.3.1 Stateful Map Query

The first benchmark is a stateful map query (SMQ) with a source, a stateful map, and a
sink operator. The sources read monotonically-increasing numbers along with a creation
timestamp. Each map operator counts the number of elements this particular instance has
received so far and appends that number to the output tuple. Finally, the sink computes
the overall latency for each element by subtracting the event’s timestamp from the current
timestamp and writes everything to disk. This benchmark is used to demonstrate the
correctness of the migration mechanism with small state size. In addition, it demonstrates
the mechanism with many operators of varying degree of parallelism. The source operator,
the map operator, and the sink operator have 60, 80, and 70 parallel instances, respectively.

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 137



12 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

6.3.2 Nexmark Benchmark

The modification protocol is suited for streaming queries with large state, which need longer
to write and recover their state in case of failures. For this purposed, we select Query 8
(NBQ8) of the Nexmark Benchmark Suite [Tu18]. This benchmark represents a three-entity
online auction system and is designed to measure the performance of various aspects of
a streaming system. The three entities are the stream sources persons, auctions, and bids.
The person source emits a registration event, every time a new user registers in the auction
system. The auction source emits events for each newly created auction by a specific person.
Finally, persons may bid on auctions, which creates a bid event emitted by the respective
source. Query 8 finds those persons who created a new auction within a certain time frame
after signing up at the auction service. We implement this query through a windowed join
using a tumbling window of 20 minutes in event time. Since this benchmark generates a
substantially larger state than the previous benchmarks, it is not feasible to write the state to
disk every single time. For job with large state, writing gigabytes-sized state to disk simply
takes too much time. Therefore, we leverage RocksDB3, i.e., the Flink-embedded key-value
store, which offers incremental checkpointing. We set the checkpointing interval to 30 s.

6.4 Migration Protocol Benchmark

This section demonstrates the migration operation on the SMQ and NBQ8. We compared
our migration technique against the Flink mechanism of canceling and restoring a job with
a savepoint. As Flink has no special operation for simultaneously taking the savepoint and
canceling the job, those operations can only occur subsequently. Therefore, Flink waits
until all operators have successfully acknowledged the savepoint and then cancels the query.
While taking a savepoint, the job continues to consume records, which means that all
in-flight records are not actually part of the savepoint and are therefore lost upon restoring
the job.

6.4.1 Stateful Map Job Performance Drill Down

Savepoint. Figure 3a shows the duration for each event, when canceling and restoring the
job from a savepoint. Initially, most of the time is spent on establishing the connection
to submit the cancellation command to the job, whereas actually canceling takes only
about 300 ms. The system stores savepoint (100 KB) on a shared file system. Restoring
and scheduling the job takes roughly 3 s. This adds up to a total duration of around 7.5 s.
The latency spike in Figure 3b represents the time in which the streaming job restarts and
corresponds to the actual restarting duration of about 4.5 s.
Migration. Figure 4a shows the duration for each step when migrating all operator instances
from one specific Task Manager. The initialization for sending the TriggerMigration
messages takes a bit less than 3 s. The next 2 s are spent waiting for the upcoming checkpoint
barriers to arrive at the job sources, upon which they will spill to disk and broadcast their

3 http://rocksdb.org/

138 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

http://rocksdb.org/


On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 13

0 1 2 3 4 5 6
Submitting Cancelation

Canceling Job with Savepoint

Restoring job from Savepoint

Scheduling Job

s s s s s s s

(a) Event timeline for canceling and restoring the stateful map job via a savepoint
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Fig. 3: Benchmark results for canceling and restoring the Stateful Map Job via a savepoint

new location. It takes almost another 1 s until the map operators are able to enter their
migration. This happens once they receive either the spilling to disk events or the new
location messages from all upstream sources. The sink migrations are fast and take less than
0.3 s. The long duration of almost 1.5 s might be explained by communication overhead
introduced by the high degree of parallelism. In total, our mechanism migrates 34 operator
instances, while 112 operator instances spill to disk during the migration. The migrating
instances are 10 source, 12 map and 12 sink operators with a total migrated state size of
17 kB. We see the latency spike at the time of the migration of about 3500 ms, as shown
in Figure 4b. This is because the actual duration of the migration without waiting for
the checkpoint barriers takes about 3 s plus some additional delay for reconnecting to the
operators. The migrated operators continue to process records after the migration, whereas
the old operator instances stop their execution.

6.4.2 Nexmark Benchmark Performance Drill Down

Savepoint. Figure 5a shows the complete duration for canceling and restoring the job via a
savepoint. The system needs about 161 s from submitting the savepoint command until the
state has actually been stored in the state backend. We show this in Figure 5b as there is no
decrease in sent records due to the fact that the job sources still consume data. The state
size after running the Benchmark for about 12 min is about 13.4 GB. The complex setup is
the cause of the long cancellation duration.
Migration. Figure 6a shows the complete duration for migrating all operators from one
specific Task Manager. The system spends almost 1 min waiting for the upcoming checkpoint
barrier to arrive. This is due to the 30 s checkpointing interval of which at least one full
cycles needs to pass. Since two times the checkpointing interval is also the maximum time

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 139



14 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

0 1 2 3 4 5 6
Submitting Migration

7

Map
migrations

Sending TriggerMigration-message
to all sources

Source
migrations

Sink
migrations

Waiting for
upstream operators

s s s s s s s s

(a) Event timeline for migrating operators of the stateful map job

(b) Individual records latency
Fig. 4: Benchmark results for performing a migration on the Stateful Map Job
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Fig. 5: Benchmark results for canceling and restoring NBQ8 via a savepoint

it takes until the modification mechanism triggers, this represents almost the worst case
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waiting duration. The migration moves 24 operators in total across Task Managers, 8 person
and 8 auction sources, as well as 8 window operators. The remaining 64 job sources are
instead spilling to disk. The total state size for the job at the point of the migration is about
13.5 GB. However, only about 2.7 GB are actually stored and retrieved via the state backend
for the window operators in about 21 s. Figure 6b shows that the throughput at the generators
is not affected by the migration, since pausing and restarting the sources on different Task
Manager takes less than 250 ms.
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(a) Event timeline for migrating operators of NBQ8

(b) Average throughput at the 80 generators
Fig. 6: Benchmark results for performing a migration on NBQ8

6.5 Introducing new operators at runtime

To demonstrate the introduction of an operator at runtime, we use the SMQ (see Section
6.4.1). Its function filters the input stream by only letting every 5th record pass. We set
the checkpointing interval to 1 s with concurrent checkpoints enabled. Figure 7 gives an
overview of the modification duration. Most of the time for uploading the custom jar
and submitting the command to Flink is spent establishing the connection. The actual
preparation and sending of the trigger message takes less than 300 ms. It takes around
2 s for the corresponding checkpoint barrier to arrive, upon which all sources broadcast
the new filter operator location. The source operators acknowledge the spilling to disk,
while the map operators simultaneously update their inbound connections. As soon as all
acknowledgments have been received, the new filter operator starts, which takes about
300 ms. In total, it takes only about 550 ms from the first spilling source to start and connect
all 60 filter operators. The average throughput of the generators remains unaffected.
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Fig. 7: Event timeline for introducing the filter function

6.6 Replacing the operator function at runtime

The last benchmark evaluates the replacement of a UDF of an operator at runtime. We reuse
the SMQ with the filter operator already running. The source, filter, and map operators have
60 parallel instances, whereas the sink has 40. We set the checkpointing interval to 1 second
with concurrent checkpoints enabled. Figure 8a shows the timeline of the introduction
mechanism. Most of the time for uploading the new compiled code and submitting the
command to Flink is spent on instantiating the client and establishing the connection. The
actual preparation and sending of the trigger messages takes around 300 ms. Downloading
the code on each Task Manager takes around 350 ms. Waiting for the upcoming checkpoint
barrier, upon which all filter operators will replace their UDF with the one from the jar-file,
takes around 1 s. In total, it takes a bit more than 8 s to replace the operator function. The
synchronization on the checkpoint barriers may be omitted depending on the use case.
Synchronizing only ensures that switching the function is aligned with the checkpoint
mechanism, hence, it simplifies the recovery procedure. However, the synchronization is
not necessary, e.g., all operators could immediately replace their function when receiving
the trigger message. Replacing the operator function has nevertheless no impact on the
throughput. Figure 8b shows the record latency for every 200th element in order to visualize
the drop in incoming records after the function switch.

6.7 Discussion

The checkpointing settings of a given query have a big influence on the overall modification
duration because of the eventual synchronization on every checkpoint barriers. For jobs
with small state, fast checkpointing intervals are feasible, thus enabling the mechanism to
react quickly on events, such as user input. For jobs with large state, the synchronization
drastically limits the reaction time, however, the overall mechanism still performs better
than the Flink baseline with savepoints. We are able to trigger all modification in less than
6 s for jobs with small state. For jobs with larger state, this duration increases up to about
60 s. This includes the heavy initialization overhead for the initial submission of the trigger
as well as further messages. The experimental results show that it is feasible to migrate
stateful operator instances at runtime with a negligible impact on the query performance.
The operator state job demonstrated the migration of multiple, subsequent operators in 7.1 s.
The modification duration grows with the number of subsequent operator instances, however,
the impact is still low compared to the initial submission and the waiting duration. For the
NBQ8, the migration mechanism showed big performance improvements, outperforming
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the savepoint mechanism by a factor of 2.3, even including the long waiting and state
transferring time. This is due to the long shutdown sequence of the savepoint mechanism,
which transfers each operator state to the state backend. Table 1 summarizes the results of
the migration operation. Additionally, Flink savepoint mechanism has the disadvantage of
loosing in-flight records that flow from the sources during the savepoint procedure. When
consuming from a persistent data source, such as Apache Kafka, we may still achieve
exactly-once processing guarantees by replaying the missed records. However, the system
looses records in the presence of non-persistent data source. Our migration mechanism
prevents this from happening because stream sources never consume records that they
cannot process. Furthermore, our mechanism does not introduce tangible throughput spikes
at the generator because sources generally have very small state, which allows for quick
migration.

Benchmark Migrated
State Size

Migrated
Operators

Overall
Duration

Waiting
Time

Migration
Duration

SMQ 17 kB 34 7.1 s 2 s 2.4 s
NBQ8 2.7 GB 24 81.8 s 54.9 s 23.7 s

Tab. 1: Migration overview for SMQ and NBQ8

Although introducing an operator into a running job suffers a few limitations, as mentioned
in Section 5.2, it still enables many complex modification scenarios. Introducing operators
enables altering the physical data flow of a DAG in under 10 s, depending on the checkpointing
settings. With some further work, it would enable more sophisticated modification scenarios,
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such as operator reordering. Replacing the operator function is a modification operation
that enables fast tweaking of the streaming job in under 9 s with no performance impact. In
the current version, users can leverage it to avoid restarting a running job, e.g., by adding
additional logic to a UDF. It also enables more complex modification scenarios, such as
tweaking the functionality of operator function based on internal or external triggers, such
as runtime metrics.

7 Related work

Schneider et at. present an auto-parallelization mechanism for general-purpose, distributed
data stream processing systems that deals with workload and resource aware scaling
of operator instances as well as runtime state migration [Sc12]. We differentiate from
their work as our migration mechanism is specific for queries that need exactly-once
processing semantic as well large state. Wu et al. present ChronoStream, a distributed stream
processing system specifically designed for elastic stateful stream computation [WT15].
ChronoStream achieves horizontal and vertical scalability in order to cope with workload
fluctuation by treating internal state as a first-class citizen. The delta-compressed state
of a task is separated into computational slices, which are duplicated and managed by
a locality-aware placement mechanism across all machines. Through both mechanisms,
they drastically lower the overhead caused by network I/O in case of migrations. Although
their evaluation demonstrates linearly elasticity without sacrificing system performance or
affecting collocated tenants, Ding et al. argue that their transactional migration protocol
may cause incorrect results due to synchronization issues [Di15]. In contrast to our solution,
they do not consider changes to the data flow and take placement decisions only based on
the migration protocol, but not overall system performance. Heinze et al. [He14] deal with
finding the right point in time to take scaling decisions through an online learning algorithm.
They empirically compare their solution [He15] against local and global threshold-based
mechanisms presented by Lorido et al. [LML14]. Although their results indicate that their
auto-scaling technique performs better than the previous solutions, their solution only
applies a simplistic migration protocol. In contrast, we design our protocols to cope with
more demanding requirements, e.g., large state, exactly-once semantic. Nasir et al. [Na15b]
propose the concept of partial key grouping in response to load imbalance caused by
skewness in the key distribution of the input. Their approach monitors the number of tuples
sent to two downstream instances. Each operator instance sends a tuple to the one with
lower load estimation. As a result, tuples with the same key are routed to different parallel
instances of the same operator. The authors extend their work to also include a mechanism
for the “hottest” keys in the stream and assign more operator instances to those keys [Na15a].
In contrast to our approach, their solution does not alter the running query (i.e., no state
migration) but only uses a streaming algorithm to determine the number of workers for
“heavy hitter” keys, which is minimal yet sufficient for load balancing. Mai et al. introduce
Chi [Ma18], a system that allows for dynamic reconfiguration of a running query. They use
a migration mechanism similar to ours, however, they do not consider queries that result in
large state and they do not further investigate such a specific scenario. Castro Fernandez

144 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl



On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 19

et al. also present a mechanism to scale up and down streaming topologies and to deal
with operator failures [Ca13]. Our solution is different because of the explicit handling of
large state and extended range of modifications, e.g., altering an execution plan at runtime.
Systems based on micro-batching such as Apache Spark allow for reconfiguration at the end
of each micro-batch, however, this results in higher latency and lower throughput because of
synchronization. Finally, we point out that our approach is orthogonal to public and private
cloud [Am] and resource managers [Hi11, Va13] because we tackle fault-tolerance and
resource elasticity at application-level, whereas they isolate running applications through
virtual machines or containers.

8 Conclusion

This paper examines the feasibility of modifying the execution of a running streaming job
in Apache Flink. Our major contribution is the implementation of a modification protocol
that enables three types of modifications, namely migrating operator instances, introducing
new operator instances, as well as changing an operator’s UDF. We evaluate the protocol
using one custom benchmark and the Nexmark Benchmark. The results show that migrating
operators for jobs with small state is as fast as using Flink’s savepoint mechanism. Migrating
operators of a job with 15 GB of state even outperforms the savepoint mechanism by
a factor of 2.3. Furthermore, our migration mechanism solves the problem of data loss
during job restart that arises when not consuming records from a persistent data source.
Changing the data flow itself by either introducing new or replacing existing operators can
be performed in less than 10 s and 8 s, respectively. The modification protocol opens the
door for a variety of further enhancements to a running streaming job. It allows for online
optimizations of the running job that were not possible before. An example is up- and
down-scaling operator instances, which enables the SPE to dynamically adapt to changes in
the incoming workload without halting the whole job. Lastly, removing the synchronization
on the checkpoint barriers can significantly reduce the overall modification duration and
increase the responsiveness of our mechanism.
Acknowledgment. This work was funded by the European Union through PROTEUS (ref.
687691) and STREAMLINE (ref. 688191).
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A Hybrid Information Extraction Approach Exploiting
Structured Data within a Text Mining Process

Cornelia Kiefer1, Peter Reimann2, Bernhard Mitschang3

Abstract: Many data sets encompass structured data fields with embedded free text fields. The
text fields allow customers and workers to input information which cannot be encoded in structured
fields. Several approaches use structured and unstructured data in isolated analyses. The result of
isolated mining of structured data fields misses crucial information encoded in free text. The result
of isolated text mining often mainly repeats information already available from structured data. The
actual information gain of isolated text mining is thus limited. The main drawback of both isolated
approaches is that they may miss crucial information. The hybrid information extraction approach
suggested in this paper adresses this issue. Instead of extracting information that in large parts was
already available beforehand, it extracts new, valuable information from free texts. Our solution
exploits results of analyzing structured data within the text mining process, i.e., structured information
guides and improves the information extraction process on textual data. Our main contributions
comprise the description of the concept of hybrid information extraction as well as a prototypical
implementation and an evaluation with two real-world data sets from aftersales and production with
English and German free text fields.

Keywords: information extraction, clustering, text mining, free text fields

1 Introduction

Many data sets in research and industry capture information both in structured and
unstructured data fields. Structured data fields are suitable if the data type and value
domain fit the perceived purpose. For example, structured data fields are appropriate to
store the duration of a downtime in a production line in seconds. Unstructured data fields
are better if no suitable structured type is available or if one needs to express certain
issues in natural language to be readable and understandable by human users. For example,
unstructured free text fields are adequate when explaining how to repair a machine, since this
information is complex and cannot be captured in structured data. Especially, humans tend
to provide more complete information using natural language texts than using structured
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Fig. 1: Isolated information extraction approaches A on structured data and A’ on unstructured text
data yield results R1 and R2. Our hybrid information extraction approach uses analysis result R1 in
the text mining process and yields result R3, thus extending results R1 and R2.

information [HW96]. Thus, it is important to extract information not only from structured
data, but also from unstructured, e.g., textual data as is mostly available in data sets from
production, aftersales and research.

Standard approaches for information extraction from unstructured text data do not use
structured data in text analysis (see Section 2). The result may be redundant information
already available from structured data. Moreover, isolated approaches on structured data
also miss crucial information. As illustrated in Figure 1, in contrast to these approaches, our
hybrid information extraction approach exploits analysis results obtained from structured
data in the text analysis pipeline.

The hybrid information extraction concept may be applied to all information extraction
approaches on structured data with embedded or linked text data. In this paper, we present the
concept and a prototypical implementation. In the evaluation, we present two real-world data
sets and apply the method to them. Since for these data sets and use cases, no information
on what to extract from the data is known beforehand, and no training data sets are available,
we select a clustering information extraction approach for the prototypical implementation.
Clustering is a robust and unsupervised means to extract information from text.

The goal of the suggested hybrid approach (yielding R3 in Figure 1) is to increase the
amount of new information, when compared to the information gained by the two isolated
approaches (R1 and R2 in Figure 1). In our evaluation based on the two real-world data sets
and the prototype, we denote the ’degree of new information’ with inew and define it as
shown in Formula 1.

inew = (cnew/N ) (1)

where cnew is the number of cluster names not already known from the structured column
and N is the number of all clusters considered.

150 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang



A Hybrid Information Extraction Approach 3

By employing this purely quantitative metric, we are able to compare R1 − R3 in a
straightforward way. Additionally, we can compare our results to the work of Ghazizadeh et
al. [GML14]. In future work, we are going to consider more qualitative insights as well as
additional quantitative metrics, e.g., based on entropy.

With an isolated approach on structured data, all information is extracted from the structured
data fields only. Thus, based on the definition above, inew = 0. Only, if information from
free text is employed, inew increases. For example, if half of the cluster names are not yet
present in the structured information, inew is 0.5. For R2 and R3, inew differs due to the
exploitation of structured information available in the hybrid approach (R3). By filtering
out redundant information within the text mining process, the amount of new information
increases. For our prototype and the two real-world data sets, for R3, inew is 0.21 and 0.43
higher, than for R2.

The main contributions of this paper are:

• A description of the concept of hybrid information extraction.

• A discussion of design issues of a prototypical implementation of the approach for
English as well as German free text fields.

• An evaluation of the hybrid information extraction approach. Here, we compare the
results of isolated approaches (cf. R1 and R2 in Figure 1) with results of our hybrid
approach (cf. R3 in Figure 1) and we show that inew is higher for the hybrid approach.
For this purpose, we apply the prototype to an open dataset on problems with cars in
aftersales (NHTSA data set4) and to a dataset on downtimes in a production line.

In the next two sections, we give an overview on work related to our approach and motivate
hybrid information extraction with an example use case. In Section 4, we describe our
method used for hybrid information extraction, and we discuss implementation details in
Section 5. We illustrate the benefit of our approach with two data sets in Section 6 and
conclude in Section 7.

2 Related Work

Plenty research works propose text mining approaches on free text. Compared to our work,
these publications make no use of analytical results of structured data in the text mining
process. Many approaches look at free text information in isolation. In the following, we
present an excerpt of these approaches which work with real data sets: Carter et al. show a
use case in the pharmaceutics domain where they mine the Pillreports.com database using
the k-means algorithm [CH14]. Gamon et al. apply clustering to mine opinions on cars in

4 https://www-odi.nhtsa.dot.gov/downloads/
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the car reviews database5. The approach is based on a self-defined clustering algorithm
[Ga05]. Brooks focuses on preventing industrial accidents [Br08]. In his approach, the SAS
Text Miner Software is used to mine workers’ compensation claims data. Clustering is based
on the Expectation Maximization algorithm. Forman et al. assist technical support staff in a
call center applying a self-developed clustering method on call logs [FKS06]. In many of
the data sets used in these isolated approaches, also information in structured data fields is
available. The main drawback of these approaches is however that they do not make use of
this information source.

Many approaches use both structured and unstructured information in parallel. Yet, these
approaches solely integrate the results of the isolated approaches. For many data sets like the
data considered in this work such approaches are problematic, since valuable information
may get lost (see Section 3). For example, Tan et al. mined data of a service center to
get information on the expected processing times of service requests. Mining is based on
structured data (the processing times) and case descriptions in free text fields [Ta00]. In their
approach, they build a classification model which uses features induced separately from
structured and text data. Chougule et al. speed up repair tasks of cars based on a framework,
which combines association rule mining, case-based-reasoning and text mining [CRB11].
While the whole framework considers structured as well as unstructured data, the text
mining component analyses the texts in isolation using hierachical clustering algorithms.

Similarly, many approaches convert unstructured text data into structured data fields with the
goal of merging structured and converted unstructured data and information. In contrast to
our method, the information extraction methods work on the texts in isolation. For example,
the DeepDive system structures free texts using statistical inference and machine learning
[Ce15]. Gubanov et al. present the data tamer system [GSB14], where the structuring of
textual data is based on external tools that are not described in more detail. After the
conversion of the unstructured text data, modules such as schema integration and entity
consolidation in data tamer may be applied.

Various approaches to information extraction are called hybrid, since they combine two
machine learning algorithms. Silva et al. combine naive bayes, the PART algorithm and the
k-nearest-neighbour with hidden markov models [SBP06]. Xiao et al. combine maximum
entropy and maximum entropy markov models [XZZ08]. These approaches still analyze
one type of data in isolation. They are not hybrid in the sense of using analytical results on
structured data in the text mining process.

The work most related to ours is by Ghazizadeh et al. [GML14] and uses the same data set
as we use (NHTSA data set, see Sections 3 and 6.1). Ghazizadeh et al. investigate reasons
for fatal car accidents. They apply latent semantic analysis and hierarchical clustering to
the free text fields in isolation. In difference to our approach, this work uses structured
information in a first step only, before clustering takes place, to filter out the relevant part
of the data. All structured information are ignored in the next steps of the information

5 https://www.msn.com/en-us/autos/
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extraction process. Ghazizadeh et al. [GML14] present evaluation results which show that
half of the cluster names correspond to vehicle components. These vehicle components
represent information which is also available in a structured data field in the data set. Thus,
only half of the clusters represent new and relevant information. In the hybrid approach
suggested in this work we adress this inconvenience.

While many approaches for the extraction of information from structured and free text data
exist, the main drawback is that they are isolated: they do not employ structured information
that is available and helpful within the text mining process. In this paper, we adress this
issue and show with two data sets from the product lifecycle that a hybrid approach to
information extraction leads to new information that otherwise would be hidden behind
redundant information.

3 Example Use Case

The department for National Highway Traffic Safety in the U.S. (NHTSA) wants to reduce
the number of traffic crashes. For this purpose, they conduct recalls of unsafe vehicles and
collect and analyze data on car crashes and problems with cars in a huge database since
1995. The data set contains structured information such as the car component affected.
Customers filled this data field choosing the appropriate car component from a dropdown
menu. Moreover, the NHTSA data set contains a free text field. The free text field describes
the car crash or problem with the car. In Table 1 we show a small example data set containing
information on the car component and a free text description.
Tab. 1: Example data set with structured (id, component) and unstructured information (description).

id component description
1 AIR BAG AIR BAG FAILED DURING ACCIDENT (...)
2 AIR BAG AIRBAG FAILED TWICE.
3 AIR BAG AIR BAG LIGHT FAILED.
4 STEERING VERY SENSITIVE STEERING AT HIGH VELOCITY (...)
5 STEERING STEERING FAILED.
6 ENGINE THE ENGINE SHUT OFF TWICE ON THAT DAY (...)
7 ENGINE ALL ENGINE LIGHTS CAME ON (...)

An isolated analysis on structured data for example yields an ordered list of the most frequent
car components involved in car crashes (cf. R1 in Figure 1). An isolated analysis on the free
text field also lists primarily car components (cf. R2 in Figure 1). The results of Ghazizadeh
et al. showed that half of the information in R2 is not interesting to the analyst since it
contains too much redundant information also contained in the structured field and inew
thus is comparably low ([GML14], see Section 2). They applied an isolated latent semantic
analysis and hierarchical clustering approach to the NHTSA data set.
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The hybrid approach tries to tackle this problem. It yields a list of frequently mentioned
terms that are not deducable from the structured part of the dataset. R1 and R2 are oriented on
car components, but R3 mostly is oriented on issues. For example, in R3 (cf. R3 in Figure 1)
the analyst finds new valuable information among the 5 highest ranked clusters (which will
be discussed in more detail in Section 6.2): Many customers report problems in getting new
secure car parts that the manufacturers need to change due to a recall. In isolated approaches
the analyst misses this information since it is not present in R1, and in R2 it is ranked as
place 175 only (see Section 6.2 for more details on the prototypical implementation yielding
R2). This information may be crucial in preventing car crashes. Customers, while waiting
for the secure car parts, might decide to drive the car anyway. Furthermore, the information
in R3 can be used to improve and extend the categories available in structured data in a
feedback loop. The analyst may decide to add the ’unavailability of car parts’ to the future
structured data values available to the customers who file a complaint in the NHTSA data
base.

4 Hybrid Information Extraction Approach

The goal of our approach is to extract more information from structured and free text data
in terms of a higher degree of new information as defined in Formula 1 in the introduction
to this work. In Figure 2, we illustrate an isolated approach to information extraction and
show the resulting table in Figure 3. In Figures 4 and 5, we show an example illustrating the
hybrid information extraction method and R3. Since we want to emphasize the difference
between standard isolated approaches and our hybrid approach, we do not describe in this
section preprocessing steps (such as tokenization) and vectorization, which both approaches
have in common. We explain these steps in detail in the next section. Here, we focus on the
steps special to the hybrid approach: (1) grouping and (2) removal.

In Figure 2 we illustrate an isolated approach. Here, free text fields are considered in
isolation and all free texts are clustered. Finally, the name of the cluster in which a free text
falls is added to the overall data set in the additional column ’cluster’ as shown in Figure 3.
The cluster name is based on the most frequent word in the cluster.

In Figure 4 we illustrate the first processing step of the hybrid approach, in which structured
data is used to group free text fields. Here, the NHTSA data set is grouped by the structured
data field on the car components into three groups (AIR BAG, STEERING and ENGINE)
(step (1)). In Figure 5, we illustrate the next step, in which we remove all information that
is already available in the structured data field on car components (step (2)). Only then,
the free texts are clustered (step (3)). Finally we add a new column to the table which
contains the name of the cluster, the result is shown in the last step in Figure 5. The isolated
approach adds cluster information such as ’air bag’ and ’steering’. This information is
already available in the structured field ’car component’ (see columns ’component’ and
’cluster’ in Figure 3). The hybrid approach results in clusters, such as ’light’ and ’fail’.
They represent new valuable information (see column ’cluster’ and compare to column
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Fig. 2: Concrete example illustrating an isolated approach to information extraction from free text
fields.

Fig. 3: Concrete example illustrating the result of isolated information extraction from free text
containing redundant information such as ’air bag’ and ’steering’.
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Fig. 4: Concrete example illustrating the distinguishing step ’group’ of the hybrid approach to
information extraction from free text fields.

Fig. 5: Concrete example illustrating the distinguishing steps ’remove’ and ’cluster for each group’
of the hybrid approach to information extraction from free text fields and the result containing new
valuable information such as ’fail’ and ’light’.
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’component’ in Figure 5). We base our approach on three predominant characteristics of
structured data sets with embedded free text fields, which we discuss in more detail in the
remaining paragraphs of this section.

First of all, free text fields store additional valuable information. This was confirmed in
many studies (see Section 2). Various methods, such as relation extraction, classification and
clustering can extract valuable information stored in free text [ZM16]. We use clustering
since it is suited best for our use cases. Moreover, Ghazizadeh et al. [GML14] also used
a clustering approach, and we want to compare our results with their findings. However,
the hybrid information extraction approach suggested in this paper is independent from the
concrete information extraction method chosen. Also relation extraction and classification
approaches may benefit from applying the concept to them. For example, a classifier which
uses structured fields as well as unstructured free text fields in the feature generation, may
benefit from removing information already present in structured fields from the free texts. The
concrete effects on further information extraction methods need to be investigated in future
work. Here, we focus on the validation of the core concept and employ a state-of-the-art
clustering technique.

Second, in many data sets in industry and research, we can group unstructured free text
fields via information encoded in structured data fields. For example, the NHTSA data
set (see Section 6.1) may be divided into groups based on structured fields such as car
component, year and car make. The hybrid approach uses this information for grouping.
Thus, we do not end up extracting the same groups based on text mining free text fields. For
a concrete example, see Figure 4, step (1).

Lastly, if the same information can be extracted from either structured data or from free
text fields of a data set, usually structured data is preferred. In most research and industry
data sets, the quality of structured data fields is estimated to be quite high. Pre-defined
value ranges and quality control at the point of data entry lead to high quality structured
data. However, the entry of texts is free and usually no pre-defined value ranges and quality
control exist. Thus, free texts are oftentimes full of spelling mistakes, grammatical errors
and abbreviations (compare e.g., [KM16] and [ZMZ16]). If an information is present in a
structured field as well as in a free text field, we use the information from the structured
field. Consequently, we do not want to extract this redundant information from the free text
field with text mining. Thus, during preprocessing, we remove this information. E.g., in
Figure 5 we remove the word ’steering’ from all free texts in the respective group.

As we can see from Figure 5, in the hybrid approach, cluster names such as ’fail’ or ’light’
are added. After the grouping and removal step, these new cluster characteristics show
up. Thus, compared to isolated approaches, our approach increases the amount of new
information inew available in the data set (see Section 6).
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5 Design Decisions in the Implementation

The prototype is open source and can be retrieved from GitHub6. It is implemented in
Python, since many Python programming libraries for natural language processing exist. The
implementation is straightforward and helpful documentations are available (e.g., [BKL09]
and [Pe14]). Furthermore, all tools and libraries chosen for the implementation of the
prototype have industry-friendly licences. The prototypical implementation enables an easy
integration of, e.g., new preprocessing methods, clustering algorithms and visualizations,
as well as an easy adaptation to other languages. We designed the prototype that flexible
so that both use cases with English and German free text fields may be covered easily.
Other design decisions, such as on data types the prototype can read and preprocessing
performed, are founded on the two use cases described in more detail in Section 6. In Figure
6, a schematic illustration of the prototype to our hybrid information extraction approach is
shown. For the evaluation of the hybrid information extraction approach, we implemented a
state-of-the-art clustering prototype as a baseline and a prototype for our hybrid approach.
The two implementations are exactly the same, but for the two distinguishing processing
steps ’group’ and ’remove’ (these two steps are bold-faced in Figure 6). In the following
subsections we describe the processing steps from Figure 6 in more detail and state our
implementation choices.

Fig. 6: Schematic illustration of the prototype. In the two boldfaced preprocessing steps ’group’ and
’remove’, structured data is used, which makes the approach hybrid.

For reading configurations, we used ConfigObj7. In the configuration, the user needs to
state the column that contains the free texts and the column that contains the structured data
that shall be used in the grouping and removal steps. If more than one structured categorical
field is available and suitable, both may be applied to the ’removal’ step. However, our use
cases only require to select exactly one structured field for the ’grouping’ step. Moreover,
the processing steps can be freely defined by the user, or alternatively the default settings
are used. With the default values, our prototype uses standard preprocessors, no synonyms
in normalization, a tf-idf vectorizer and creates 12 clusters per group. The user may adapt
these values if needed. ODBC data bases as well as CSV-formatted data sets may be read.
Therefore, we use the library PyODBC8 and a CSV-standard tool in Python9. NumPy10
arrays represent the incoming and outgoing data.
6 https://github.com/LinkMarco/PrototypeClustering
7 https://pypi.python.org/pypi/configobj/5.0.6

8 https://pypi.python.org/pypi/pyodbc/4.0.3

9 https://docs.python.org/3/library/csv.html

10 http://www.numpy.org/
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We base the grouping step on Python standard tools and SQL SELECT statements which
are invoked from Python. All following steps are subsequently executed for each group. The
free texts are grouped based on the structured data column as defined by the user in the
configuration. For a concrete example of this processing step, see step (1) in Figure 4.

The preprocessing phase is a central part in text mining, since here the features are given
by the words of the text (see, e.g., [MRS08]). Table 2 shows the main steps.

The detailed settings are flexible and can be determined in the configuration. The main
library we use for natural language processing is the Natural Language Toolkit (NLTK)11.
Tab. 2: Small example illustrating the preprocessing steps of our prototype: tokenization, normalization,
and the removal of stopwords and redundant information as determined via analysis of structured data.

Preprocessing step Sample text
Before preprocessing AIRBAGS FAILED DURING ACCIDENT, BUT CAR PARTS ARE

NOT AVAILABLE.
Tokenize [AIRBAGS] [FAILED] [DURING] [ACCIDENT] [,] [BUT] [CAR

PARTS] [ARE] [NOT] [AVAILABLE] [.]
Normalize [air bag] [fail] [during] [accident] [but] [car part] [are] [unavail]
Remove [fail] [accident] [car part] [unavail]

For tokenization, the Whitespace Tokenizer12 or the Penn Treebank Tokenizer13 may be
applied. In tokenization, the text is split into the smallest meaningful units such as words
and compounds. We give an example in Table 2. Note that here the compound ’car parts’,
while being separated by a whitespace, was correctly selected as one token.

Then, we normalize all tokens. We provide plenty normalization methods in the prototypical
implementation. These are optional and may be selected and adapted by the analyst for
each use case, e.g., as described in Sections 6.2 and 6.3. In the normalization process, we
may lowercase all texts. Spelling mistakes may be corrected using TextBlob14. Furthermore,
contractions such as ’didn’t’ may be extracted. We use the multi-word expression tokenizer
from NLTK15 for extraction. Then, white spaces may be normalized (two or more whitespaces
are reduced to one). Moreover, we may remove urls, mail adresses, telephone numbers,
numbers, punctuation marks, currency signs and accents using tools from Textacy16. Finally,
we may stem the tokens, i.e., we delete affixes with the goal of normalizing and thereby
grouping the tokens. For stemming, we apply the Porter Stemmer17 from NLTK. Additionally,
different expressions which have the same meaning (=synonyms) may be consolidated. We

11 http://www.nltk.org/

12 http://www.nltk.org/_modules/nltk/tokenize/regexp.html#WhitespaceTokenizer

13 http://www.nltk.org/_modules/nltk/tokenize/treebank.html#TreebankWordTokenizer

14 https://pypi.python.org/pypi/textblob

15 http://www.nltk.org/_modules/nltk/tokenize/mwe.html#MWETokenizer

16 https://pypi.python.org/pypi/textacy

17 http://www.nltk.org/_modules/nltk/stem/porter.html#PorterStemmer
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implemented the synonym consolidation based on standard tools in Python. In the small
example in Table 2, we lowercase all words. Then we normalize ’NOT AVAILABLE’ to its
synonym ’unavailable’. Finally we stem the tokens, which e.g., transforms ’unavailable’ to
’unavail’ and ’failed’ to ’fail’.

We base the removal step on the Word List Corpus Reader18 in NLTK. In this step, we
remove stopwords. Stopwords are words that do not bear interesting information, but merely
are present in the texts for grammatical reasons. In Table 2, during, but and are were
identified as stopwords. Additionally we remove the information already present in the
structured data column specified by the user. In our prototypical implementation, we add the
string from the categorical structured field to the stopword list. Since these structured values
usually are words in their base form, they match with the corresponding word occurences in
the stemmed free text fields. Depending on the use case and data set, further resolutions of
synonyms and abbreviations need to be added, which are also supported by the prototype.
For a concrete example of the ’remove’ processing step, see Figure 5 step (2). In the small
example in Table 2, the word ’air bag’ was additionally removed.

We use the machine learning library Scikit-learn19 for vectorizing and clustering the free
text fields. Vectorization means building a representation for each document that notes which
words are present in the document and how these shall be weighted. The vectorizer can
use two different weighting schemes: Either plain term frequencies (tf) or term frequencies
times inverse document frequency (tf-idf). Tf-idf is a weighting scheme often used in
information retrieval [MRS08], which leads to a proper baseline clustering prototype. Here,
terms which are very frequent in the complete free text collection are downweighted and
rare ones are upweighted. Thus, much redundant information is yet downweighted by means
of the state-of-the-art weighting scheme. Thus, the state-of-the-art approach already extracts
much new information and is a strong baseline. As we will show in Section 6, inew still
is higher for the hybrid information extraction approach than for that baseline. Several
clustering algorithms are implemented in Scikit-learn. For it’s popularity and robustness,
we chose the k-means algorithm for the prototype. This algorithm is a hard partitioning
clustering algorithm, which means that each free text may only be put into exactly one of the
clusters built. K-means is implemented following Lloyd’s algorithm [Ll06]. We use NumPy
for array representations and calculations in Scikit-learn. Thus, vectorization and clustering
is fast. The prototype is built so that it is possible to calculate and compare inew in the
evaluation of the core concept. While we employ a robust and state-of-the-art clustering
algorithm in the prototype, the concept is independent of the implementation chosen. Since
the clustering step in our prototype is based on the Scikit-learn library, it is easy to add
other clustering algorithms if needed.

Finally, a new column is added to the original data set. For each data instance it contains
the name of the cluster to which the data instance belongs. The cluster name is based on the
most frequent word in the cluster. This processing step uses NumPy arrays and SQL.

18 http://www.nltk.org/_modules/nltk/corpus/reader/wordlist.html

19 http://scikit-learn.org/stable/
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Visualizations are optional. We implemented them using Matplotlib20. The clusters as well
as cluster quality metrics such as the silhouette coefficient may be visualized.

6 Evaluation of the Hybrid Information Extraction Approach

In the following subsections, we give details on two data sets from the product life cycle
and explain how we apply the prototype to them. Furthermore, we compare the results of
the hybrid approach with the results from isolated approaches. In Figure 1 these results are
illustrated as R1-R3, where R1 is the result of an isolated approach on structured data, R2 is
the result of an isolated approach on unstructured data, and R3 is the result of our hybrid
approach. For easy reference, we will denote the prototypes used in the experiments by
R1-R3 respectively. In the following we define the three prototypes tested:

• R1: The isolated approach on structured data is based on a simple SQL-query
which we run on the databases. It is exemplified for the categorical structured data
field ’component’ in the NHTSA data set in the following SQL statement21. It simply
groups the data for the structured data field ’component’, counts the lines, and orders
the result in descending order:

SELECT component, count(*) FROM nhtsa_table

GROUP BY component ORDER BY count(*) DESC;

• R2: We base the implementation of the isolated approach on unstructured data on
the prototype described in Section 5. In fact, it is exactly the same, but the grouping
as well as the removal of information from free texts based on the structured data field
are omitted. Standard stopwords such as and, the, it are still removed. This ensures
that the effect of the steps special to the hybrid approach can be viewed in isolation.

• R3: We described the implementation of the hybrid information extraction prototype
in the previous section. It is adapted to the two use cases, i.e., as described below
tailored configurations such as synonyms and preprocessors are defined.

By applying both R2 and R3 to the data sets, we can compare a state-of-the-art baseline
clustering approach (R2) with the very same approach plus the two distinguishing steps
’grouping’ and ’removing’(R3). Both R1 and R2 are oriented on the components, i.e., air bag,
steering, power train, whereas R3 mostly is oriented on issues, i.e., fail, noise, (unintended)
acceleration, unavailable (car parts). In the presentation of our detailed evaluation results, we
thus show for comparison the results R1 representing component-based and R3 representing
issue-based results. Moreover, we report the difference between the three approaches in
terms of the amount of new information inew (as defined in Formula 1 in Section 1) and
discuss the resulting clusters.

20 http://matplotlib.org/

21 Note: the ’component’ column is named ’compdesc’ in the original NHTSA data set.
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6.1 Data Sets

To evaluate the prototype, we apply it to two data sets. The first one is a freely accessible data
set from the National Highway Traffic Safety Administration (NHTSA) in the United States
of America. Since the data set22 as well as our prototype are freely accessible, all evaluation
results with respect to the NHTSA data set are reproducible. The NHTSA complaint data
set currently contains more than 1.3 million reports on incidents with cars.

The second data set used for illustration of our prototype comes from an industry partner in
Germany. It contains 153k entries, comprises information on downtimes in a production
line and contains German free text information. On that line, smaller, but complex parts of
a car are manufactured. This data set allows us to see how the prototype may be applied to a
use case in production. It contains structured information on the downtimes, such as error
codes and the duration of a downtime in seconds. Furthermore, information on the reasons
for downtimes and the actions that were taken to put the production line running again are
noted in a free text field. The workers can fill the free text field via text entry into a tablet,
directly on the shop floor. The text entries are in German and quite short (4.1 words per
entry in average) and full of spelling mistakes and domain-specific abbreviations, which
brings special challenges with respect to information extraction.

6.2 Data Analysis of the NHTSA Data Set

To apply the prototype resulting in R3 to the NHTSA data set, at least the column that
contains the structured field and the column which contains the free text field need to be
given. We use the structured field with the affected car component in the grouping and
removal steps. We stick with the default settings (see Section 5), but chose to add some
synonyms and context synonyms. For example, all occurences of ’not’ or ’failed’ and
’deploy’ with no more than 3 words in between are normalized to ’not deploy’. Thereby,
different ways of expressing the same concept are normalized to one term. The added
synonym consolidations help in building semantically reasonable clusters. In this use case
they have no influence on the ’removal’ step of our core method. From this hybrid prototype
adapted to the use case, the isolated prototype for R2 is deduced. Both approaches are the
same but for the grouping and removing steps and generate the same number of clusters (12
per group). R1 is computed as defined above.

In the first analysis, we focus on how an isolated approach on structured data only (resulting
in R1) and the hybrid approach (resulting in R3) differ. In Figure 7, we show the five most
frequent car components (R1, left) and cluster terms (R3, right). For easier readability and
comprehensibility, we name clusters by the most frequent word in that cluster in the base form.
From the structured data, we extract the information on the most frequent car components
affected. E.g., the electrical system, air bags, power trains of automatic transmissions,

22 NHTSA complaints data set: https://www-odi.nhtsa.dot.gov/downloads/
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steering and power train. Using the hybrid approach (R3), additional information can be
extracted: We already know from structured data that problems with transmission are
frequent. But we did not know that many complaints are about problems with noise,
acceleration, unavailable (car parts) and problems where the car stalls. Accelerating the
supply with car parts needed due to a recall (cluster ’unavailable’) and investigating problems,
where the car stalls (cluster ’stall’) or accelerates (cluster ’acceleration’) might help in
preventing car crashes. The result R3 completes the information already available. The user
can use both in his analysis: structured as well as generated cluster information. In Table 3
we also note both, information from R3 and R1 (the latter is noted in brackets following the
free text samples).

Fig. 7: Most frequent car problems based on an isolated analysis of structured data only (R1, left) and
on the hybrid analysis (R3, right), all based on the NHTSA data source.

Tab. 3: Concrete examples of NHTSA complaints for most frequent clusters together with structured
information as noted in the categorical field ’component’ given in parenthesis

Cluster Sample complaints
stall VEHICLE STALLED DUE TO AN ELECTRICAL PROB-

LEM.(’component’: ’electrical system’); ENGINE STALLS WHEN
APPROACHING A STOP. (’component’: ’power train’)

unavailable THE PART TO DO THE REPAIR WAS UNAVAILABLE. (...) (’compo-
nent’: ’air bag’); (...) PARTS FOR RECALL IS NOT AVAILABLE SINCE
REQUESTING (4) WEEKS AGO. (..) (’component’: ’child seat’)

acceleration VEHICLE ACCELERATED BY ITSELF (...) (’component’: ’vehicle speed
control’); THE VEHICLE IS NOT ACCELERATING PROPERLY. (...)
(’component’: ’power train:automatic transmission’)

noise IT MAKES A LOUD NOISE AND NO 1 KNOW WHAT IT IS (’component’:
’electrical system’);WHINING NOISE WHEN TURNING STEERING
WHEEL. (...) (’component’: ’steering’)

transmission TRANSMISSION FAILURE AT 105,000 MILES (...)(’component’: ’power
train:automatic transmission’)

In a last experiment with the NHTSA data, we want to check how R1-R3 differ in terms
of inew (see Formula 1 in Section 1). In R1 no new information which goes beyond the
structured information may be gathered, thus inew = 0. We compare the degree of new
information within the 100 biggest clusters in R2 and R3. We illustrate the difference between
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Tab. 4: Comparison of the degree of new information inew for the three approaches R1-R3 on the
NHTSA data set

Result set inew
R1 (only structured information) 0
R2 (baseline) 0.55
R3 (hybrid approach) 0.98

R1-R3 with respect to this measure in Table 4. Here we see that R3 contains significantly
more new information than R2. Also see the results already described in Section 3. The
new information might be crucial for manufacturers, e.g., to get better customer satisfaction.
Thus, we were able to confirm and improve the results of Ghazizadeh et al. [GML14], who
report half of the cluster names to correspond to vehicle components, which corresponds to
an inew value of 0.5.

6.3 Data Analysis of the Industry Data Set

For a second evaluation, we apply the prototypes to an industry data set with a German free
text field. It contains information on causes and actions related to machine downtimes. We
use a structured field with an error code description which indicates the group of errors
of a downtime on the production line for grouping. The possible choices for filling the
structured data field do not cover all types of errors and reasons for downtimes that may
occur in reality. More choices are indicated in a free text field and may be deduced by our
hybrid information extraction method, only.

To apply our prototype resulting in R3 to the industry data set, details in preprocessing
need to be changed in the configuration file due to German text: a German standard
stopword list (from NLTK, see Section 5) and a German stemmer23 need to be specified. We
normalize some spelling mistakes and verbalizations and add a few synonyms and context
synonyms. For example, if the german words ’strom’ and ’leerlaufstrom’ (both terms are on
power/electricity) are mentioned near ’hoch’ (english ’high’) the main word is substituted
by ’strom_hoch’(in english ’power_high’). Some of the added synonyms help ensure a good
recall of the ’removal’ step. Also, encoded umlauts such as ’ae’ and ’ue’ are normalized to
’ä’ and ’ü’ respectively. After adapting the hybrid prototype to the use case, R2 is deduced
from it. Both approaches yield the same number of clusters and only differ in terms of the
two distinguishing steps ’group’ and ’remove’. K in k-means is set as described above for the
NHTSA data. For R1, the data is grouped by error code description with a SQL statement
similar to the one described in the introduction of this section. For reasons of confidentiality,
we use high-level abstractions of the German definitions. We furthermore translated them
to English for the examples given in this work.

23 e.g., http://www.nltk.org/_modules/nltk/stem/snowball.html#GermanStemmer
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Fig. 8: Most frequent reasons for downtimes based on the structured data field containing an error
code (R1, left) and based on the hybrid approach (R3, right), all based on the industry partner data
source.

Finally, we compare the results of an isolated approach on structured data only (R1) with
the results of the hybrid approach (R3). Using an isolated approach on structured data, the
reasons for downtimes may be analyzed using the structured field with an error code and
a table that defines these error codes. Following the hybrid approach, many fine-grained
clusters are gained that represent new information. The results are illustrated in Figure 8. We
see that the structured information on errors on the production line are very coarse-grained:
problems due to faulty bought-in parts, mounting processes in general, change of tools
and change of calibrations often lead to downtimes. The most frequent error code hints at
’miscellaneous’ problems. This group is very big since many reasons for downtimes are
not reflected in the given structured data values. Therefore the workers on the shop floor
oftentimes chose the structured value ’miscellaneous’ instead.

This is not helpful for the workers on the shop floor, who want to prevent or fix problems with
downtimes of a production line. In contrast, the clusters resulting by our hybrid approach
(R3) are much more fine-grained. For example, in the big structured group ’miscellaneous’,
clusters such as ’problems with component parts’ and ’problems with out-of-commission
machines’ were found. These give more detailed information to workers on the shop floor
and to managers of the production line. From R3, more detailed and new information
on reasons for downtimes may be extracted: From biggest to smaller clusters, detailed
information on problems with checks, parts of the products which are produced, repeated
checks and parameter deviations that lead to downtimes in the production line are reflected
in the clusters. If this data was prepared for the shop floor workers, it might help in solving
new downtimes of the production line faster. In a feedback loop, new reasons for downtimes
in the production line may be added to the list of error codes in order to strengthen the
significance of the structured fields.

We moreover compare the degree of new information in Table 5 with the same method as
described for the NHTSA data set in the previous section (see Formula 1 in Section 1). In
this case the baseline is even stronger, due to weaker structured information available in
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Tab. 5: Comparison of the degree of new information inew for the three approaches R1-R3 and the
industry data set

Result set inew
R1 (only structured information) 0
R2 (baseline) 0.78
R3 (hybrid approach) 0.99

the industry data. Still, R3 has a 0.21 higher inew value than R2. The grouping step helps
to reduce the number and size of big ’miscellaneous’ clusters. Special attention needs to
be payed to synonyms, spelling mistakes and abbreviations. If not adressed properly, these
issues may lead to less exploitation of the benefits of the removing step. We discussed the
different results with domain experts and found that the additional information contained in
R3 is relevant to the task of optimizing the process. Also, from the point of view of domain
experts, the hybrid information extraction method has future potential: Before a new shift on
the production line begins, a summary of current insights may be presented to the shop floor
workers. Moreover, new staff could be assisted by a presentation of aggregated insights.

7 Conclusion and Future Work

We suggested a hybrid approach to the extraction of information from free text fields which
yields more new information inew from data with structured data fields and unstructured free
text fields. The approach is based on natural language processing and k-means clustering
and improves the results of two baseline isolated approaches by employing analytical
results from structured data within the text analysis process. First, we group data based
on a structured data field. Then, we preprocess data, while also redundant information,
as determined via a structured data field, is removed. Then, data is clustered and a new
column containing the cluster name is added to the data set. In this paper, we describe the
concept and implementation of our approach for hybrid information extraction and discuss
relevant design considerations. We based the prototype for the two baselines as well as the
hybrid information extraction approach on free, open-source tools. The prototype is freely
available on GitHub24. The prototype for R2 can be deviated from it and R1 can be gathered
by means of a SQL-query as shown in Section 6. Finally we evaluated our approach with
two example data sets with German and English free text fields. While the data set from
production is confidential, the NHTSA data set may be downloaded25 and thus the results
presented with respect to this use case are reproducible. We compared our approach to
baseline isolated approaches on structured or unstructured data. We showed that isolated
approaches to free text yield much redundant information already available in structured

24 https://github.com/LinkMarco/PrototypeClustering
25 https://www-odi.nhtsa.dot.gov/downloads/
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data. The hybrid approach impedes this and yields more new information. For the two use
cases, the degree of new information in R3 is significantly higher than in R2.

In future work, we integrate our hybrid information extraction approach into a framework of
methods for measuring and improving data quality of product lifecycle data. Then, we will
apply the concept to further information extraction approaches. In future work, an efficient
handling of big data may be enabled by transferring the prototype into text databases
(e.g., [KLA15]). Moreover, we will address issues we encountered in analyzing production
data such as synonyms, spelling mistakes and abbreviations. Furthermore, we will employ
additional evaluation metrics, e.g., based on entropy.
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Perceptual Relational Attributes: Navigating and Discovering
Shared Perspectives from User-Generated Reviews

Manuel Valle Torre1, Mengmeng Ye, Christoph Lofi2

Abstract: Effectively modelling and querying experience items like movies, books, or games in
databases is challenging because these items are better described by their resulting user experience
or perceived properties than by factual attributes. However, such information is often subjective,
disputed, or unclear. Thus, social judgments like comments, reviews, discussions, or ratings have
become a ubiquitous component of most Web applications dealing with such items, especially in
the e-commerce domain. However, they usually do not play major role in the query process, and are
typically just shown to the user. In this paper, we will discuss how to use unstructured user reviews
to build a structured semantic representation of database items such that these perceptual attributes
are (at least implicitly) represented and usable for navigational queries. Especially, we argue that
a central challenge when extracting perceptual attributes from social judgments is respecting the
subjectivity of expressed opinions. We claim that no representation consisting of only a single tuple
will be sufficient. Instead, such systems should aim at discovering shared perspectives, representing
dominant perceptions and opinions, and exploiting those perspectives for query processing.

Keywords: Perceptual Attributes; Modelling; User-Generated Attribute Values; Query-By-Example
Navigation

1 Introduction

Social judgments like comments, reviews, discussions, or ratings have become an ubiquitous
component of most Web applications, especially in the e-commerce domain. Now, a central
challenge is using these judgments to improve the user experience by offering new query
paradigms. Recommender systems have already demonstrated how ratings can be effectively
used towards that end, providing users with proactive guidance within large item databases.

In this paper, we will discuss how to use unstructured reviews to build a structured semantic
representation of such items, enabling the implementation of user-driven queries. Thus, we
address one of the central challenges of Big Data systems: making sense of huge collections
of unstructured user feedback. More specifically, we discuss the challenge of building
structured, but latent representations of “experience items” stored in a relational database
(like movies, books, music, games, but also restaurants or hotels) from unstructured user
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feedback. Such representations should encode the consensual perception of an item from
the point of view of a large general user base. Consequently, this information can then be
exploited for allowing semantically richer queries. In the following, we will use movies as a
use case. However, the described techniques can easily be transferred to any other domain
which has user ratings or reviews available.

While there have been previous works also aiming at representing items in a database based
on social judgments (e.g., [LW15], [LN14]), we address one major yet unresolved problem:
user judgments are inherently subjective as they represent a user’s perception. While
rating-based systems are widely used, semantic quality quickly deteriorates when richer
information sources like reviews are considered; they are less in quantity but richer in content
and thus can express a wider variety of opinion. Furthermore, mining reviews is harder due
to the complexity of natural language. Here, aspect-oriented sentiment analysis [YLT17] or
document-embeddings [LW15] have been used to create structured representations which
then later can be used for database query processing. However, the commonly chosen
approach of combining the resulting representations into a single tuple (e.g., by averaging the
document embeddings) is often not meaningful. Considering an example case of the movie
“Twilight” (2008), typical reviews might express that the movie is a “beautiful romance full
of alluring characters” or “an overall stupid movie and a disgrace to the vampire genre”.
Other reviews might even be unrelated to the item itself, e.g. “my DVD was damaged on
arrival, bad seller”. Clearly, a meaningful representation of the movie should incorporate
all its relevant points of views, thus the aggregation of several user judgments has to be
performed carefully. This problem is further aggravated by the current trend towards opinion
polarization [MTT17]: publicly stated user opinions for example in reviews or comments
are increasingly extreme, making it even more relevant than ever to respect different points
of view when representing items.

Therefore, in this paper, we propose to represent each experience item in a database using
multiple shared perceptual perspectives, with each perspective representing one major
consensual opinion aggregated from multiple user judgments. Our contributions are:

• We present a large-scale modelling experiment outlining some of the challenges when
modelling perceptual attributes

• We present the foundations of shared perspectives for experience items

• We provide an overview of the design space of different techniques and methods
available to obtain and process such perspectives

• We introduce an adapted variant of the query-by-example paradigm intended to
interact and query multiple shared perspectives

• We present our prototype implementation of a system using shared perspectives, and
give insights into its query processing performance using simulations
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• We conduct and present a user study, giving insights into the usefulness and semantic
representativeness of the perspectives in our prototype system

• Based on the results of this study, we identify shortcomings and challenges with
shared perspectives, and propose additional techniques to address some of them

2 Towards Shared Perspectives and Modelling Perceptual Properties

In the precursor work of this paper [LW15], we already explored preliminary concepts and
implementations for encoding social judgments for capturing experience items like movies,
books, etc. in relational databases. We used an e-commerce scenario where users can
browse for experience items. This type of scenario is a prime application for user-generated
judgments: user-friendly interaction with experience items is notoriously difficult, as there
is an overwhelming number of those items easily available. Some of them are vastly popular
and easily accessible mainstream items, but most of them are relatively unknown long tail
products which are hard to discover without suitable support. Even more, the subjective
user experience those products will entail (which, for most people, is the deciding factor for
buying or consuming the product) is difficult to describe by typically available meta-data like
production year, actor names, or even rough genre labels. Due to this problem, web services
dealing with experience products enthusiastically embraced techniques for motivating the
creation of user-generated judgments in the form of ratings, comments or reviews. In its
most naïve (but very common) implementation, rating and review data are simply displayed
to users without any additional processing (e.g., as seen in most current video streaming or
shopping platforms). Querying and discovering items still relies on traditional SQL-style
queries and categorizing based on non-perceptual meta-data (e.g., year, actor list, genre
label, etc.). Manually reading these user judgments may help potential new customers to
decide if they will like or dislike a certain item, but it does not really help them to discover
new items beyond their expertise (i.e., manually reading user judgments works fine if a user
knows what she is looking for, but has not yet come to a final buying decision). This led
to the development of recommender systems [LSY03, BKV10], which proactively predict
which items a user would enjoy. Often, this relies on collaborative filtering techniques
[LSY03] which exploit a large number of user-item ratings for predicting a user’s likely
ratings for each yet-unrated item. While collaborative filtering recommender systems have
been proven to be effective [KB11], they have only very limited query capabilities (basically,
most recommender system offer just a single static query for each user).

2.1 Modelling Perceptual Properties

For enabling semantic queries like similarity exploration or query-by-example queries
[LW15, LN14], the first step is to find semantically meaningful representations of database
items going beyond simple available structured meta-data. As motivation for this work, we
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argue that experience items are generally better characterized by their perceptual properties,
e.g. their mood, their style, or if there are certain plot elements present – information which
is rarely explicitly available and expensive to obtain. Furthermore, from a modelling point
of view, it is often unclear which perceived properties describe items well.

Thus, in the following we investigate the question of “How well can perceptual attributes be
modelled manually by (semi-skilled) database schema designers”. This modelling challenge
can be approached in multiple different ways, as in [TNK10] where simply the Oscar Award
categories are used (like “cinematography” “music” “costume design”) - a design decision
which might represent some movies better than others, and might not necessarily represent
how the general public would describe (and query) for movies.

For this paper, we conducted a modelling experiment with 180 second year university BSc
students, and asked them to create a ranked list of perceptual attributes (i.e. attributes
describing the consumption experience of a movie). The core task was “Which attributes
should be used to describe movies beyond typical structured meta-data as e.g., available in
IMDB3.” Also, a brief motivation why they think that these attributes would be relevant
should be given. Practical limitations, like the challenge of how to obtain the values for such
attributes, or the problem that certain attributes might be subjective, were to be ignored.

Tab. 1: Modelling Experiment Example Response
Attribute Importance Explanation
Quality of Acting 5 The quality of the acting in a movie can make a

great difference in the overall quality. Believable
acting can be a great help to a movies perceived
quality.

Originality of Storyline 3 Most big movies seem to have the same storyline
with some characters changing names, they are
predictable and bore a lot of people. A lot of
people are therefore interested in movies with
original storylines

Amount of Explosions 2 A large amount of explosions will put off some
viewers while others will really appreciate them.

Quality of Scenes 3 Simply put fight scenes can differ greatly in
quality from the lameness that is Darth Vader
vs Palpatine to the awesomeness that is gypsy
danger rocket punching a giant monster in the
face. People that watch action movies want to
see people get punched in an awesome way, not
thrown over a railing for example. This can really
make or break these kinds of movies for certain
viewers.

The students all possessed basic knowledge of database modelling techniques, and conducted

3 http://www.imdb.com
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this task as part of their database education curriculum. Students were teamed into pairs,
and performed this modelling experiment collaboratively to foster discussions and enforce
at least a minimal degree of consensus on the relevance of attributes between the two team
members. An example result created by one of the teams is shown in Table 1. That group
claims that “acting” (as in “the quality of acting”) is the most important attribute while
“storyline” or “scenes” are considered slightly less important.

The modelling teams provided between 4 and 10 attributes each, with an average of 6.5
attributes per team. An overview of all modelled attributes is shown in table 2. We manually
grouped the participants’ responses (e.g., “quality of story”, “plot”, or “story” are all grouped
into “storyline”). 90 teams participated in the experiment, and two attributes received a high
degree of consensus: 74 teams mentioned “storyline”, and 72 mentioned “acting”. Several
other attributes like “scenery”, “character”, or “directing” are only mentioned by roughly
half of the teams, and several attributes were only mentioned once (like “Disney’ishness”
describing how a much a movie feels like a Disney movie; or how friendly the movie seems
to portray animals.)

As part of the experiment’s post evaluation, several students complained that it was not
intuitive to model perceptual attributes. This also shows in the modelled attributes themselves:
beyond attributes like acting and storyline, there is little consensus between the 90 data
models created in the experiment, and for many modelled attributes it is debatable what they
mean and how important they really are. Furthermore, importance of many attributes seems
to be quite subjective. Thus, we conclude that explicitly modelling perceptual attributes is
often unfeasible. Furthermore, even if such attributes are modelled, obtaining the actual
attribute values for all modelled attributes and items in a database is far from trivial (e.g.,
[YLT17] uses aspect-oriented review mining for this with somewhat limited success). Thus,
for the remainder of this work, we opt for fully automatically generated latent perceptual
attributes as discussed in the next subsection.

• Perceptual attributes should be considered when describing experience items as they
better capture how users see or query for items than traditional structured attributes.

• Perceptual attributes are hard to model explicitly as they are often fuzzy and subjective

2.2 Latent Representation of Perceptual Properties from Reviews

Due to the challenges regarding explicit modelling and mining of perceptual attributes, we
investigate latent representations. Latent representations can be mined fully automatically
from user judgments like reviews or ratings. However, while these attributes might have a
real-world interpretation, that interpretation is typically unknown to us (for example, one
attribute might represent how scary a movie is, but this attribute will simply have a generic
name and we do not know that it indeed refers to scariness). We consider this an acceptable
price to pay for the convenience of obtaining both the data model and item attribute
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Tab. 2: Modelling Experiment Most and Least Important Attributes
Aspect Sum Importance Avg Importance mentions
storyline 346 4.67 74
acting 341 4.73 72
scenery 197 4.10 48
character 186 4.53 41
directing 177 4.43 40
sound 162 2.74 59
humor 160 3.01 53
originality 67 2.48 27
pace 49 3.06 16
cinematography 46 2.70 17
child friendliness 3 3 1
babes 2 2 1
morality 2 2 1
animal friendliness 1 1 1
Disney’ishness 1 1 1

values fully automatically. A naive way of creating a latent representation is to embed each
item in a high-dimensional vector space (therefore, such techniques are also sometimes
called “embeddings”) with usually 100-600 automatically created dimensions where each
dimension represents an (unlabeled) perceptual attribute (like scariness, funniness, quality
of special effects, or even the presence of certain plot elements like “movie has slimy
monsters” - but again, while the attributes likely do represent a real world aspect, the actual
meaning is unknown to us).

Even without explicitly labeling the attributes resulting from embeddings, latent representa-
tions can already provide tremendous benefits with respect to the user experience: They can
directly be used by most data analytic algorithms like clustering, supervised labeling, or
regressions. Also, from a user’s perspective, such representations can be used with great
effect to allow for semantic example-based navigation queries as we have shown in [LN14]
for movies, or be used to increase the ease-of-consumption of review texts [YLT17].

To obtain such latent representations for e.g., movies, early approaches like [SLB12, LN14]
relied on decomposing user-item-rating matrices using techniques not too unlike those
also used in recommender systems [Sa01]. As the needed large user-rating corpora are
hard to obtain nowadays due to privacy concerns, our later work [LW15] relied on the
openly available reviews. Here, a very simple heuristic was used: Similar movies should
feature similar reviews, thus by embedding all user reviews into a latent space (by using
e.g., techniques like Latent Semantic Analysis [Li12] or Document Embeddings [LB16]),
and aggregating them into a single tuple with latent attributes, an effective representation
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of experience items can be created which can be used for example-based and similarity
queries. However, this heuristic showed several shortcomings as discussed next.

• Perceptual attributes can be automatically extracted in an implicit latent form, e.g.,
using review or rating mining techniques

• Latent perceptual attributes have no clear explicit semantics, but can still be effectively
used for navigational query-by-example queries

2.3 Towards Shared Perspectives

In [LW15], we relied on Amazon movie reviews to build representations of latent perceptual
properties of movies. While we could show that the resulting attributes showed mostly
comparable performance when used for a query-by-example system compared to a rating-
based latent representation, we encountered several cases of unexpected behaviors. Thus, we
manually inspected a selection of movies and their supposedly most similar titles. Here, it
turned out that there are indeed many good matches in the similarity list. However, there are
also some titles which are highly similar with respect to the latent perceptual attributes even
though the movies themselves are very different (e.g., for the movie “Terminator 2”, both
“Robocop” (a good match) and “Dream Girls Private Screenings” (a surprisingly bad match)
are both considered similar). The reason for this irritating behavior seems to be that there
are many “bad” reviews. “Bad” reviews are not discussing the movie itself, but other issues
and do therefore not contribute to a meaningful representation. Typical examples are “I had
to wait 5 weeks for delivery of the item! Stupid Amazon!”, “Srsly?! Package damaged on
delivery?”, “I ordered the DVD version, got the Blue Ray!”. For “Dream Girls”, reviewers
seem to be mostly concerned with the bad quality of the DVD version in comparison to
the older VHS release. A similar issue is described in several reviews of the original DVD
release of Terminator 2. Such reviews should therefore not be considered when building
latent perceptual representations, however it is not a trivial process, since cleaning noisy
web-data is a live line of research.

A second issue became apparent much later: for many movies, reviews often show very
polarizing viewpoints, and aggregating them into a single tuple represents neither point
of view well. Consider for example the teen vampire romance movie “Twilight” with the
opinions “This is the worst movie of all times, with cheesy characters, dump story line, and
really bad sparkling vampires” and “This movie is the best movie ever made, so romantic
and beautiful, the love between the lead characters is so enjoyable.” (Note that most review
for this movie follow either the first or second opinions - only few people believe that it is
just an average movie...) By combining the (high-dimensional numeric vector) embeddings
of such two highly polarizing opinions, the resulting combined embedding would likely not
be useful. Therefore, it is essential to store strong opinions independently to each other and
be considerate when aggregating judgments of users on perceptual properties.
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However, we argue that while perceptual properties expressed by users are highly subjective,
they are not necessarily unique and there is often a smaller set of shared point of views (or
perspectives) when perceiving items: For example, out of 400 reviews for the drama “The
Green Mile” in our Amazon dataset, essentially 180 express some variation of “ this is a
beautiful and touching movie, full of emotion” - while each review might be using slightly
different words, the perspective is the same. Another 110 agree that the movie has “great
acting and a good story that follows the book quite well”, and 80 reviews claim variants
of “it is a good movie with famous actors, it is long but worth it”. The remaining reviews
usually express some isolated fringe opinions, like “it is an unrealistic fairy tale in prison”,
or “such a bad movie, Tom Hanks is so lame”, or indeed “I ordered this movie and the
package was damaged” —opinions which are typically not shared by many others.

Therefore, we propose to group similar user judgments expressing perceptual properties
into shared perspectives, and aggregate each shared perspective into one single latent repre-
sentation. Thus, shared perspectives retain major potentially conflicting and/or polarizing
opinions while still aggregating the underlying social judgments to minimize storage space
and query complexity. Then we retain only major shared perspectives and discard lesser
ones. Considering the “The Green Mile” example, this movie would then be represented by
it’s traditional meta-data like title, actors, release year, etc., and in addition with three latent
perceptual tuples representing the three major shared perspectives. This allows to perform
similarity navigation from “The Green Mile” to other movies which are perceived as equally
emotionally touching, or have equally good acting/plot following a novel. This is illustrated
in figure 1: instead of traditional QBE which only relies on a single, hidden-to-the-user,
item similarity, the users can choose to navigate along a shared perspective to discover new
items which are similar with respect to that perspective. Also, several perspectives can be
combined during query processing: “Twilight”, a teen vampire romance, is characterized
by having two very distinct and conflicting shared perspectives (see above), one deeply
embracing the movie for its romantic plot and great characters, the other perspective hating
the movie for its plot and characters. A similar situation can be found for “Warm Bodies”, a
teen zombie romance, which features nearly the same perceptions and perspectives.

• User perception are often highly opinionated, polarizing, or even contradicting. This
needs to be respected when representing items, and a single perceptual representation
of each item is usually insufficient.

• Still, there is often a smaller number of dominant perception which is consensual shared
by larger user groups. Focusing on these shared perspectives is a good compromise
for efficiently representing experience items while still respecting polarized opinions.

3 Shared Perspectives

This is the core section of this work, where the foundation and implementation of Shared
Perspectives is described.
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Figure 1: Query-by-Example Step using Shared Perspectives

3.1 Foundation and Terminology

In the following, we introduce new concepts relevant for representing shared perspectives.
A database system wishing to use shared perspectives to represent a type of real-world
items I = {I1, I2, ..., InI } has a set of factual attributes AF = {A1, ..., AnAF }. These attributes
AF represent traditional relational attributes, and we use the term factual (as opposed
to perceptual) to describe that there is at most one value for each item and attribute,
and that the attributes have been agreed upon during the schema design phase. Each
item x ∈ I can be represented by a factual tuple xF ∈ DF , stored in the factual relation
RF ⊆ DF = A1 × ... × AnAF using those factual attributes.

In addition, there is also the set of perceptual attributes AP = {P1, ..., PnP } with DP =

P1 × ... × PnP . In this paper, we showcase a system using latent perceptual features, thus
the set AP is not chosen by the schema designer, but is typically the result of some sort of
algorithm miner automatically mining user judgments like reviews or ratings. For example,
a document embedding algorithm will typically produce 100 to 300 such attributes. For
each item x, there is in addition to the factual tuple xF also a set of shared perspectives
xSP = {xSP1, ..., xSPnxsp } ⊆ DP . Finally, the item x is represented by (xF, xSP). Such a
tuple is not in the first normal form (as xSP is a set). Therefore, a real-life application using
traditional relational databases without special extensions would typically realize this by
normalizing and having several relations using joins to build (xF, xSP) on the application
side.

In order to obtain the shared perspectives for an item x ∈ I, each item x also features several
user judgments U Jx ⊆ U J like reviews, ratings, discussions, or just explicitly provided
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user feedback. The aforementioned mining algorithm miner transforms such a judgment
into perceptual tuples, i.e. miner : U J → DP . By applying miner to each judgment in
U Jx , the set of all perceptual tuples xP ⊆ DP is created, i.e. when a movie has 1000
reviews from different users, xP will contain a perceptual tuple for each review. In our
implementation, we do not store xP , but only use it to discover the shared perspectives xSP .
Discovering shared perspectives is realized by the function g&a (group and aggregate),
g&a : P(DP) → P(DP). This function will group all perceptual tuples, and aggregate
the bigger groups into a single tuple in order to produce the shared perspectives, i.e.
xSP = g&a(xP).

We discuss the design space for implementing the functions miner and g&a in the following
sections.

• Experience Items I can have factual AF and perceptual attributes AP . Perceptual
attributes of each item x can be obtained from user judgmentsU Jx ⊆ U J using a miner
grouped into shared perspectives xSP with an appropriate algorithm xSP = g&a(xP).

• The shared perspectives of an item xSP = {xSP1, ..., xSPnxsp } ⊆ DP can be compared
to other shared perspectives of an item to find similar perspectives, and therefore
similar items.

3.2 Query-By-Example using Shared Perspectives

Shared perspectives, especially the implementation chosen in this work with latent attributes,
are hard to use with traditional SQL-style querying. Thus, we propose to use a variant of
iterative query-by-example for allowing user to interact with the item space. This type of
querying sits between SQL-style querying (where users have to specify exactly what they
are looking for), and recommendations (where users specify little to nothing, and the system
actively recommends). In [LN14], it has been shown that this type of querying works well
with users who only have a vague idea of the items they want, and QBE querying was
deemed an enjoyable and playful experience by the users in that study.

A core concept in querying is semantic similarity sim between two perceptual tuples, i.e.
sim : Dp × Dp → [0..1]. While there are several approaches towards implementing this,
we chose with a simple cosine-distance-based similarity.

The shared-perspective-enabled QBE process can be summarized as follows (also see figure
2): The user starts with an example item she likes. Then, for each shared perspective that
item has, the system will discover up to n other items which have a shared perspective which
is most similar to the current one (n is 3 in our system). Each of these items (n items per
shared perspective) are then shown to the user, and the user can select from that display
the item she likes most. Then, the process can be repeated until the user is satisfied (see
algorithm 1).

178 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye



Shared Perceptual Perspectives 11

Algorithm 1 Query on SP
1: procedure x item query by example
2: x← UserProvidedExampleItem ∈ I
3: while user wants to continue do
4: display← ø
5: for each sp ∈ xSP do
6: maxItemSim ← newRelation(item, similarity)
7: for each (y ∈ I) ∧ (y < display) do
8: maxSim ← max (sim(sp, ySP))
9: maxItemSim.add(y,maxSim)

10: display.add(topn(maxItemSim))
11: show(display)
12: x ← UserSelectedItem ∈ display
13: end while

Figure 2: Query-by-Example: Shared Perspectives and Displays
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• Each item has multiple shared perspectives using perceptual attributes. Shared
perspectives are created by representing user judgments as perceptual tuples which
are then grouped and aggregated by group.

• For querying, a variant of Query-By-Example can be used. After selecting a start
example, we show the user several items which are similar with respect to the different
shared perspective of the start item. Then, the user can select a new item she likes
and the process starts anew until the user is satisfied.

4 Implementation Design Space

In this section, we outline some areas of the design space for implementing shared
perspectives into an information system, and explain the choices of our prototype system.
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4.1 Dataset

Underlying our prototype is an existing dataset of movie reviews crawled from Amazon
[Mc15]. We only considered movies that have at least 100 reviews, and use maximum 300
(randomly selected) reviews per movie. We also discard reviews with less than 25 words
as they are commonly uninformative, This results in a dataset consisting of around 375K
movie reviews, for 2,041 movies overall.

4.2 Extracting Perceptual Attributes

In this section, we discuss the design choices for implementing the aforementioned function
miner which translates reviews into perceptual attributes. In a good review, a user will take
the time to briefly summarize the content of an item, and then expresses her feelings and
opinions towards it - the task for miner is to represent these opinions in such a way that the
similarity measures used by the QBE process work well.

In an earlier prototype we focused on explicitly modelling perceptual attributes and using
aspect-oriented opinion mining to extract perceptual tuples [YLT17]. However, this had a
considerable manual overhead and did result into only few usable attributes which could
be extracted reliably. Thus, in this work, we focus on extracting a fixed number of latent
perceptual attributes as in [LW15]. In [LW15] we discussed the advantages of different
implementation techniques like LSA [DL05] or LDA [BNJ03]. However, in the last few
years there has been a surge of approaches proposing to represent the semantics of text
documents using neural language models. A prominent example is word2vec, representing
the semantics of words as a fixed-length vector [Mi13], and the later version doc2vec
which represents documents as vectors [LM14]. Studies in [LB16] suggest that the semantic
performance of doc2vec in typical document tasks like clustering or retrieval seems to
be quite good, outperforming other approaches based on bag-of-words, word vectors, or
LSA/LDA. This has also been shown for the special case of reviews [LM14].

In our prototype, we used the document embedding implementation of doc2vec provided by
Gensim 4, using distributed bag-of-words representation (dbow). Typically, such document
embeddings need to be trained on a large corpus before they can be used. In scenarios where
only a smaller amount of text is available, the solution is often to rely on models pre-trained
on Wikipedia or Google News. However, as we had a large review corpus available [Mc15],
we trained on all Amazon reviews without excluding anything.

The parameters for training and the embeddings were:

• Vectors are kept at 100 dimensions. Typically, 100 to 300 dimensions is considered
good for document similarity tasks [LB16].

4 https://github.com/piskvorky/gensim/
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• The training window is 10 since it showed good performance with documents of
similar size (reviews)

• Frequent word subsampling seems to decrease sentiment-prediction accuracy, so it is
not applied

• We do not consider any words which are mentioned only once in the whole corpus

• The learning rate is alpha = 0.025 and is kept fixed

Example: The Green Mile review

“Ok, so it did not deserve best picture. It was still excellent. It has great performances in it.
Particularly the guy who never was very famous Michael Jeter or whatever his name is. I
love the visuals. I cried at the end. Michael Clarke Duncan is great."

→ Perceptual Tuple: (-0.640138, 0.422624, ..., -0.0350407, 0.192102 )
• The miner selected for this work is doc2vec, applied to amazon movie reviews, with

100 dimensions.

• Hyper-parameter values were chosen in line with the recommendations of the authors
of doc2vec and other implementations working with similar documents.

4.3 Aggregating Shared Perspectives

As part of the creation process of shared perspectives, individual perceptual tuples repre-
senting single reviews need to be aggregated and summarized to implement the function
g&a. We opted for spherical k-medoids clustering to group perceptual tuples for an item
[DM01]. Alternatively, we also considered HDBSCAN, but this did not notable improve the
results [Ca15]. The ‘elbow method’ was applied to select the best number of clusters. After
clustering, we only retain up to 3 clusters. This is a simplifying design choice to keep the
user interface easy and accessible. However, a quick inspection showed that most reviews
would only show 2-3 clusters anyway (typically, this is reviews from people who hate the
movie, reviews from people who love it, and balanced views). Thus this limitation will
only sacrifice semantics in case of very diverse opinions. The shared perspective tuple is
representing a cluster is chosen using the medoids. We prefer this solution over k-means,
which would create an artificial shared perspective tuple which does not relate to a real user
review.

• Spherical k-clustering was implemented as the choice of aggregating or g&a for this
work.

• k=3 was decided since manual inspection of the ’elbow method’ for several movies
showed that most reviews would only show 2-3 clusters, plus it simplifies design and
user interface for the evaluation in Section 5.3.

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 181



14 Valle, Ye, Lofi

5 Evaluation

We evaluated our system in two ways: the first one is a query simulation akin to those
performed in [LN14]. Here, the core idea is that we assume the existence of a hypothetical
“target object” the user is searching for, and simulate the user interactions leading to that
item. While this simulation is artificial and does not resemble a real-life user interaction, it
still gives insights into the effectiveness of some design decisions. The second evaluation
is using real users, and having them interact with the system to evaluate the perceived
usefulness and semantic quality of the shown shared perspectives.

5.1 Evaluation: QBE User Simulation

The general effectiveness of QBE using perceptual attributes without shared perspectives
has been shown in [LN14, LW15]. Therefore, in this section we focus on the effect the
introduction of shared perspectives has on the QBE process. As a baseline, we force our
system to only consider a single perspective (i.e., use the medoid of all perceptual tuples
resulting from reviews as the only shared perspective). This resembles the setup in [LW15],
which uses only a single tuple to represent a movie. We compare this to a version of the
system in which we consider up to 3 shared perspectives.

The artificial evaluation scenario is a as follows: choose a random start example movie, and
choose a random target movie. Then perform perform query-by-example iterations choosing
always the displayed movie which is closest to the target. As an evaluation metric, we count
the number of iterations necessary to traverse from the start example to the target. We
assume that using shared perspectives, fewer iterations are needed as the display selection
has a wider semantic spread then when using only a single perspective, since SPs can help
to ‘get out’ of dense similarity neighborhoods. For instance from “The Green Mile” to
“Tinkerbell”, there is a perspective that relates them: “The Green Mile” has a “good story
that follows the book” perspective, which leads to a display that includes “Matilda”, which
has the perspective “beautiful family movie with a message”, and the next display contains
“Tinkerbell”.

Note that this evaluation is very artificial from a semantic point of view: shared perspectives
with QBE are designed to help users who have a vague idea of the style/type/general flavor
of item they are looking for. They will not have a particular item in mind (if they had, they
could simply retrieve it using SQL). Thus, we assume that users will choose a starting
example which is in the proximity of their unclear target, and then clarify their preferences
during the query process (e.g., “I know what I am looking for as soon as I see it.”)

The basic steps for this evaluation are:

1. For the currently selected movie x, the system generates a new display with 9 movies
as described in section 3.2. When using shared perspectives, it is the 3 most similar
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movies with respect to the 3 perspectives of x. This is, the 3 movies with a shared
perspective tuple with the least cosine distance to xSP1 , 3 more for xSP2 , and 3 for
xSP3 . When not using shared perspectives, it is simply the 9 movies with least cosine
distance to the single tuple x.

2. If target movie is in display, finish. If not, select the best option (i.e., movie which is
most similar to the target) as new example movie from display

3. Repeat

Results: The average steps it takes from start to target movie for 175 different pairs of movies
is 38 when using only a single representation, and 28.03 when using shared perspectives.
Thus, shared perspectives reduce the average number of required interaction steps by roughly
30% (again, note, that in a real use case, there will be significantly fewer steps as start
movies are chosen closer to the implicit “target”). The frequency distribution of the number
of steps for this experiment is shown in Figure 3. This graph shows that by using SPs,
around 80% of pairs reach the target movie in less than 50 steps, compared to 65% with SR.
While this is an improvement, there is however also number of movie pairs for which the
simulation takes more than 175 - something that does not happen when not using shared
perspectives. This odd behavior will be investigated later in section 5.3.

Please note that these numbers seem high when compared to the best results reported
in [LN14, LW15], where the results were between 10 and 17 steps. In those works, we
employed an additional Bayesian probability user model which did not solely rely on
similarity, but also provided shortcuts to the movie which is the predicted target of the
user based on that model. Similar techniques could also be applied to shared perspectives.
However, like mentioned in those works, this is beneficial when the goal is to reach a
predefined target, which in reality is not known to user or system. Therefore in a real
application, where there is no such target, displaying items that are highly informative for
the system, like showing Terminator as similar to Finding Nemo, would be confusing to the
user.

• For evaluation, we propose a simulation with a starting and target movie to mimic the
behavior of a user.

• We compare the performance of a single representation of a movie against the multiple
shared perspectives.

5.2 User Evaluation

The purpose of this user study is to obtain some insights on the quality of shared perspectives
for querying from a user’s point of view. We do not consider this an exhaustive quantitative
analysis, but rather a quicker exploration to obtain an intuition on the quality of the approach.
Especially, we are interested in how useful different perspectives are perceived, and what
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Figure 3: Histogram of Steps with 175 pairs

their semantics could be (remember: shared perspectives result from semantically clustering
reviews. Thus the question is: What is the commonality of the reviews which contributed to
a perspective? Is it a meaningful semantic?).

To this end, we asked seven participants to interact with the system and rate how useful
a perspective is based on the constructed QBE display. The participants include people
from 18 to 55 years old, from different countries and education levels. The setup of the
experiment is the following:

• We sent a standalone desktop application to the study’s participants

• The application implemented the QBE workflow as outlines in section 3.2, with a
display of 9 movies (3 for each shared perspective) in each iterations step.

• We showed the users the text of the medoid review which represents a perspective
(see figure 4 for a user interface example)

• Instructions for the participants were to rate for each perspective how well the shown
review snippet represents the selected movies on a 3-point scale: well represented
(score 2), somewhat represented (1), not represented well (0).

All 7 participants evaluated the same set of 7 displays. For each shared perspective thus
evaluated, we computed a “usefulness score” based on the user feedback. Here, some
perspectives got higher ratings, like for “Real Steel” which had a perspective connecting to
“The Last Starfighter” which can be summarized as “awesome sci-fi for the whole family”,
or “My Dog Skip” related to “P.S. I Love You”, “The Good Life of Timothy Green” and
“Bee Movie” because “My wife and I loved this movie. A heart warming story” with a
usefulness score of 1.5. However, even when looking at this small-scale study involving only
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Figure 4: User Interface Prototype

few users and example displays, some problems became apparent: “The Good, The Bad and
The Ugly” relates to “The Towering Inferno”, “Shane” and “The Uninvited” because “The
digital restoration looks really great”. This perspective was not perceived as useful with a
score 0.5. This problem was already encountered in [LW15]. However, in that work, such
reviews affected the whole item representation. However, when using shared perspectives, it
usually results in only one bad perspective, while typically one or two useful ones remain.
As such, this problem is less severe for shared perspectives than it was for [LW15], but still
this is an unsatisfying result.

As an additional exploration, we provided users with the option to label shared perspectives
with a few keywords. Even though we obtained only a smaller number of labels this way,
some of them were quite descriptive: all participant for example noted that the second
perspective for “The Jungle Book” represents “Disney classics”, or that the first perspective
for “The Good, the Bad and the Ugly” should be something along the lines of “great western
with very good actors”. In contrast, the first perspective in “The Green Mile” received
labels along the lines of “good acting”, or “good story” with no clear con census. Other
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perspectives received no labels at all. In our future works, we will extend this preliminary
inspection with a larger scale user study to provide reliable insights into the semantics of
shared perspectives. For now, we remain confident that while not all perspective have a
discernible meaning, many actually have one.

• In addition to the simulation for evaluation, a user-study is conducted to rate the
usefulness of shared perspectives to find similar movies.

• The usefulness is for each shared perspective, and can be defined as: how good is
xSP1 to say that movie x is related to movie w because of wSP2, to movie y because
of ySP1 and z because of zSP1.

5.3 Predicting Usefulness Scores

Motivated by the results in the last section, we tried to look into the problem of not useful
shared perspectives. The goal of this to learn from user feedback, and predict for each
perspective a usefulness score.

In a production system, this could be a continuous process where users are given the
option to down-vote a perspective as not useful, and the system is considering this feedback
when computing usefulness scores. Then, perspectives could be presented ordered by their
usefulness, or skipped all together if deemed very unuseful. Also, the calculation of all
similarities could be modified by usefulness.

We manually analyzed all shared perspectives involved in the last experiment. For those,
non-useful perspectives are closely similar to perspectives of a large number of movies. On
the other hand, useful perspectives are only similar to perspectives of a smaller number
of movies. This can be justified by the following intuition: useful perspectives should be
specific to that movie, and only few other movies should share that perspective, like being
a “heart-warming children movie” or being a “Disney classic". If a perspective (i.e., a
particular topic featured in reviews) is present in a large number of movies, it is likely not
useful. This would for example be the case for “My packaging was damaged” or “Image
quality is grainy due to HD upscale” - such sentiments can afflict any movie no matter it’s
actual qualities or content.

To capture this intuition, we calculate the Pearson Median Skewness (PMS) score, also
called Second Skewness Coefficient of a given shared perspective tuple to all other shared
perspective tuples in the database, calculating a usefulness score for that perspective based
on the difference between mean and median of PMS.

We extended the simulation experiment from section 5.1 by adjusting the similarity
calculation with usefulness scores, thus de-emphasizing unuseful similarities. This improved
the number of simulation steps from 38 when using only a single representation, to 28.03
when simply using shared perspectives, to 26.05 when using shared perspectives weighted
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by usefulness. More importantly, while this average improvement is quite small, extreme
outlier cases saw improvement: e.g., one pair of movies which took 82 steps now only takes
41; and others went from 205 to 170.

This result motivates us to investigate this approach more thoroughly in our future works,
improving the way how we predict usefulness in a larger setup with more users and feedback.
Especially, the calculation of usefulness scores should relate to actual user feedback instead
of being based on intuitions as discussed in this section. In addition, modelling and
calculating the score of perspectives can be used to remove noisy reviews, a current problem
with applications of web-data.

• Leveraging the usefulness scores obtained before, a function of usefulness was
modelled to then calculate the scores of all shared perspectives in the corpus.

• The scores are then evaluated in a simulation similar to Section 5.1 with promising
results.

6 Conclusions

In this paper, we discussed the challenge of representing experience items like movies, books,
or music. For such items, perceptual attributes should be modelled, which is an inherently
difficult task during the design phase but also later when items need to be described with
respect to these properties. To underline this claim, we presented a brief study with 180
students who were asked to model perceptual properties for movies. This task was shown to
be hard, and the results between participants were not very consistent.

Therefore, in this paper we proposed the use of latent perceptual attributes which are
automatically mined from user judgments like ratings of reviews. While such latent
attributes have no explicit human-understandable semantics, they can be effectively used for
query-by-example navigational queries. However, previous works revealed a shortcoming
with this approach: typically, each item is represented using a single tuple. Especially when
highly opinionated and polarized social judgments are used to generate the latent perceptual
attributes, performance suffers as the resulting tuple represents neither viewpoint well. To
rectify this, we introduced the concept of shared perspectives, perceptual tuples representing
a dominant consensual point of view for an item. Each database item can have several shared
perspectives, thus striking a balance between aggregating social judgments for storage and
query efficiency, and still retaining conflicting opinions for better semantic representatives
and querying.

We discussed our prototype implementation for a query-by-example system exploiting
shared perspectives, and showed evaluations with synthetic queries but also a human user
study. Based on the feedback gathered during evaluations, we suggested an improvement of
our approach which takes the semantic usefulness of a perspective into account.
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For future improvements, we aim at applying our approach on real-live problems in
additional domains, as for example on large music repositories. Furthermore, the QBE query
processing process can benefit from additional tuning by for example combining also the
objective structured meta-data into the similarity measures, and also including additional
user modelling to allow users to discover desired items even quicker (as e.g, in [LN14]).
Also, a large-scale user study into the semantics of shared perspectives is planned.
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Graph Data Transformations in Gradoop

Matthias Kricke1, Eric Peukert1, Erhard Rahm1

Abstract: The analysis of graph data using graph database and distributed graph processing systems
has gained significant interest. However, relatively little effort has been devoted to preparing the graph
data for analysis, in particular to transform and integrate data from different sources. To support such
ETL processes for graph data we investigate transformation operations for property graphs managed
by the distributed platform Gradoop. We also provide initial results of a runtime evaluation of the
proposed graph data transformations.

Keywords: Graph analytics; Big Data; Graph transformations; Data integration

1 Introduction

The flexible and scalable analysis of large amounts of graph data has gained significant
interest in the last decade and is supported by graph database systems (e.g., Neo4j), graph
extensions in relational DBMS and a growing number of distributed platforms including
those based on Apache Spark and Flink like GraphX, Gelly or Gradoop [Ju17a]. A largely
neglected topic, however, is the support for ETL-like operations to prepare the graph data
for analysis which requires to transform data sources into the supported graph format, to
consolidate different graphs and to integrate them into a combined graph. As in traditional
analysis platforms these steps can be highly complex and easily require the majority of time
for graph analytics.

We have begun to investigate ETL and data integration for graph data for (extended)
property graphs managed by the distributed open-source graph processing platform Gradoop
[Ju16, Ju18]. Gradoop provides already different connectors to import data from relational
databases or CSV files into property graphs. Furthermore, we provide initial match
approaches within the FAMER system [SPR17, SPR18] to match and cluster graph vertices
derived from multiple data sources. In this paper, we propose additional Gradoop operations
to transform graphs to facilitate their integration with other graphs or to make them
better suitable for analysis. For example, a bibliographic network with publications and
their authors might have to be transformed for an easier analysis of co-authorships, e.g.,
by generating a graph with author vertices and co-authorship edges only. The proposed
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operations are not only relevant for Gradoop but should be useful for other platforms
supporting property graphs.

We thus extend Gradoop with a number of generic transformation operations that can be used
to define advanced graph transformations on property graphs. Each graph transformation
can implicitly trigger a series of low-level graph changes (e.g. vertex/edge/property additions
and deletions) that do not need to be defined by the user. Composite transformations can
be expressed from basic ones and the transformations we propose are implemented with
Apache Flink for parallel execution and good scalability to large graphs.

After a discussion of related work, we briefly introduce Gradoop and outline the overall
data integration process. We then describe and illustrate the new operations for graph data
transformation. In Section 5, we present initial results of a runtime evaluation before we
conclude.

2 Related Work

Graph preparation and transformation have received little attention in research so far
especially with reference to integration and analysis of property graphs. On the other
hand, there have been some algebraic, declarative and imperative approaches for graph
transformation some of which have been considered for graph data processing. Algebraic
approaches have been used for model transformation in software engineering [Lö93, Eh97]
and more recently for the parallel execution with the vertex-centric processing model of
Pregel [KTG14, Ar10, Ma10] or Map Reduce [Be15].
Declarative approaches rely on a declarative language like Cypher and Sparql to query,
construct and transform graphs. Cypher and Sparql provide only limited support for graph
transformation with its RETURN statement (Cypher) and CONSTRUCT statement (Sparql)
but new language proposals like Open Cypher [Gr18] and G-Core [An18] provide extensions
to express graph grouping and aggregations. BigGra [TH17] translates an SQL-like query
language called UnQL+ to the Pregel processing model in GraphX. In this approach
navigational queries and transformations are expressed as so-called structural recursions
which seem complex to be defined by a user. Some additional proposals provide a declarative
specification of graph extraction from relational databases, for example expressed with
a Datalog-based language as done in GraphGen [XKD15] or Table2Graph[Le15] that is
based on MapReduce.
Imperative methods provide languages for a step-wise definition of graph transformations. A
well known representative is Gremlin/TinkerPop [Ro15] offering a set of low-level operators
for navigation and traversal of graphs and for adding or removing vertices and edges. The
GraphBuilder tool [Ja13] mainly focuses on the construction of graphs rather than their
transformation based on the extraction of values from data sources. The support for the
actual transformation is limited to filters. GraphGen [XD17], GraphX and Gelly[KVH18]
also provide only limited support for transformation, letting the user add edges, vertices and
attributes manually for each necessary transformation.
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name: Bob
interests:     
 [Soccer, Music]
lives_in: Leipzig

Load Transform Match Integrate

knows

Person 
name: Alice
interests: [Music]
lives_in: Leipzig

name: Bob
interests: 
  [Soccer, Music]
lives_in: Leipzig

knows

similar

Person 

name: Bob
company: Sunshine Ltd

Person 

name: Bob
interests: [Soccer, Music]
lives_in: Leipzig
company: Sunshine Ltd

knows
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 Sunshine Ltd
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name: Bob

name: Alice
interests: [Music]
lives_in: Leipzig

Person 

Person 

name: Alice
interests: [Music]
lives_in: Leipzig

Person 

Person 

Fig. 1: Sample graph data integration pipeline combining person data from a social network and a
company database.

3 Background

3.1 Graph Data Model

Gradoop [Ju16, Ju18] is based on an extended version of the property graph model
(PGM) [RN10, RN12] which is widely used in graph database systems (e.g. Neo4j) and
parallel processing systems such as Apache Spark GraphX. A property graph is a directed
multigraph supporting properties and type labels for both vertices and edges. The properties
are represented by key-value pairs (e.g. name : Bob). Properties are defined at the instance
level and no schema definition is necessary. In extension to the PGM Gradoop supports
storage and analysis of multiple property graphs called logical graphs that can also have a
label and properties. Properties can be atomic (string, numeric, boolean, etc.) or collection-
valued, e.g. lists. Gradoop also supports a number of generic operators on graphs and graph
collections (for pattern matching, subgraph filtering, etc.) that can be used within workflows
for graph analysis. The workflows can be specified in a declarative domain-specific language
called GrALa. The implementation of the Gradoop operators is built on Apache Flink to
achieve a parallel execution and scalability to large graphs.

3.2 Graph Data Integration

Figure 1 shows a typical data integration pipeline to integrate several sources into a graph for
further analysis. Initially, already existing graphs are loaded or data from different sources
such as databases or files of different formats (e.g. CSV, JSON, XML) are transformed
into property graphs. The individual graphs may then have to be transformed to achieve a
similar graph structuring and to facilitate further integration steps. In the example of Figure
1, we simplify the second graph by transforming the company vertices into properties of
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Operator GrALa
Property To Vertex graph.propertyToVertex(label, propertyName, newLabel,

newPropertyName, edgeConfig, condense)

Vertex to Property graph.propagateToNeighbor(label, edgeConfig)

Vertex To Edge graph.vertexToEdge(vertexLabel, newEdgeLabel)

Edge To Vertex graph.edgeToVertex(edgeLabel, newVertexLabel,

edgeLabelSourceToNew, edgeLabelNewToTarget)

Connect Neighbors graph.connectNeighbors(vertexLabel, edgeDirection,

neighborVertexLabel, newEdgeLabel)

Invert Edge graph.invertEdge(label, newLabel)

Cluster Fusion graph.fuse(fusionConfig)

Grouping graph.groupBy(vertexGroupingKeys, edgeGroupingKeys)

Cypher Construct graph.query(patternQuery, constructionQuery)

Tab. 1: Overview of structural graph transformation operators in Gradoop. Italic operations are new.

person vertices. To integrate the different graphs, we have to identify matching vertices
and edges that need to be fused together. Given that the graphs may contain vertices and
edges of many different types this is typically a complex process that is currently under
investigation. What has already been implemented is the FAMER system [SPR17, SPR18]
to link and cluster equivalent entities from multiple graphs, e.g., the vertices for the same
person in the example. Clustered entities are fused together to create a single vertex in the
integrated graph with the combined property values (e.g., for person Bob in the example).
The integrated graph can be further transformed to support specific analytical purposes.

4 Graph Transformation

Table 1 gives an overview on the implemented transformations in Gradoop that change the
graph structure. Additional simpler transformations include property transformations to
change properties based on an UDF or basic functions like string splitting or concatenation.
Due to space restrictions we only describe the first five transformations in more detail in the
following. The grouping and Cypher operations have already been described in earlier work
[JPR17, Ju17b]. Grouping allows us to determine structural graph aggregations with super-
vertices and super-edges summarizing several vertices and edges based on common label
and property conditions. Gradoop also has initial Cypher support to specify construction
patterns such that the found instances for a query pattern can be transformed. We omit the
description of the invert edge operation since it is simple and only inverts the edge direction
plus the label of the edge. The cluster fusion operation combines several equivalent vertices
into one and takes the union of different properties and combines different values for the
same properties based on a specified function, e.g., to prefer the longest string or values
from preferred sources (similar to fusion operations for relational data [BN09]).
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Person 
name: Bob
interests: [Soccer, Music]

Person 

name: Alice
interests: [Music]

Interest 
name: Music

interested_in interested_in

interested_in
Interest 

name: Soccer

Person 
name: Bob
lives_in: Leipzig

Person 

name: Alice
lives_in: Leipzig

City 
name: Leipziglives_in lives_in

Fig. 2: PropertyToVertex examples for atomic (top) and collection (bottom) properties. Newly
created/removed elements are shown in green/red, respectively.

In general, it is desirable that one can reverse the effect of graph transformations unless
they lead to a reduced information such as deletes or grouping. We therefore have pairs of
transformations and their inverse operations (propertyToVertex and VertexToProperty,
EdgeToVertex and VertexToEdge). Furthermore we have to deal with both atomic and
collection-based properties as well as with the creation / avoidance of duplicate information.

4.1 Property to Vertex & Vertex to Property

Property extraction is one of the most basic transformations and expressed in GrALa
as: graph.propertyToVertex(label, propertyName, newLabel, newPropertyName,
edgeConfig, condense). It applies to all vertices of a given label and for the values
of property propertyName it creates new vertices with label newLabel and property
newPropertyName. For collection-based values a vertex is created for every value in the
collection. Note that this operator is very beneficial to transform data imported from data
files (e.g., in CSV format) into a property graph. In this case, one can generate a vertex
per input record and then generate additional vertices and connecting edges for selected
properties by applying propertyToVertex.

Since the same property value can occur many times, the creation of new vertices can lead
to many duplicate vertices. We can thus choose to avoid such duplicate vertices (parameter
condense). Such vertices can thus be connected to multiple originating vertices and thus
represent shared information. The deduplication with the condense option is limited to
equal values and thus only covers clean data sources. Hence, an additional deduplication for
the created vertices may become necessary to fuse equivalent vertices with different names.

The user has several options to connect a newly created vertex to the original vertex with
parameter edgeCon f ig: no edge, origin to new, new to origin and bidirectional. If an edge
is created a user-defined label is set which is defined in the edgeCon f ig. The upper example
in Fig. 2 shows the extraction of the atomar property lives_in. Alice and Bob are living
in the same city and therefore the City vertex is deduplicated based on the value of the
property name. All vertices Leipzig originates from are the start point of an edge with the
label lives_in while the City vertex is the target of these edges. The edgeCon f ig for this

Graph Data Transformations in Gradoop 197



16 Matthias Kricke, Eric Peukert, Erhard Rahm

name: NewYearInvite
promo_invited 

Person 

name: Bob
Person 

name: Alice
Promotion 

name: NewYearInviteinvited participated

Fig. 3: The edge promo_invited is replaced (red) by the Promotion vertex with two edges (green) by
using the Edge to Vertex operator. The Vertex to Edge operator inverts this operation.

example is: (label: lives_in; direction: origin to new). For the second example of Figure 2,
we have a shared interest in Music so that this new vertex is connected to both Bob and
Alice. This representation is obviously much better suited to analyze shared interests than
the use of interest properties.

The inverse operation vertex to property is relatively straight-forward. Here label and
edgeCon f ig are used to select the vertices to transform as well as the target vertices where
the new properties should be added. As a result we can reverse both transformations shown
in Figure 2.

4.2 Edge to Vertex & Vertex to Edge

The Edge to Vertex operator is beneficial for already existing graph structures.
It creates a new vertex and two new edges for every edge with the desired la-
bel in the graph. GrALa code: graph.edgeToVertex(edgeLabel, newVertexLabel,
edgeLabelSourceToNew, edgeLabelNewToTarget). For the example in Figure 3 the
GrALa call would be: graph.edgeToVertex(promo_invited, Promotion, participated,
invited). The operator turns the edge promo_invited between Alice and Bob with all its
properties into a vertex and adds two user-defined edges.

The intuitive counterpart to Edge to Vertex is Vertex to Edge. It converts vertices
with a specified label into edges between adjacent vertices. In GrALa it is defined as:
graph.vertexToEdge(vertexLabel, newEdgeLabel). To identify the necessary edges we
select the "middle vertex" v with the specified label vertexLabel (which is to be replaced)
and compose every direct neighbor with an edge going to v with every neighbor with an
outgoing edge from v. With the Vertex to Edge operation we can revert the example given in
Figure 3. The sole entry in the source set is Alice and in the target set Bob. Hence, an edge
is created between Alice and Bob with the new label and all properties.

4.3 Connect Neighbors

The operator Connect Neighbors is designed to create relations between same-type ver-
tices sharing a common neighbor vertex, e.g., employees of the same company (Fig.
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Company 
name: Sunshine Ltd 

Person 
name: Marc

Person employed_atemployed_atname: Bob

colleagues
name:Sunshine Ltd

Fig. 4: The example shows two Persons that got connected by there shared Company.

4) or authors of the same publication. In GrALa, the operator call is expressed by us-
ing: graph.connectNeighbors(vertexLabel, edgeDirection, neighborVertexLabel,
newEdgeLabel). Here, vertexLabel is the label of the central (shared) vertex and
neighborV ertexLabel the label of the vertices to be connected. Parameter edgeDirection
is interpreted with respect to the shared vertex and can either be incoming, outgoing or
undirected. For each pair of indirectly connected vertices of type neighborV ertexLabel a
new bidirectional edge of type newEdgeLabel is created. This is in contrast to the Vertex to
Edge operation that creates directed edges and can be applied to vertices between neighbors
of different type as shown in the example of Fig. 3.

Figure 4 shows an example where Bob and Marc share the same Company vertex. Therefore,
the vertex and the two edges pointing to it are removed in favor of the colleagues edge
which retains the properties of the removed vertex. If several edges are created, each of those
edges is containing the property set of the removed vertex. The operation can also be used
to create a co-author network from a publication network as discussed in the introduction.

5 Evaluation & Discussion

For the evaluation of the operators we used Flink version 1.5.0, Gradoop version 0.4.1 and
a subset of the OpenAcademicGraph (as of 2017-06-09, MAG files 1 - 59)[Si15, Ta08].
OpenAcademicGraph contains two bibliographic datasets: the MAG dataset with 166
million and the the AMiner dataset with 155 million publication records. Each line in the
datasets contains the Json representation of one publication.

Our subset contains 60 million publication records from the MAG dataset and comprises
102,5 GB of unpacked data. We read the data with the JsonDataImport of Gradoop that
resulted in a so-called Initial evaluation dataset of 60 million vertices. However, some of
our operators (Edge to Vertex, Connect Neighbors) require the data to already contain edges
and relations between vertices. We thus created a second dataset called Extended using the
PropertyToVertex operation. We extracted the properties author, affiliation, keywords and
field of study all with condense option activated. This resulted in 100 million vertices and
74 million edges. Note that this graph may still include some deduplication problems not
covered by PropertyToVertex, e.g., due to different variations of author or affiliation names.

We executed our benchmark operations on a Shared Nothing cluster of the Leipzig University
Computing Center. We used 9 nodes of the cluster where each had 2 sockets equipped with
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Atomic Property Extraction Collection Property Extraction
Configuration min average max min average max

no edge, no condense 821s 838.2s 857s 851s 866.1s 894s
no edge, with condense 829s 846.7s 875s 853s 873.8s 899s

create edge, no condense 848s 853.3s 860s 910s 1066.7s 1235s
create edge, with condense 924s 940.6s 955s 905s 927.1s 955s

Tab. 2: Runtimes of atomic and collection property extraction.

6 core CPUs (Intel Xeon E5-2620 v3, 2.4 GHz, supports Hyperthreading), 128GB RAM,
6 SATA hard disks with 4 terabyte each and 10 Gigabit/s Ethernet interface. One node
was designated to be the master node while all others where configured to work with 96
task executors in total (12 each). Each tested operator was executed at least 10 times and
measurements contain I/O.

Table 2 shows the runtimes of the PropertyToVertex operator for atomic and collection-based
property extraction. We consider the impact of whether or not edges are created between
newly created and original vertices as well as whether or not property values are deduplicated
(condense options). For the atomic case, we consider the venue properties and for the
collection-based extraction we use the FoS properties (Field of Study) of publications. We
observe that there are mostly only small differences between atomic and collection-based
extraction. In the atomic case 22 million venue vertices and edges are created without
deduplication and only 10 million vertices with deduplication. The collection-based property
extraction created 40 million FoS vertices and edges without and 12.5 million vertices
with deduplication. The highest runtime is in the collection-based scenario where more
than 50 million new graph elements are created. Deduplication with the condense options
typically incurs only a small additional runtime. For the collection-based extraction it is
even faster since the much lower number of vertices to be created more than outweighed the
deduplication effort.

Operator minimum average maximum
Vertex to Property 1449s 1528.5s 1635s

Vertex to Edge 1055s 1088s 1147s
Edge to Vertex 69s 72,3s 76s

Connect Neighbors 1964s 2148.6s 2296s
Invert Edges 63s 66.65s 70s

Tab. 3: Runtimes of structural transformations.

The evaluation of the remaining transformations are based on the second dataset and Table 3
shows the resulting runtimes. We observe that edge-based transformations achieve the lowest
runtimes favored by a small number of properties for edges. This makes communication in
the cluster and creating new objects less expensive. Furthermore, the transformations can be
implemented using only the vertex Ids. In contrast, operators like Vertex to Edge, Connect
Neighbors or Vertex to Property rely on the graph structure and the whole graph needs to
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be loaded. ConnectNeighbors turned out to be most expensive. For our evaluation this
operator creates the co-author connections between authors of the same paper.

6 Conclusion & Future Work

We proposed structural transformation operations for property graphs with simple or
collection properties to facilitate data integration and graph analysis. The operations have
been implemented with Apache Flink and added to the open-source platform Gradoop. An
initial evaluation for bibliographic data showed the applicability and relative efficiency of
the operators. In future work we will further evaluate and optimize graph transformation
operators and their use in real application scenarios as well as for graph-based data
integration, in general.
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Efficient Bounded Jaro-Winkler Similarity Based Search

Jan Martin Keil1

Abstract: The Jaro-Winkler similarity is a widely used measure for the similarity of strings. We
propose an efficient algorithm for the bounded search of similar strings in a large set of strings. We
compared our approach to the naive approach and the approach by Dreßler et al. Our results prove a
significant improvement of the efficiency in computation of the bounded Jaro-Winkler similarity for
querying of similar strings.
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1 Introduction

The Jaro-Winkler similarity is a widely used measure for the similarity of strings. It was
developed for the detection of duplicated persons in a dataset based on their name [Wi90].
Compared to other measures it provides both good results and fast computation [CRF03].
Nevertheless, the sequential calculation of the Jaro-Winkler similarity for the search of
similar strings in large sets of strings is still a time-consuming task. Therefore, an optimized
algorithm is needed for time-sensitive use cases like real time duplicate detection during
data input, real time identification of named entities in input text (named entity linking), or
real time fuzzy search.

We propose an optimized algorithm for the search of similar strings in a large set of strings.
This work is structured as follows: In Sect. 2, we explain the Jaro-Winkler similarity and
give an overview of related work, followed by the description of our approach in Sect. 3. In
Sect. 4, we present the empirical evaluation of our approach. Finally, we conclude our work
in Sect. 5.

2 Related Work

In this section we introduce the Jaro-Winkler similarity as well as other work on the efficient
computation of this similarity measure.
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2.1 Jaro-Winkler Similarity

The Jaro-Winkler similarity, often wrongly called Jaro-Winkler distance, is a similarity
measure for two strings proposed in [Wi90]. It is based on the Jaro similarity

Jaro(s1, s2) =


1
3 ·

(
m
|s1 | +

m
|s2 | +

m−t
m

)
: m > 0

0 : otherwise
(1)

where |s1 |, |s2 | are the lengths of both strings, m is the number of matching characters,
and t is the number of transpositions. Matching characters are common characters in both
strings with a maximum distance of w = max( |s1 |, |s2 |)

2 − 1 [DN17; Wi90]. Some sources
give an alternative definition of w = min( |s1 |, |s2 |)

2 [CRF03]. A character matches at most one
character in the other string, selected by picking the first candidate during a nested iteration
over both strings. The number of transpositions t is half the number of not equal positions in
the concatenated strings of all matching characters in order of original occurrence [CRF03;
Wi90]. Contrary to frequent assumptions, t is not equal to the number of permutations that
is required to align the order of the matching characters. For example, t(abc, bca) = 1.5,
even though two permutations are required to align the matching characters abc and bca.

The Jaro-Winkler similarity adds a boost for equal prefixes to high Jaro similarity values:

JaroWinkler(s1, s2) =


Jaro(s1, s2) + l · p · (1 − Jaro(s1, s2)) : Jaro(s1, s2) ≥ bt
Jaro(s1, s2) : otherwise

(2)

l is the length of the common prefix of both strings up to a maximum lbound , bt is the boost
threshold, p is the prefix scale, and lbound · p ≤ 1 must holds true. Implementations typically
use the values lbound = 4, bt = 0.7, and p = 0.1 as in the original implementation2.

2.2 Efficient Jaro-Winkler Similarity Computation

Dreßler et al. proposed an optimized algorithm to reduce the computation effort for pairwise
similarities of strings from two large sets of strings given a similarity threshold [DN17].
They reduced the number of Jaro-Winkler similarity computations by applying filters to
the pairs of strings. The first filter determines an upper bound of the Jaro similarity based
on the lengths of both strings. The second filter determines an upper bound of the Jaro
similarity based on the maximum number of matching characters using the character
histograms of both strings. This approach provides an enormous performance improvement
compared to a naive implementation for the matching of two large sets of strings. Therefore,
it is useful for the matching of datasets or the detection of duplicates. However, if the task is
to process user input or queries, i.e. compare one or a few strings with a large set of strings,

2 https://web.archive.org/web/19990822155334/http://www.census.gov:80/geo/msb/stand/strcmp.c
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a naive implementation outperforms this approach due to its overhead. Thus, this approach
is not appropriate for the processing of user input or queries.

A recently published approach by Wang et al. addresses this issue [WQW17]. They developed
an index for the Jaro-Winkler similarity search that contains special string signatures. Based
on a lower bound of the number of matching characters and these signatures, they select
candidate strings that might be similar to a query string. Further, the order of the signatures
in the index allows to abort the scan of the remaining index at a certain point.

3 Approach

We propose another Jaro-Winkler similarity algorithm, which reduces the computational
effort for the search of strings (terms) that are similar to a single string s1 (query) in a
large set of strings S2 (terminology) given a similarity threshold θ. The terminology will
be stored in a customized PATRICIA tree [Mo68] that additionally stores at each node
the string lengths of all subjacent leaf nodes. This enables to skip irrelevant terms by
skipping whole branches of the tree. Compared to a trie it avoids node chains without
junctions at the bottom. This reduces the number of similarity computations. The maximum
distance between matching characters (w) and thereby the number of matching characters
(m) depends on the lengths of both strings. Therefore, the tree will be traversed once for
each length of terms in the terminology, as in List. 1. Nodes without subjacent leaf nodes
with this length will be ignored. Many traversals will stop at the root node, due to of the low
maximum Jaro-Winkler similarity of strings with a notable difference of lengths.

During the traversal at each node the maximum Jaro-Winkler similarity will be computed
based on the query string s1 and the known prefix s∗2 of the term strings, as in List. 2. If the
maximum Jaro-Winkler similarity is less then the threshold θ, the traversal of the current
branch will be skipped, as in line 11 of List. 2. This requires a function for the maximum
Jaro-Winkler similarity of a string s1 and all strings S∗2 with prefix s∗2 and length |s2 |.
JaroWinkler, Jaro, l, m, and t depend on s1 and s2. Given max

s2∈S∗2
(Jaro) ≥ bt , 0 ≤ l · p ≤ 1,

and 0 ≤ Jaro ≤ 1, then

max
s2∈S∗2

(JaroWinkler) = max
s2∈S∗2

(Jaro+l · p · (1 − Jaro)) (3)

= max
s2∈S∗2

(1 − 1 + Jaro+l · p − l · p · Jaro) (4)

= max
s2∈S∗2

(1 − (1 − Jaro) · (1 − l · p)) (5)

= 1 − (1 − max
s2∈S∗2

(Jaro)) · (1 − max
s2∈S∗2

(l) · p) (6)
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Therefore, the maximum Jaro-Winkler similarity is

max
s2∈S∗2

(JaroWinkler) =


1 −
(
1 − max

s2∈S∗2
(Jaro)

)
·
(
1 − max

s2∈S∗2
(l) · p

)
: max
s2∈S∗2

(Jaro) ≥ bt

maxs2∈S∗2 (Jaro) : otherwise
(7)

The function for the maximum Jaro similarity is

max
s2∈S∗2

(Jaro) =


1
3 · *,

max
s2∈S∗2

(m)

|s1 | +
max
s2∈S∗2

(m)

|s2 | + 1 −
min
s2∈S∗2

(t)

max
s2∈S∗2

(m)
+- : max

s2∈S∗2
(m) > 0

0 : otherwise
(8)

List. 1: Search Initialization
1 FUNCTION search(s1,S2,θ)
2 treeRoot := tree(S2)
3 result := ∅
4 FOREACH lengths(treeRoot) AS |s2 |
5 w :=

max(|s1 |, |s2 |)
2 − 1

6 s := newState()

7 s.minM := 0

8 s.minT := 0

9 s.maxL := min(4, |s1 |, |s2 |)
10 s.saveCommonChars1 := 0

11 s.assigned1 := boolean[ |s1 |]
12 s.assigned2 := boolean[ |s2 |]
13 s.commonChars2 := ""

14 traverse(treeRoot,s1, |s2 |,s∗2,θ,w,s,result)

15 RETURN result

List. 2: Tree Traverse
1 FUNCTION traverse(node,s1, |s2 |,s∗2,θ,w,s,&result)

2 FOREACH characters of node AS c

3 append(s∗2,c)
4 updateMaxL(s1,s

∗
2,w,c,s)

5 updateMinM(s1,s
∗
2,w,c,s)

6 updateMinT(s1,s
∗
2,w,s)

7 updateMaxM(s1,s
∗
2,w,s)

8 IF |s2 | = |s∗2 |
9 finaliseMinT(s1,s

∗
2,s)

10 maxJWS := using Eq. (7)

with |s1 |, |s2 |,s.maxL,s.maxM,s.minT
11 IF maxJWS ≥ θ
12 IF |s2 | = |s∗2 |
13 add(result,<s∗2,maxJWS>)
14 ELSE
15 FOR child ∈ children(node)

16 IF |s2 | ∈ lengths(child)

17 sc := deepCopy(s)

18 traverse(child,s1, |s2 |,s∗2,θ,w,sc,result)

At each traversed node maxs2∈S∗2 (l), maxs2∈S∗2 (m), and mins2∈S∗2 (t) will be computed. The
effort can be reduced by reusing results from the parent node and updating them according
to the new s2 characters. For each new character it will be checked, if maxs2∈S∗2 (l) needs
to be reduced, as in List. 3. To compute maxs2∈S∗2 (m), for each new character mins2∈S∗2 (m)
needs to be updated, as in List. 6: Each new s2 character will be compared to the not
matched s1 characters in range. The first matching s1 character according to reading order
will be selected and mins2∈S∗2 (m) will be updated. maxs2∈S∗2 (m) will then be computed once
per node by adding the number of possible further matches to mins2∈S∗2 (m), as in List. 7.
mins2∈S∗2 (t) can only be computed for s1 characters that are already outside of the range of
new s2 characters, as new matching characters of s1 might be located before earlier ones.
Therefore, for each new s2 character mins2∈S∗2 (t) can be updated regarding s1 characters
at a new save position, as in List. 4. When s2 is complete, t can be updated regarding the
remaining characters of s1, as in List. 5. This algorithm overestimates maxs2∈S∗2 (Jaro) if t
and m can not achieve their extreme values at the same time. For example, for s1 = abcd and
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s2 = b␣␣␣ the values are maxs2∈S∗2 (m) = 4 and mins2∈S∗2 (t) = 0, but maxs2∈S∗2,t=0(m) = 3
and mins2∈S∗2,m=4(t) = 1.

List. 3: Computation of maxs2∈S∗2 (l)

1 FUNCTION updateMaxL(s1,s
∗
2,w,c,s)

2 IF |s∗2 | ≤ lbound AND s1[ |s∗2 | − 1] , c

3 s.maxL := |s∗2 | − 1

List. 4: Computation of mins2∈S∗2 (t)

1 FUNCTION updateMinT(s1,s
∗
2,w,s)

2 i := |s∗2 | − w − 1
3 IF 0 ≤ i AND i < |s1 |
4 IF s.assigned1[i]

5 IF s1[i] , s.commonChars2[s.saveCommonChars1]

6 s.minT := s.minT + 0.5

7 s.saveCommonChars1 := s.saveCommonChars1 + 1

List. 5: Final computation of t

1 FUNCTION finaliseMinT(s1,s
∗
2,w,s)

2 FOR i:= max(0, |s∗2 | −w |) TO min( |s1 |, |s2 |+w)−1
3 IF s.assigned1[i]

4 IF s1[i] , s.commonChars2[s.saveCommonChars1]

5 s.minT :+= s.minT + 0.5

6 s.saveCommonChars1 := s.saveCommonChars1 + 1

List. 6: Computation of mins2∈S∗2 (m)

1 FUNCTION updateMinM(s1,s
∗
2,w,c,s)

2 FOR i := max(0, |s∗2 | − w − 1) TO
min( |s1 |, |s∗2 | + w) − 1

3 IF not(s.assigned1[i]) AND s1[i] = c

4 s.assigned1[i] = true

5 s.assigned2[ |s∗2 | − 1] = true

6 append(s.commonChars2,c)

7 s.minM := s.minM + 1

8 BREAK

List. 7: Computation of maxs2∈S∗2 (m)

1 FUNCTION updateMaxM(s1,s
∗
2,w,s)

2 assignable1 := 0

3 FOR i:= max(0, |s∗2 | − w − 1) TO
min( |s1 |, |s2 | + w) − 1

4 IF not(s.assigned1[i])

5 assignable1 := assignable1 + 1

6 assignable2 := |s2 | − |s∗2 |
7 s.maxM : = s.minM + min(assignable1,

assignable2)

The underlying strategy of our approach as well as the approach by Wang et al. is the early
termination of the similarity computation for not similar strings. However, our approach
successively approximates the similarity and extensively reuses earlier results. Conversely,
the approach by Wang et al. once filters the strings by a rough upper bound of the similarity
before computing the exact similarity. Both approaches skip computations for strings based
on the intermediate results for other strings.

4 Evaluation

For the evaluation we used a Java implementation of each algorithm. Our implementation
is publicly available3 and was used in version 0.1. For the algorithm by Dresler et al. we
used their implementation4. To avoid a bias, we added a few modifications5, including the
removal of a parallel execution management overhead during serial execution, and correction
of bugs that skip parts of the result. While some of the changes decrease the runtime of
the implementation, others increased them. However, to the best of our knowledge, the

3 https://mvnrepository.com/artifact/de.uni_jena.cs.fusion/similarity.jarowinkler/0.1.0

4 https://github.com/kvndrsslr/SemanticWeb-QuickJaroWinkler

5 https://github.com/fusion-jena/QuickJaroWinkler
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modifications did not add any unnecessary increase of the runtime. For the naive algorithm
we used the Jaro-Winkler similarity implementation provided in the Apache Commons Text
library6 version 1.4. To correct the computation results we added a few modifications7,
which became part of the 1.5 release of the library. A comparison to the approach by Wang
et al. was not possible. The approach is not described in sufficient detail in the paper to
reimplement it and the implementation is not publicly available. We are in contact with the
authors, though, and aim to compare the approaches in the future.

All implementations require a preparation of the terminology, like building up the PATRICIA
tree, but of different extent. We distinguished between the preparation and the actual similarity
computation. To evaluate our approach we tested the following hypothesis:

Hypothesis 1 Using our algorithm will improve the efficiency of the bounded Jaro-Winkler
similarity computation between few queries and prepared large sets of terms, compared to
the algorithm by Dresler et al. and the naive algorithm.

4.1 Methods

We used the Java benchmark harness OpenJDK JMH8 to execute performance measurements
of the three implementations. A collection of 1.429.572 names from the dataset “Person data”
in the DBpedia dump 2016-109 was used as test data. We used the following measurement
parameters, which cover the intended use cases: (a) The number of queries (100 to 105; 106

was skipped du to long duration), (b) the number of terms (100 to 106), (c) the threshold of
the Jaro-Winkler similarity(0.91, 0.95, 0.99). (d) the overlap of the set of query string and
term strings (full means that all terms are contained in the queries, if possible for the given
number of queries; half means that half of the terms are contained in the queries, if possible;
none means that none of the terms is contained in the queries), and (e) the preparation
of the terminology, specifying whether the time for preparation will be contained in the
measurement (unprepared) or not (prepared).

Each configuration and implementation was executed on three machines with 20 different
pseudo random subsets of names for the terms and the queries, resulting in 60 executions
per configuration and implementation. We measured the throughput, which is the number of
executions of all queries (= one operation) per second. The usage of the throughput results in
a high precision of the measurement for short running computations, but decreasing precision
for longer running computations. This fits to the intended use cases. The measurements were
executed on 18 machines each equipped with two Intel Xeon Scalable 6140 18 Core 2,3 Ghz
processors and 192 GB memory. Parallel computation was not used to avoid measurement

6 https://commons.apache.org/proper/commons-text/

7 https://github.com/apache/commons-text/pull/87

8 http://openjdk.java.net/projects/code-tools/jmh/

9 https://wiki.dbpedia.org/downloads-2016-10
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errors. The measurement code, execution scripts, analysis scripts and result files are publicly
available10.

4.2 Results

We used the Welch’s t-test (unequal variances t-test) to compare the measurements, as we can
not assume equal variance. First, we compared the three executions with equal configuration
and of the same implementation. In 309 of 6570 cases (naive 6, Dresler 246, our 57) we
found significant differences. Therefore, we hereinafter use the median values of the three
corresponding execution. Then, we compared the corresponding measurements of different
implementations. The overlap parameter caused only slightly differences between the
comparison results. Therefore, we omit separate results. Tab. 1 shows the comparison results
of the measurements of different implementations with equal configuration except the overlap
parameter. Every triangle in the table represents the comparison results of 60 measurements
for the column implementation and 60 measurements for the row implementation. The
triangles point at the implementation with higher mean throughput. Comparisons above
the diagonal involved unprepared measurements, comparisons under the diagonal involved
prepared measurements. Bracketed comparisons were not significant. For example, for the
naive approach and our approach and the parameters 1 term, 10 queries, threshold 0.91,
and with preparation the mean throughput of the naive approach was insignificantly higher
represented by (M). Fig. 1 shows the mean measurement for the implementations with 106

terms, depending on the number of queries, the threshold, and the preparation. All axes are
log scaled.

The results presented in Tab. 1 prove that our approach significantly improves the computation
efficiency of the bounded Jaro-Winkler similarity with 100 to 106 prepared terms, threshold
≥ 0.91, and up to 103 queries, compared to the approach by Dresler et al. and the naive
approach. Therefore, we accept the hypothesis. Our measurements were limited to 106 terms
and 105 queries. This limitation fits to the addressed use case. The test dataset size and
the time consumed by the measurement are further limiting factors. Due to the limitation,
we can not provide valid results on the comparison of the approaches for larger string sets.
However, the results presented in Tab. 1 indicate that the usage of our approach will improve
computation efficiency for 100 or more terms in case of small query sets. Moreover, they
indicate that the usage of our approach will improve the efficiency of computations with 10
up to 103 queries even if the terminology is unprepared. These limits will become worse by
reduction of the thresholds. Due to the measurements visualized in Fig. 1d and Fig. 1f we
expect that the approach by Dresler et al. will outperform our approach for larger query sets.
However, this is not the use case our approach was developed for. We aim to support the
search for similar strings of one or a few strings in a large set of string.

10 https://github.com/fusion-jena/JaroWinklerSimilarityEvaluation or DOI: 10.5281/zenodo.2269909
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5 Conclusions
We presented a new approach for the efficient computation of the bounded Jaro-Winkler
similarity. This approach has been evaluated by comparing it with the naive approach and
the approach by Dreßler et al. [DN17]. Our results prove a significant improvement of the
efficiency in computation of the bounded Jaro-Winkler similarity for querying of similar
strings compared to these earlier approaches. In future work, we aim to also compare our
approach with the approach by Wang et al. [WQW17], depending on the availability of
the implementation or a comprehensive description of the approach. Further, we provide a
ready to use Java implementation of our approach for easy application and adaptation into
other languages. We are convinced, that this work opens up new application fields of the
Jaro-Winkler similarity.
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Fig. 1: Mean of measurements with 106 terms and full, half or zero coverage.
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The Best of Both Worlds: Combining Hand-Tuned and
Word-Embedding-Based Similarity Measures for Entity
Resolution
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Abstract:

Recently word embedding has become a beneficial technique for diverse natural language processing
tasks, especially after the successful introduction of several popular neural word embedding models,
such as word2vec, GloVe, and FastText. Also entity resolution, i.e., the task of identifying digital
records that refer to the same real-world entity, has been shown to benefit from word embedding.
However, the use of word embeddings does not lead to a one-size-fits-all solution, because it cannot
provide an accurate result for those values without any semantic meaning, such as numerical values.
In this paper, we propose to use the combination of general word embedding with traditional hand-
picked similarity measures for solving ER tasks, which aims to select the most suitable similarity
measure for each attribute based on its property. We provide some guidelines on how to choose
suitable similarity measures for different types of attributes and evaluate our proposed hybrid method
on both synthetic and real datasets. Experiments show that a hybrid method reliant on correctly
selecting required similarity measures can outperform the method of purely adopting traditional or
word-embedding-based similarity measures.

Keywords: Entity resolution; Word embedding; Similarity measures; Learning-based entity resolution

1 Introduction

Entity resolution (ER) is the problem to identify digital records within one or among
different data sources that refer to the same real-world entity. A typical solution is first to
generate all candidate pairs, then calculate similarities between each pair [Ch12]. The high
quality of ER results essentially relies on the correct selection of similarity measures, which
is determined by domain experts based on an elaborate analysis of record attributes and
their experiences. Except for the human efforts, traditional methods to calculate similarity
between two records are mostly unaware of semantics, e.g., they determine how similar two
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strings look like in terms of edit distance. As a result, the accuracy may be limited for cases
where words with similar semantics are expressed in different ways.

Recently, there have been several research papers that use word embedding for en-
tity resolution, aiming to overcome the aforementioned limitations of traditional solu-
tions [Eb18] [KAP18] [Mu18]. Word embedding maps words or phrases from the vocabulary
to vectors of real numbers [Yo03] and makes it possible to extract semantic information
conveniently and efficiently. It has become quite popular in various Natural Language
Processing (NLP) tasks, after several neural word embedding models are introduced, such
as word2vec [Mi13a], GloVe [PRS14] and FastText [Bo16]. Generally speaking, by using
word embedding, attributes of records in ER are mapped to a vector space, no matter which
kind of data it is, while capturing semantic similarities between attribute values of a record
pair. Therefore, word embedding can be used to reduce the human efforts. In addition, the
accuracy might also be further improved, since the approach captures semantic similarities
between records.

However, adding an extra word embedding step to the similarity calculation phase will
probably have negative effects on efficiency. For instance for attributes without semantic
meanings, especially attributes with numerical values, it makes little sense to map them to a
vector space using word embedding, because distances between them cannot be correctly
managed due to the missing semantics. Still, numeric data play an important role for
expressing records in financial business data.

Therefore, in this paper, we propose to combine traditional hand-tuned and popular
word-embedding-based similarity calculations for ER, always choosing the most suitable
similarity measures for each attribute in order to achieve the best accuracy for a given input
dataset. Specifically speaking, with regard to attributes with a high appropriateness of word
embedding techniques, word embedding is firstly applied to map the data to vectors using
FastText pre-trained model, then cosine similarity is used to calculate similarities between
record pairs. For other attributes, for which word embedding is not suitable, particularly
numerical values, a tailored similarity function is used.

We summarize our contributions of this paper as follows:

• We propose a hybrid similarity calculation method for ER: the attribute-based
selection between traditional hand-tuned similarity functions and word-embedding
cosine similarity function to achieve a higher accuracy;

• We identify attributes that suit word embedding more than traditional similarity
measures, which provides a guidance of choosing the most suitable similarity measure
for ER;

• We design different combinations of adopted similarity functions and evaluate them
on both real and synthetic datasets. Our results show that the hybrid solution can
outperform other solutions which purely use traditional or word-embedding-based
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similarity calculations, when the attributes of a dataset contain both semantic and
non-semantic attributes.

The rest of this paper is organized as follows: We present related work in Section 2. Then
we introduce our hybrid method in Section 3 and show the evaluation result in Section 4. At
last, we conclude our work in Section 5.

2 Related Work

Entity resolution: Most of the ER research is pair-based and shares a common ER process,
as surveyed in [Ch12] and [EPIV07]. In recent years, along with the increase of input data,
solutions for ER are also asked to be scalable, which facilitates using parallel computing for
ER, Chen et al. give an overview and classification on the research of parallel ER [CSG18].
Word embedding for entity resolution: As aforementioned, recent research has considered
applying word embedding for ER. There are two main research questions of employing
word embedding for ER. One is which embedding granularity to use for ER; the other
one is how to get the vector of each attribute of a tuple after each word or sub-word has
been embedded. Ebraheem et al. adopt word-level embedding using the GloVe pre-trained
dictionary [PRS14] and propose two methods to get the vector representation of an attribute:
an averaging method and an RNN-based method with LSTMs. Then a representation of a
tuple is obtained by concatenating the vectors of all its attributes [Eb18]. Kooli et al. employ
N-gram-level embedding using the the Fasttext library and then concatenate all vectors of
all subwords [KAP18]. N-gram-level embedding should provide more accurate result when
there is a large proportion of infrequent words in the input dataset [Mu18]. For ER tasks,
data is often dirty and contains many infrequent words, therefore, in our work, we also use
N-gram-level embedding. Mudgal et al. study several possible embedding choices from
both the granularity of the embedding and adopted model, and sketch a design space for
deep learning solutions [Mu18].

3 A Hybrid Approach for Entity Resolution

In this section, we introduce our ER process using hybrid similarity calculation methods.
As we explained above, the work in this paper focuses on accuracy. Hence we do not take
blocking (indexing) techniques into consideration to our process. With this, we get the most
exact results since by blocking, we might block away matches in the worst case.

Figure 1 shows the entire process. The process first asks the user whether there is an
available property file, which means the user knows the data quite well and knows the best
choices of similarity functions to compare each attribute (excluding identifiers). If this is the
case, we directly load the property file and divide all attributes into different groups based
on the similarity measures defined in the property file. Otherwise, a property file will be
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Fig. 1: Flowchart of our hybrid method

generated based on the input data schema and our preset rules. In order to achieve satisfied
accuracy and provide guidance to choose suitable similarity measures, we classify common
attributes into three groups, propose suitable similarity measures for each group and then
the corresponding property file can be generated:

Numerical attributes (NA): Numerical attributes refer to those attributes, whose values can
be compared, for example, the age. The Euclidean distance is used to provide a satisfactory
accuracy for numerical attributes. However, not all numbers belong to this group. In contrast
to numerical attributes, the other type of numbers are named as numerical strings, which
act like strings and their values cannot be compared to be bigger or smaller. For example,
telephone numbers or postcodes are considered as numerical strings. All numerical strings
belong to the next group: non-semantically related attributes.
Non-semantically related attributes (NRA): These kinds of attributes are those whose
values are without semantic meaning (e.g., people names or numerical strings) and usually
with a short length. In ER tasks, the different values of this type of attributes of a match pair
are usually caused by typos and formats. Using word embedding for this case may consider
those values with a big distance, which can lead to lower accuracy. Therefore, for this group,
we propose to use Jaro-Winkler similarity functions instead of word embedding. Moreover,
Jaro-Winkler has a higher speed than the other traditional functions, such as Levenshtein
similarity.
Semantically related attributes (SRA): The last group is semantically related attributes,
whose values are strings with various meanings (often long), multiple strings or even
whole sentences. For this group, word-embedding plus cosine similarity approach is chosen
to calculate similarity. Traditional syntactical-based similarity measures are not used for
semantically related attributes, because they only check the edit distances between values
of attributes, and are not able to realize the meaning or the distributional semantic behind,
so that they would probably provide unacceptable results. In terms of the predefined rules,
we can calculate the similarity of each corresponding attribute pairs (cf. Section 3.1).
Afterwards, the classification step is performed to divide all pairs into match and non-match
groups (cf. Section 3.2).
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3.1 Attribute Similarity

In this subsection, we specify how the similarity of each pair of attributes is calculated by
the preset rules.

NA and NRA Similarity. According to the two rules regarding NA and NRA, the similarity
between two attribute values of records calculated straightforwardly with Jaro-Winkler
similarity and Euclidean metric, because the granularity for them is the entire attribute,
which is calculated with the following formula:

attrSim(r1.attr, r2.attr) =
{

Euclidean(r1.attr, r2.attr), attr ∈ N A;
Jaro_Winkler (r1.attr, r2.attr), attr ∈ N RA.

(1)

SRA Similarity. Inspired by the work of [Bo16], we use FastText, an extension of the
continuous skip-gram model [Mi13b] that is used to produce word embeddings (i.e., vectors),
to obtain the similarity of semantically related attributes. The FastText model is chosen
instead of word2vec and GloVe because use cases will range across diverse domains. Hence,
we cannot guarantee coverage with only models on word-level.

Vector representation of words. The input of FastText is a text corpus. Given enough text
data and contexts, FastText can achieve highly accurate meanings of the words appearing
in the corpus and establishes a word’s association with other words. The output is a set of
vectors, that is, words in the corpus are transformed a vector representation in a semantic
vector space. Moreover, FastText is capable of predicting the vector representation for words
not occurring in the corpus, since it decomposes each word into a set of characters of
n-grams. Hence, every word appearing in the attribute value can be converted into vector
representation ~w.

Vector representation of attributes. Considering that there may be two or more words in one
attribute, we achieve the vector representations of attributes by computing the mean value
of all the word vectors in the attribute:

~attr =

n∑
i=1

~wi

n
(2)

Therein, n is the number of words in attributes. We compute the cosine similarity between
two attribute vectors to evaluate their similarity. More formally, the similarity of SRA is
represented by:

attrSim(r1.attr, r2.attr) = cosine( ~r1.attr, ~r2.attr), attr ∈ SRA. (3)

3.2 Learning-Based Classification

After the similarity for each attribute pair is calculated with their respective methods,
a classification step is used to classify pairs to matches or non-matches. The simplest
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approach is a threshold-based method, which compares the average similarity score with
the preset threshold value. Those pairs whose average score is higher than the threshold are
considered as matches, and vice versa. However, in order to get the average score, similarity
scores for each attribute are firstly summed up, which loses detailed information contained
in the separated attribute similarities [Ch18]. Therefore, in our ER process, we adopt a
learning-based classification step to overcome this drawback. A learning-based classification
method firstly trains a classifier on a training dataset with available match or non-match
labels, then the trained classifier is used to classify pairs with match or non-match status. So
far, there have been different classifiers proposed, how to select a suitable one is based on
the input data properties. In Section 4, we will describe the three classifiers we employ for
our experiments.

4 Evaluation

In this section, we show our designed similarity calculation methods and the evaluation
of their F-measure on different real-world datasets and synthetic datasets. Next, we show
the datasets used for our experiments, and represent designed combinations of similarity
calculation methods, at last we describe the three classifiers we use for the evaluation.

Datasets: Table 1 shows the three datasets we used for our experiments.

The first dataset “DBLP-ACM Citation” include two parts, which are from the DBLP citation
database and the ACM citation database, respectively. All of them have four attributes,
including title, authors, venue and publication year. Therein, “title”,“venue” are considered
as SRAs, while “authors” is NRA and “publication year” is NA.

The second dataset “Amazon-Google Products” includes two parts as well, which are from
Amazon and Google. Both of them have four attributes, including id, name, description,
manufacturer and price. Based on their properties, “name”,“description” and “manufacturer”
are considered as SRAs, while “price” is NA. All above datasets are downloaded from [Le17],
which are benchmark datasets often used for entity resolution.

The last dataset is synthetic and generated by a data generator called GECO [TVC13]. GECO
consists of a GEnerator and a COrruptor, which is specifically designed for generating
ER datasets. The generated dataset contains personal information with the following 13
attributes: gender, given-name, surname, postcode, city, sex, telephone-number, credit-card-
number, income-normal, age-uniform, income, age, and blood-pressure. Therein, the last
five attributes are considered as NAs, while “sex” and “gender” are SRAs and the other
attributes are NRAs.

The first two real datasets are commonly-used benchmark datasets for ER. However, both of
them only contain one numerical value, which we think the most useful attribute type to
show differences of using diffferent combinations of similarity calculations. Therefore, we
involve the generated dataset as well, which contains five attributes with numerical values.
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Tab. 1: Datasets used in experiments

Datasets #Pairs (#DS1&#DS2) #Matches #SRA #NRA #NA

Real Datasets
DBLP-ACM 6001104 (2616&2294) 2224 2 1 1

Amazon-Google 4400264 (1364&3226) 1300 3 0 1
Synthetic Dataset Persons 551250 (1050&1050) 96 2 6 5

Combinations of similarity calculation methods:

Traditional hand-crafted similarity functions only: For this scenario, we use Jaro Winkler
similarity function to calculate the similarity of all string attributes, i.e., NRAs plus SRAs,
and use Euclidean distance to calculate the similarity of all NAs.
Word embedding and cosine similarity based method only: For this scenario, we use
word-embedding-based method for all attributes.
Our proposed hybrid method: We propose to use word embedding for SRAs, Jaro Winkler
for NRAs and the Euclidean distance function for NAs.

Classifiers: We employ three straight-forward classifiers which are intended to represent
general solutions for classification in an ER context.

Tree Boosting (XGBoost): XGBoost consists of an ensemble of regression trees that uses
additive optimization [CG16]. Such approach starts with a low variance, high biased solution,
and gradually reduces the bias by decreasing the sizes of neighborhoods. We employ the
specific XGBoost model, which introduces fine-grained improvements penalizing individual
trees, leading to a competitive classification performance.
Random forest classifier (RF): This is an approach based on multiple decision tree algorithms
for achieving a higher accuracy. It is intended to reduce overfitting risks.
K-nearest neighbor classifier (KNN): This approach considers the k (in our case k=5) closest
training examples for each record to decide on the class membership of the record.

4.1 Results and Discussion

Tab. 2: Evaluation Results with Different Classifiers (F-measure)

Combinations XGBoost RF KNN
Traditional 100 100 88.46
WordEmbedding 100 100 100Generated Dataset
Hybrid 100 100 58.54
Traditional 97.04 97.70 95.17
WordEmbedding 92.56 94.82 93.94DBLP-ACM
Hybrid 93.69 94.28 89.31
Traditional 20.19 25.35 21.11
WordEmbedding 19.10 31.09 24.10Amazon-Google
Hybrid 29.72 38.32 19.78
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Table 2 shows the results of our evaluation (results are reported for a random split of
66/34% training/test data, each including respectively 66/34% of the existing match and
non-matches). It shows the F-measure values by using the three aforementioned classifiers
XGBoost, KNN, RF under our three designed combinations of similarity measures on the
three datasets. Next, we will discuss the result of each dataset in detail.

Generated dataset: As can be seen, the F-measure reaches its optimal for the generated
dataset, with word embedding solutions performing consistently well across classifiers. This
is a slightly surprising finding, as most attributes can be labeled as non-semantic. We deem
the goodness of embeddings to be partly dependent on the coverage of the FastText learned
representations. The purpose of using the generated dataset is it contains several NAs, which
is promising to show the accuracy difference between different approaches. However, the
generated dataset still lacks unpredictability and complexity compared to a real dataset, so
that all F-measures are very high and we cannot get valuable conclusions from it. We also
observe that the results of KNN are affected by the existence of irrelevant features, whereby
the similarity of items on one dimension leads to misclassifications for close neighbors.
For its less effective configurations, the model outputs 6 and 21 false positives out of 30,
reducing the F-measure on this dataset.

DBLP-ACM dataset: For the relatively clean and easy citation dataset, the F-measure is
observed to be consistently higher than 95% with traditional approaches outperforming
others. The word-embedding-based and the hybrid approach show lower results. By careful
consideration of its attributes properties, we found that the “title” attribute is, although
having long strings, actually not semantic related. A paper title normally only has one
version and its name usually only differs due to possible typos. Under this situation, word-
embedding-based methods may fail. Therefore, for those attributes with long strings, careful
consideration is needed about whether an edit-distance-based or semantic-based similarity
measure is more suitable for them.

Amazon-Google dataset: For the more complex product dataset (various descriptions may
express the same semantic meaning) we observe that hybrid solutions outperform the other
two pure solutions, and achieve the best results with XGBoost and RF. For KNN we also
observe some problems with the existence of irrelevant dimensions, which increase the
number of false negatives. Overall, embedding-based approaches outperform traditional
solutions (for classifiers RF and KNN), or provide comparable result with XGBoost, which
indicates the necessity to use word embedding for datasets with real semantic attributes. The
hybrid approach performs the best with XGBoost and RF, which indicates that by carefully
choosing word-embedding-based or traditional similarity measure according to attribute
properties (mainly basing on non-semantic and semantic) a better accuracy can be achieved
than using only one of them.

We should also note that the F-measure values we report for this challenging dataset
are much lower than many published results. We attribute this to the fact that almost all
previous research adopts either blocking or thresholding techniques to reduce the amount of
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non-matching pairs, so that the training data set is much more balanced, helping to achieve
a higher F-measure. For this paper, our purpose is solely to test the benefit of our proposed
hybrid similarity calculation approach. Therefore, we avoided blocking and thresholding, in
order to highlight the specific impact of the approaches.

To conclude our discussion, a word-embedding-based approach works predominately better
for semantic attributes. For non-semantic attributes it may also be possible to achieve a
F-measure which is comparable (i.e., as seen for the generated dataset) or worse (i.e., as seen
for the DBLP-ACM dataset) than traditional similarity measures. However, for numerical
values, word embedding is not recommended since a hybrid approach shows obviously better
F-measure than only using word embedding (based on the result of Amazon-Google dataset
with XGBoost and RF classifiers). Therefore, the safest way for similarity calculations of ER
problems is to use word embedding for semantic attributes and to use traditional similarity
measures for non-semantic attributes. Besides, interestingly, in our findings we note that
the choice of classifier seems to be secondary to the choice of similarity measures, with
simple classifiers being able to outperform more complex ones, provided they are given
adequate (i.e., descriptive, distinctive) similarity measures as input. We expect this to be
partly explainable from the simplicity of the datasets (for the first two cases) and from the
improvements brought by semantics (in the third case).

5 Conclusion

In this short paper we propose to use a hybrid similarity calculation solution for ER tasks
and provide a practical evaluation of three different combinations of similarity measures
with general machine learning classifiers. We find that embeddings are generally useful,
though they are not a silver bullet, and both hybrid and traditional approaches can achieve
superior results. We find that similarity measures can have a greater impact than the choice
of classifiers in the resulting goodness of an ER process.

In summary, by using a prototypical workflow without blocking or thresholding and
with general classifiers, we show that the current use of word embeddings alongside
traditional measures for entity resolution opens-up a bundle of promising choices for
practitioners, without lending itself easily to a one-size-fits-all solution. We envision two
core challenges: On the one hand, previous work [KR08] has shown that thresholding,
with a given blocking solution, improves the learning process; similarly work in entity
resolution with embeddings [Eb18] shows good results without quantifying the precise
impact of blocking and thresholding. In future work we seek to extend our current study by
considering this factor for the case of hybrid solutions. On the other hand, the search for the
optimal balance between the similarity measures used becomes essential, as we show in our
current study. Though some guidelines can be adopted in this task for specific cases, as we
propose, future work is required to achieve a general method for combining the approaches.
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Fast Approximated Nearest Neighbor Joins For Relational
Database Systems

Michael Günther1, Maik Thiele1, Wolfgang Lehner1

Abstract: K nearest neighbor search (kNN-Search) is a universal data processing technique and a
fundamental operation for word embeddings trained by word2vec or related approaches. The benefits
of operations on dense vectors like word embeddings for analytical functionalities of RDBMSs
motivate an integration of kNN-Joins. However, kNN-Search, as well as kNN-Joins, have barely been
integrated into relational database systems so far. In this paper, we develop an index structure for
approximated kNN-Joins working well on high-dimensional data and provide an integration into
PostgreSQL. The novel index structure is efficient for different cardinalities of the involved join
partners. An evaluation of the system based on applications on word embeddings shows the benefits
of such an integrated kNN-Join operation and the performance of the proposed approach.

Keywords: approximated nearest neighbor search, product quantization, RDBMS, word embeddings

1 Introduction

Word embedding techniques are powerful to study the syntactic and semantic relations
between words by representing them in dense vectors. By applying algebraic operations
on these vectors, semantic relationships such as word analogies, gender-inflections,
or geographical relationships can be easily recovered [LG14]. Due to the powerful
capabilities of word embeddings, some recent papers proposed their integration into
relational databases [BBS17, Gü18]. This allows exploiting external knowledge during
query processing by comparing terms occurring in a database schema with terms stored
in word embeddings. To give some examples: a user may query all products in a product
database and rank them according to their mean similarity to terms like “allergen” or
“sensitizer”. In the context of a movie database, a kNN-Search can be performed to return the
top-3 nearest neighbors of each movie title (see q1 in Fig. 1). Given the movie “Godfather”
as input this might result in “1972” (the release year), “Scarface” (another popular movie
in the same genre) and “Coppola” (the director). Our main observation is that most of
these SQL database word embedding operations perform similarity search with k nearest
neighbor search (kNN) as a common subtask. Furthermore, the domain of the kNN-Search
often needs to be restricted to terms that also appear in the database relation, i.e. the domain
modeled by the database schema. In this way arbitrary terms, having their origins in the
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m_id title …

1 Scarface …

2 Untouchables …

3 Goodfellas …

4 Ben Hur …

… … …

106 Godfather …

SELECT m1.title, m2.title

FROM movies m1 kNN-Join(3)movies m2

ON m1.title ~ m2.title  

WHERE m1.year= … AND m2.genre IN (…)

SELECT *

FROM kNN(movies.title,3 )

term vector

1972 [0,21; 0,58; …; -0,77]

Brando [-0,46; 0,25; …; 0,44]

Ben Hur [0,76; 0,33; …; 0,91]

Copolla [0,76; 0,48; …; -0,51]

… [-0,46; 0,53; …; 0,85]

Untouchables [0,86; -0,22; …; 0,12]

query set R

target set T

database table word embedding vector space

Legend

+

title VARCHAR

Godfather 1972

Godfather Scarface

Godfather Copolla

… …

Untouchables Connery

m1.title m2.title

Godfather Scarface

Godfather Goodfellas

Godfather Untouchables

… …

Untouchables Goodfellas

q1: q2: 
q
u
er
ie
s

d
a
ta
b
a
se

re
su
lt
s

Fig. 1: Two Example Queries: kNN-Search and kNN-Join

large text corpora on which the word embedding models have been trained on, are filtered
out. To give an example: if a kNN-Search is performed on an attribute movie titles the user
usually expects to get the most similar movies but not release years, actors, directors or
other terms that do not relate to the movie domain at all. Technically this boils down to a k
nearest neighbor join (kNN-Join) that combines each element in a query set R with the k
elements in a target set T that are closest to it. This is shown by q2 in Fig. 1 that extends q1
by a target set containing just movie titles and that returns movie titles only. Due to the
high dimensionality of word embeddings (100 to 300 dimensions are a typical number)
and large input data sets (query and target set), the kNN-Join is an extremely expensive
operation. Therefore, we investigate approximation and indexing techniques based on vector
quantization approaches, especially product quantization [JDS11], to accelerate kNN-Joins
in the realm of RDBMSs. In particular, our contributions are the following:

• We identify two different kNN-Join query types with different needs regarding the
supporting index structures.

• We propose a novel index structure which can cope with both query types and is
flexible enough to deliver good performance on them.

• We detail how to efficiently process an approximated kNN-Join query that adapts to
different query and target set sizes.

• We provide a practical implementation of the operator and our optimizations in
PostgreSQL, which allows us to meaningfully evaluate the operator using high-
dimensional data and fully-featured SQL queries regarding both, accuracy and
runtime.
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The remainder of the paper is structured as follows: In the next section, we define the
kNN-Join problem and derive the challenges which arise by supporting this operation on
high-dimensional data. In Sect. 3, we provide the fundamentals of the vector quantization
techniques which form the foundation for our proposed index structure. In Sect. 4, we
present our inverted product quantization index as well as our approximated and adaptive
kNN-Join implementation. Given two real-world datasets, we evaluate the accuracy and
response time of this novel operator regarding different input relation sizes in Sect. 5. Finally,
we survey the related work in Sect. 6 and conclude the paper in Sect. 7.

2 Problem Description

Given two vector sets R and T in a d-dimensional Euclidean space Rd and two elements
r and t, with r ∈ R called query vectors and t ∈ T called target vectors, a kNN query is
defined as follows:

Definition 2.1. The kNN query of r over T , noted k N N (r,T ), can be defined as:
k N N (r,T ) = arg min{t1,...,tk }∈T [k]

∑k
i=1 d(r, ti).

Here d denotes the distance function between two elements. Typically, in the context of
word embeddings, the cosine distance is used. However, in case of normalized vectors r and
t, the cosine distance is proportional to the squared Euclidean distance. The normalization
of the vectors does not change the cosine distance. Thus the k N N (r,T ) for any r and T can
be computed using both metrics. If the query is not just one element but instead a set, the
operation is denoted as kNN-Join.

Definition 2.2. The kNN-Join between a query set R and a target set T is defined as:
k N N (R n T ) =

{〈r, t〉|t ∈ k N N (r,T ), r ∈ R
}
.

Challenges The aim of this paper is to provide a kNN-Join which is particularly suitable
for high-dimensional data and varying target sets. In detail, we identify the following
challenges:

1. Batchwise execution of large query sets: In contrast to a simple kNN-Search, it must be
possible to execute large amounts of nearest neighbor queries at once for kNN-Joins. Most
of the approximated kNN-Search (ANN-Search) approaches assume that the set of target
vectors contains a very large number of vectors, however, they do not process large amounts
of query vectors. In the case of kNN-Joins, the number of queries can be much larger than
the target vector set.
2. High-dimensional data: Previous work on kNN-Joins for relational database systems
focuses mostly on low-dimensional data [YLK10]. Because of the curse of dimensionality,
the distances of pairs of sample vectors from a high-dimensional vector space tend to
differ only little [Be99]. Therefore, techniques for exact kNN-Joins, trying to hierarchical
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partition vector spaces, cannot be applied efficiently. Hence, the system must support suitable
approximated search techniques to handle large vector sets.
3. Adaptive kNN-Join algorithm: An index for the kNN-Join stores all possible target
vectors. However, a target set T often contains just a small subset of all vectors in the
index. For example: target set for q2 in Fig. 1 only contains vectors of movies published
in a specific year out of millions of other vectors. The kNN-Join algorithm therefore must
be adaptive to different target set sizes and should enable fast approximated search. With
respect to the cardinality of R and T we identified two different kNN-Join query types in a
database system:
kNN queries with small query set R and large target set T: This is the ordinary type of
kNN queries, which most of the kNN frameworks assume.
kNN queries with large query set R and small target set T: This case is rather specific to
the use in database systems and is currently not supported.
4. Different demands on precision and response time: Regarding the approximation of
the vector similarity, it might be relevant for a user to specify how strongly the approximated
nearest neighbors should correspond with the exact values. On the contrary, real-world
systems need to comply with certain latency constraints, e.g., for exploratory data processing
fast response times are crucial. Consequently, the approximated kNN-Join should provide
features to configure such trade-offs. Providing this tunable trade-offs would also support
query execution in an online aggregation manner, i.e., get estimates of a kNN-Join query as
soon as the query is issued and steadily refine during its execution.

3 Vector Quantization
The index structure we propose is based on different vector quantization techniques.
Vector quantization is able to transform vectorial data in an approximated compact
representation [Gr84]. Furthermore, it enables fast approximated distance calculation which
subsequently can be used to speed up kNN-Join operations. It is the basis of product quanti-
zation as well as the basis for inverted indexing techniques described in Sect. 3.2 and Sect. 3.3.

3.1 Quantization Function

Vector quantization can be implemented by a quantization function q(y) which assigns a
vector y to a centroid cj ∈ C where cj is the vector of C which has the lowest distance to
y. There are different ways to obtain such a quantization function, which is specified by
the centroid set C and a distance function d. As a distance function, we use the Euclidean
distance. The set C should be selected so that the distortion is minimal. The k-means
algorithm is commonly used to achieve this goal for a given number of centroids |C |. An
approximated representation of a vector dataset can be obtained by replacing every vector
y ∈ Y (floating point values) with their centroid id j of its quantization centroid cj = q(y)
(integer values).
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𝑞1 𝑞2 𝑞𝑚

𝒚 = {1.2, 1.4, −0.2, 1.3, −0.9, 0.3, −1.1, 0.1, 0.7}

𝑢1(𝒚) 𝑢𝑚(𝒚)𝑢2(𝒚)

{1.1, 0.9, −0.5}
Product 
Quantization: {1.7, −0.8, 0.1} {0.3, −0.1, 0.7}

PQ-Sequence: 3 19 7

(a) Generating PQ sequences

𝑞𝑖(𝑢𝑖 𝒚 )

𝑢𝑖 𝒚

𝑢𝑖 𝒙

𝑑

(b) Asymmetric Distance Calculation
Fig. 2: Product Quantization

3.2 Product Quantization

A simple vector quantization approach might lead to a quite inaccurate representation of
the vector dataset. For a more precise representation, huge numbers of centroids would
be necessary that are impossible to process or even to store. For this reason, product
quantization [JDS11] applies multiple quantizers on m subvectors u1(y), . . . , um(y) of the
original vector y (see Fig. 2a.). Those quantizers are defined by quantization functions
q1, . . . , qm with qi : Rd → Ci . Typically, the cardinalities |C1 |, . . . , |Cm | are equal. The
product quantization is the sequence of centroids obtained by that process.

y1, . . . yd︸    ︷︷    ︸
u1 (y)

, . . . , y(D−d)+1, . . . yD︸              ︷︷              ︸
um (y)

→ q1(u1(y)), . . . , qm(um(y)) (1)

Using a dictionary denoted as codebook, the sequence of centroid vectors can be compactly
represented as a sequence of centroid ids.

kNN-Search with PQ-Index Product quantization sequences can be utilized to accelerate
the calculation of nearest neighbors by providing a fast way to compute approximated
squared distances. Approximated square distances between a query vector x and a vector y
for which a product quantization sequence is available can be calculated by Eq. (2).

d̂2(x, y) =
m∑

i=1
d(ui (x), qi (ui (y)))2 (2)
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4
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[-0.78, -3.28, -0.57, ...]
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[-2.49, -1.89]

...

[1.07, 3.22 ]

1

2

3

4

1

4

1

2

............... ... ... ...

Fig. 3: Index Data Structure

The squared distances d(ui (x), qi (ui (y)))2 have to be precomputed at the beginning of
the search process. For every subvector ui (x) there are |Ci | distance values to calculate,
since qi (ui (y)) can be any value of Ci . The distance measure is denoted as asymmetric
by [JDS11], since it is defined between quantized and non-quantized vectors as visualized
in Fig. 2b. Despite the effort of the preprocessing the technique reduces the computational
costs, since the number of index entries in large vector datasets is much higher than m · |Ci |,
the number of those squared distances. Furthermore, the compact representation makes it
easier to provide fast access to the index entries which can also improve performance.

3.3 Inverted Index Structures for Approximated Nearest Neighbor Search

For the standard product quantization search, it is necessary to calculate |T | distance values
for every query vector against the target set T . To reduce the number of distance computations
and achieve non-exhaustive search behavior one can divide the dataset into partitions of
vectors called cells which are locally close to each other. After that, only vectors which are
in the same cell as the query vector are considered as candidates for the nearest neighbors.
One can also extend the search to a certain amount of nearby cells. There are several ways to
define the cells: typically, vector quantization is employed by [JDS11] to build the so-called
IVFADC index. Here, a cell is defined by the subspace which the quantization function
assigns to the same centroid (Voronoi cell). In [BBS17] it is stated that either LSH or
k-means is used for that. Babenko et al. use product quantization [BL12] to build a fine
granular inverted index which is described in detail in Sect. 4.3.
However, these non-exhaustive methods prohibit the search in arbitrary subsets of the index
entries which is needed for smaller target sets T . To give an example: if one queries only in
a cell of the vector space and the target set is small it is very likely that the index might
return an empty set of candidates. To solve this problem we propose an adaptive kNN-Join
algorithm which determines a suitable number of cells and provides multiple lookups.

4 Adaptive Search Algorithm for Approximated kNN-Joins

We propose an adaptive search algorithm for kNN-Joins which can cope with arbitrary
target sets T . The index structure used by this algorithm is described in Sect. 4.1 and the
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algorithm itself in Sect. 4.2. We employ the inverted multi-index described in Sect. 4.3
that is especially efficient for RDBMSs and propose an approach to estimate the number of
targets read out from the inverted index in Sect. 4.3 which is necessary to use it for different
target sets. The distance computation is outlined in Sect. 4.4. This is based on product
quantization as described in Sect. 3.2. However, for the adaptation to different cardinalities
of T , we employ a modification described in Sect. 4.5. Further optimizations are presented
in Sect. 4.6.

4.1 Index structure

The data structure of our proposed index for word vectors is shown in Fig. 3. Every index
entry in the Index Data table has an id to reference it (Entry ID). In addition, it consists
of a Coarse ID referring to a partition the vector belongs to for the inverted search and a
product quantization sequence (PQ Sequence). Every partition has a centroid which is stored
in the Coarse Quantizer table. The centroids of subvectors for the product quantization are
stored in a Codebook. Each of those PQ centroids has an ID which corresponds to codes
in the product quantization sequences and a position Pos ∈ {1, . . .m} which refers to the
position of the subvector it is calculated for (u1, . . . , um). The original vectors are stored in
a Original Vectors table.

4.2 Adaptive kNN-Join Algorithm

Fig. 4a shows a flow chart and Fig. 4b the pseudo code of our proposed kNN-Join algorithm.
As input parameters, the algorithm gets a set of query vectors R = r1, . . . rn, the set of
target vectors T represented as subset of index entry ids and the desired number k of nearest
neighbors. Furthermore, there are two configuration parameters: α and Thflex. The value α
determines the minimum number of targets per result that has to be considered for the search
process. A higher value of α leads to a higher precision of the result set. The value Thflex
configures the calculation of distances with the product quantization which is discussed in
detail in Sect. 4.5. The algorithm consists of four steps: At first, there is a preprocessing step
(Line 3 to 6), which is necessary for the product quantization based distance calculation
described in Sect. 3.2. There are two different types of distance calculations via product
quantization based on either SHORT_CODES or LONG_CODES. The first one is suitable for large
numbers of distance calculations per query whereas the second one is applicable for fewer
distance calculations. Details are provided in Sect. 4.5. Thflex determines the limit of distance
calculation where the algorithm switches from LONG_CODES to SHORT_CODES, whereas the
distance calculations depends on α · k. The precomputed distance values of subvectors are
stored in Dpre. In the query construction step, the retrieval of database entries from the
inverted index is prepared. This involves the calculation of the coarse quantization C for
every query vector ri in Line 9 which returns a sequence of the coarse centroid ids from the
Coarse Quantizer table (see Fig. 3) in decreasing order according to the distance between
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(2) Query
Construction

(4) Distance 
Calculation

SQL 
Query

T

enough
results

not enough 
results

Increase
α value

for remaining 
query vectors R'

Construct 
Result Table

Enough
Targets?

(1) Pre-
processing

kR

Representation of target vectors 
for  every query vector

(3) Data Retrieval

(a) Flow Chart of Algorithm

Require:
Selectivity: α
Threshold Flexible-PQ: Thflex

1: function Adaptive-kNN-Join(R, k, T, α)
2: R′ ← R, j ← 1
3: if α · k > Thflex then . only for product quantization
4: Dpre ←preprocessing(R, T , SHORT_CODES)
5: else
6: Dpre ←preprocessing(R, T , LONG_CODES)
7: while R′ , ∅ do
8: for all ri ∈ R do
9: C∗ ←coarseQuantize(ri)

10: ω ←estimateOrder(C, T , α · k · j)
11: centr(i) ← {c ∈ C | order (c) < ω }
12: query←constructQuery(centr, T )
13: Tsub ←execute(query)
14: R′ ← {ri | |Tsub (i) | < α · k }
15: j ← 2 · j
16: for all ri ∈ R do
17: for all t ∈ Tsub (i) do
18: d ←distFunc(ri, t, Dpr∗e)
19: Update(topk[ri], d)
20: return topk

* ordered list of centroid ids

(b) Pseudo-Code of the Algorithm
Fig. 4: Adaptive kNN-Join Algorithm

the coarse centroid and the query vector ri. Every centroid id corresponds to a partition in
the index. The number of partitionsω to be considered is estimated by the estimateOrder
function (details are given in Sect. 4.3). Based on ω and C the set of the centroids to be
retrieved from the index for ri is then added to centr(i). After that, a single SQL query is
constructed to retrieve the data for all query vectors from the index (data retrieval step,
Line 13). Then, the query vectors R′ for which not enough index entries could be retrieved
are determined. For them, another query construction and retrieval iteration is done with a
less conservative order estimation (modified by j). If the number of targets is sufficient,
the distance values between every query vector ri and its respective index entries Tsub(i)
are calculated by a distance function distFunc ((distance calculation step). We elaborate
more on the distance function in Sect. 4.4. The best candidates for the kNN operation are
held in a sorted list topk which is updated after every distance calculation.

4.3 Inverted Multi-Index and Partition Estimation

In Sect. 3.3 we described the advantages of inverted indexing for ANN. However, inverted
indexing in general is poorly suitable when the target set T is only a subset of all vectors
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in the index TI , i.e. T � TI . For this case it is not obvious how many partitions should be
considered. To solve this problem, we propose a method to estimate the number of targets
observed by the search when a certain number of partitions is read out from the index. This
allows us to pick the optimal number of partitions (Fig. 4b Line 11). To optimize the coarse
quantization step (Fig. 4b Line 9) we use an inverted multi-index [BL12] which enables fast
lookups even if large numbers of index partitions are needed.

Inverted Multi-Index A simple inverted index based on quantization could be created
by clustering all possible target vectors TI into n distinct partitions P1∪̇ . . . ∪̇ Pn which
corresponds to the Voronoi cells of the centroids c1, . . . , cn. To determine the partitions in
which to search for a query r, one has to calculate all the distances d(r, c1), . . . , d(r, cn).
However, this could be time-consuming for database queries with a large query set R. To solve
this problem, [BL12] propose to use product quantization to obtain more smaller clusters
for the partitions with only a few centroids. Suppose the product quantization sequences
which serve as labels for the partitions consist of two centroid indexes c1, c2 ∈ {1, . . . , n},
there are n2 numbers of partitions (see Fig. 5). But, to determine the nearest clusters one
has to calculate only the 2 · n square distances between the subvectors of the query vector
centroids stored in a codebook. Subsequently, an order of centroids in accordance with the
distances to the query vector can be obtained by using the algorithm described in [BL12].
The data structure shown in Fig. 3 is designed for a simple coarse quantizer. If product
quantization according to the inverted multi-index is used, the coarse quantization table is
replaced by a second codebook relation and the ids c1 and c2 are represented by a single id
idc = c1 · n + c2 in Coarse ID.

Estimation of the Number of Targets The overall objective of the estimation (Fig. 4b
Line 10) is to determine a suitable number ω ≤ n of nearest partitions in a way, that the
probability Pest that it is necessary to run further database requests for the query vector
ri is lower than a certain value 1 − Pconf . This is done by iteratively incrementing ω until
the confidence value obtained by a probabilistic model is higher than Pconf (see Fig. 6).
The estimation relies on statistics about the distribution of the index. Those contain the
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relative sizes of all partitions P1, . . . , Pn compared to the whole index size (the total number
of vectors). For the estimation, we consider the set of all index entries TI , the target set
of the current query Ti and a set of partitions P1∪̇ . . . ∪̇Pω = Tp which are selected as
the partitions with the nearest centroids to the query vector. We then want to estimate
the probability 1 − Pest that Ti contains at least β = k · α entries which corresponds to
the condition in the algorithm of Fig. 4b in Line 14. It corresponds to the cardinality of
Ti ∪ Tp. For this purpose, we leverage a hypergeometric probability distribution (Eq. (3))
which describes the probability to get s successes by drawing M elements out of a set of N
elements without replacement. In our case, s is the desired number of targets in Ti ∪ Tp,
M is the cardinality of Tp and N equals |TI |. The probability of drawing at least β target
vectors from the set TI of all vectors in the index can be calculated with Eq. (4) by using the
cumulative distribution function.

h(X = s ; |TI |, |Ti |, |Tp |) =
( |Tp |

s

) ( |TI |− |Tp |
|Ti |−s

)

( |TI |
|Ti |

) (3)

µ = |Ti | ·
|Tp |
|TI | σ2 = |Ti | ·

|Tp |
|TI | ·

(
1 − |Tp |
|TI |

)
· |TI | − |Ti |
|TI | − 1

1 − Pest = hcdf (β − 1 ; |TI |, |Ti |, |Tp |) = 1 −
β−1∑

s=0

( |Tp |
s

) ( |TI |− |Tp |
|Ti |−s

)

( |TI |
|Ti |

) (4)

However, because of the complexity of the computation of the binomial coefficients, we
have to use an approximation based on the normal distribution Eq. (5). To obtain the
approximation, we use the mean µ and the variance σ2 from the hypergeometric distribution
(see Eq. (3)). In contrast to Eq. (3), which involves a cumulative distribution function, here,
the number k is a specific number of targets which corresponds to Ti ∪ Tp .

N (k; µ, σ2) =
1√

2πσ2
· exp

[
− (k − µ)2

2σ2

]
(5)

The approximation of the probability of getting at least β − 1 targets (Eq. (6)) is then
obtained by its cumulative distribution function. The addition of 0.5 serves as a continuity
error correction. It is added to the formula since the hypergeometric distribution is a discrete
probability distribution. Since β is an integer value, k < β − 1 corresponds to k < β − 0.5.

hcdf (β − 1; µ, σ2) ≈ 1 −
β−1∑

s=0
N (s; µ, σ2) (6)

≈ 1 − 1
2
·
(
1 + erf

( (β − 1) + 0.5 − µ√
2σ

))
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The probability hcdf of getting enough targets can be increased by raising the number of
partitions in Tp which corresponds to the coarse order ω in the algorithm in Line 10 of
Fig. 4b. The algorithm chooses ω in a way that it is minimal and hcdf is higher than a certain
probability Pconf which is also termed as the confidence value. From experimental results,
we noticed that 0.8 seems to be a good value to achieve high response time for the algorithm.

4.4 Distance Calculation

Beside the adaptive number of partitions and vectors to be considered by the kNN-Join
algorithm, the trade-off between precision and runtime also depends on the distance function,
namely: (1) exact calculation, (2) product quantization and (3) product quantization with
post verification. Product quantization is the fastest one but also provides the lowest precision.
It calculates distance values as described in Sect. 3.2. The exact calculation is too slow,
especially for a large number of target vectors and a large α. Method (3) strikes a balance
between both extremes and therefore represents the default distance function. In the first
place it calculates the approximated distance values using product quantization for k · α
targets. Second, it refines the k · pvf best candidates with the exact method to obtain the
final top-k. Here, the post-verification factor pvf is the major factor which influences the
precision of the kNN computation. By adjusting it the user can control the trade-off between
precision and runtime as desired in Challenge 3 of Sect. 2. For further details see the
evaluation in Sect. 5.2.

4.5 Flexible Product Quantization

The product quantization index provides two parameters: the number of subvectors m and
the number of centroids per quantizer |C |. The optimal setting of both parameters depends
on the desired precision and response time as well as on the typical number of distance
calculations α · k which are performed for every query vector. In general, higher values of
m and |C | correspond to higher precision and higher response times.
If the target set size α · k is large, the computation of the distances (Line 18) is the most
time-consuming step whereas for small target sets, the computation time of the preprocessing
step (Line 3) becomes more and more prevalent. Since a low value for m, i.e. a low number
of subvectors, corresponds to a faster distance calculation, the product quantization speed
for large target sets depends mainly on m. However, with a decreasing number of vectors
α · k, the preprocessing step (Line 3) has also a high computational effort which is mainly
influenced by |C |. A decreasing number |C | corresponds to a faster search process.
To be efficient in both situations, we introduce a flexible product quantization search
procedure. For product quantization search with a small number of distance calculations
α · k < Thflex an index is created with a large number of subvectors m = 2 · m′ but only a
small number of centroids |C | (see 4). This is called the LONG_CODES mode, since the pq
sequences consist of a larger number m of ids. For a larger number of distance calculations,
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the number of distances to sum up for each distance calculation (see Eq. (2)) can be reduced
by precalculating squared distances for pairs of centroids 〈cj, cj+1〉 and pairs of subvectors
〈u j (r), u j+1(r)〉 (Sect. 4.2):

d(〈u j (r), u j+1(r)〉, 〈cj, cj+1〉)2 = d
(
u j (r), qj (u j (y))

)2
+ d

(
u j (r), qj+1(u j+1(y))

)2 (7)
where : cj = qj (u j (y)), cj+1 = qj+1(u j+1(y)), j ∈ {2 · i |i ∈ N}

The distance calculation can then be expressed by the following equation:

d̂(r, y)2 =

m′∑

j=1
d(〈u2j−1(r), u2j (r)〉, 〈c2j−1, c2j〉)2 (8)

To efficiently calculate this, the product quantization sequences consisting of m numbers
can be transformed into sequences of m′ = m

2 numbers. Therefore, all centroid id pairs
〈id(cj), id(cj+1)〉 can be transformed into single ids:

id(cj, cj+1) = id(cj) · |C | + id(cj+1) (9)

This is called the SHORT_CODES mode. For a kNN-Join, this transformation process has to be
done only once irrespective of the number of queries (see Fig. 4b Line 3 to 6). Optimal
settings for the threshold Thflex are discussed in Sect. 5.4.

4.6 Optimizations

Target List for Product Quantization Search A naïve way of doing the distance calculation
via product quantization might be to calculate the distances directly by iterating through
the targets instead of collecting the targets as it is done in Fig. 4b in Line 13. However, to
execute product quantization efficiently it is important that the precomputed distances stay
in the cache. Since the precomputed distances are specific for the query, it is necessary to
collect all product quantization sequences and assign them to the query vectors in the first
place. Afterward, the distance computation can be done query-wise. So, all precomputed
distances specific for a query can stay in the cache. Moreover, the approach of [AKLS15]
could be used to further improve memory locality to speed up the product quantization
search. Thereby, product quantization sequences are compressed to fit into SIMD cache
lines.
Prefetching As stated in Sect. 4.4, we collect the targets in Line 13 of the search algorithm
(Fig. 4b) and assign them to the query vectors they should be compared to. This requires a
lot of random memory accesses to the lists of targets. To speed up this step, we prefetch
the target list entries which has to be updated next from time to time. We tested the effect
of the prefetching with our algorithm on a query with 10,000 queries and 100,000 targets
(300-dimensional vectors) and α = 100 and k = 10. For this query the construction time
of the target list could be reduced by ≈ 35%, from 1.4 seconds to 0.9 seconds. For more
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details about that one can take a look at the code3.)
Fast Top-K Update In Line 19 of the algorithm in Fig. 4b the topk gets updated after every
distance calculation. If the distance value is lower than every other index entry, the new
index entry has to be inserted into this array of current nearest neighbors. However, this can
be time-consuming since every other array element with a larger distance has to be moved.
For a large topk , the updates can be accelerated by first adding new candidates in a buffer. If
this buffer gets full or all distance calculations are done, all candidates are added to the topk
in one run. This is in particular useful if post verification (see Sect. 4.4) should be done
and thus a large set of candidates is required in the first place. Alternatively, one can use a
linked list instead of an array for the topk . However, linked lists are space consuming which
could become a problem for large query sets.

5 Evaluation

In this section, we first evaluate our adaptive kNN-Join implementation for varying post-
verification factors and α values and compare them to the basic batch-wise product
quantization approach (see Sect. 5.2). Moreover, we provide a detailed runtime investigation
for the different sub-routines of the kNN-Join given different query and target set sizes
(Sect. 5.3). The impact of short and long code sizes on the precomputation and distance
calculation is shown in Sect. 5.4. In Sect. 5.5, we finally evaluate the accuracy of the target
size estimator that was presented in Sect. 4.3.

5.1 Experimental Setup

We use two different datasets of word embeddings to evaluate our approach, the popular
Google News dataset4 which is trained with the word2vec [Mi13] skip gram model and a
dataset trained on data from Twitter5 with GloVe [PSM14]. We use python scripts to create
the index structures for these datasets as shown in Tab. 1. The kNN-Join, that can be used
for queries similar to the example in Fig. 1, is implemented as a user-defined function.
The index consists of entries with an entry_id and a product quantization sequence as
well as a codebook storing the centroids. As a baseline, we use the exhaustive product
quantization search as described in [JDS11], which can easily generalized to a kNN-Join
operation. Basically, it makes no use of inverted indexing and thus calculates approximated
distance values between any query vector in R and any target vector in T to determine
the kNN results. The method can simply reuse the index data table and the codebook of
our adaptive index (Page 6 Fig. 3) while ignoring the Coarse ID column. To make the
comparison fair we implemented a batch-wise search algorithm as UDF, like it is done for the

3 https://github.com/guenthermi/postgres-word2vec/blob/master/freddy_extension/ivpq_search_in.c

4 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing, last access: 15.08.18
5 https://nlp.stanford.edu/projects/glove/, last access: 15.08.18
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Google News (GN) Twitter (TW)
Size 3, 000, 000 1, 193, 514
Dimensionality 300 100
Coarse Centroids 2 · 32 2 · 20
Product Quantization m = 30, |C |∗ = 32 m = 10, |C |∗ = 32
Confidence Pconf = 0.8 Pconf = 0.8
Threshold (For Flexible Product Quantization) Thflex = 15, 000 Thflex = 15, 000
∗ number of centroids for each quantizer

Tab. 1: Dataset and Index Characteristics

(a) Google News (b) Twitter

Fig. 7: Evaluation of Execution Time and Precision

adaptive search algorithm. To enable repeatability we have published the implementation6.
The machine we run the evaluation on is a Lenovo ThinkPad 480s with 24GB main memory,
an Intel i5-8250U CPU (1.6GHz) and a 512GB SSD. The computation runs only on a single
core in a PostgreSQL instance on a Ubuntu 16.04 Linux System.

5.2 Influence of Index Parameters on Precision and Execution Time

In Fig. 7, the execution time and precision curves for different α values and increasing pvf
values are shown. All the kNN-Joins are executed on 5,000 query and 100,000 target vectors
with k = 5. The post verification factors used for the computation are 10, 20, . . . , 100. The
precision is determined by calculating the amount of nearest neighbor results of a query
vector which concur with the exact results relative to the number of k. Since doing the exact

6 https://github.com/guenthermi/postgres-word2vec
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calculation for all query vectors of a kNN-Join is very time-consuming, we draw bootstrap
samples of the query vectors of size 100 to derive an estimation of the actual precision
value by determining the precision of the samples results. The measurements for every
configuration are done 20 times and the median values are determined. The value of α · k is
always lower than Thflex. Thus, the LONG_CODES method is used.
As one can see, for most of the chosen values of pvf and α the adaptive search with
PQ distance calculation has the shortest execution time and also outperforms the product
quantization baseline method in terms of precision and runtime. Join operations with
exact distance calculation have significantly longer execution times than the other methods,
however achieving the highest precision value. Nevertheless, the post verification might be
the better choice in most of the cases, since it achieves high precision values while being
much faster than the exact computation. For increasing values of pvf the execution time, but
also the precision generally increases. Regarding the α values, one can also observe that
higher values lead to higher precision values at the expense of execution time.
The post verification method is significantly slower than the product quantization method,
even though pvf has a low value. This is the case since the use of post verification requires
to at least calculate k exact distance values for each query vector. Furthermore, it needs to
retrieve the raw vector data for every target vector which has to be considered for distance
calculation. Moreover, it is necessary to hold these vectors in memory until the distance
computation starts. During the distance computation, the vectors of the currently best
candidates have to be stored together with the product quantization sequences in a separate
TopK list to apply the post verification step later. For high values of pvf , on one hand, the
post verification step gets time-consuming while on the other hand more updates of the
TopK lists are required during the distance calculation step.

5.3 Performance Measurements

We evaluate the performance of the search algorithm by measuring the execution time of
certain subroutines of the algorithm denoted by numbers 1 to 4 in Fig. 4a. This is done
for different cardinalities of query sets R and target sets T . The query and target vectors
are sampled from the whole set of word embeddings of the Google News dataset. The
results of our measurements are shown in Fig. 8 for different values of |R| and |T |. For
the measurements we set α = 100, pvf = 10 and used a fixed target set size of 10, 000
while increasing |R| and a query set size of 10, 000 while increasing |T |. All measurements
are done five times and the average value is determined. The distance computation time
increases with the query set size as well as with the number of target vectors. The query
construction time only increases with an increasing query set size. If the query set size is
fixed the query construction time slightly decreases with increasing target set size because a
higher number of partitions has to be determined for every query vector in case the number
of targets is very low. The main effort during the query construction is the calculation of
the coarse quantization for every query vector. Since this process does not change with
the number of target vectors, the execution time is rather constant. The data retrieval time
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Fig. 8: Time Measurement for increasing sizes of query set R and target set T

effort is nearly constant for an increasing number of query vectors while its execution time
increases if the target vector set grows. The preprocessing has to be done per query vector.
Therefore only the query set size influences its execution time.

5.4 Flexible Product Quantization

Flexible product quantization (Sect. 4.5) can adjust the product quantization distance
calculation to smaller or bigger sets of vectors. The product quantization sequences in our
index structure for the Google News dataset consist of codes ci ∈ {0, . . . , 31} of length 30
which can be combined to shorter codes c′i ∈ {0, . . . , 1023} with length 15. The overall
execution time of a kNN-Join with product quantization distance calculation is shown
for both methods in Fig. 9a. Fig. 9b shows the execution times for the precomputation
and distance calculation step. We use query sets of size 5, 000. The target set size |T | is
shown on the x axis. The value α is set to |T |

2·k . The measurements are done 10 times with
randomly sampled query and target vectors and average values are determined. For small
target sizes with |T | ≤ 20, 000 the computation via long codes is faster. For larger target
sets the overhead of the distance calculation for long codes becomes prevalent such that the
calculation with short codes is faster.

5.5 Accuracy of the Target Size Estimation

The number of targets determined in the retrieval step of the algorithm before the distance
calculation can be estimated. For this purpose we leverage an approximation of the
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(a) Execution Times of Both Methods (b) Precomputation and Distance Computation
Fig. 9: Evaluation of Short and Long Codes Calculation

hypergeometric distribution as described in Sect. 4.3. The estimated number of targets
derived from the index is µ as defined in Eq. (3). In Fig. 10a, a scatter plot of the estimated
and actually derived number of targets is shown. For these measurements, kNN-Joins with
a single randomly sampled query vector are executed and the number of targets obtained in
the first retrieval step is determined inside the user-defined function. This was done for all
α ∈ {1, . . . , 100}, k = 5 and target sets of size |T | = 1, 000. For each α value 10 queries are
executed. The divergence of the estimation is higher if the desired number of targets per
query vector gets higher. This can be noticed in the 4th-grade polynomial regression curve
of the sample points in Fig. 10b. However, if the number of desired targets is near to |T | it is
apparently decreasing.
To prevent the system from executing a lot of database queries, one can adjust the confidence
value Pconf . It represents how likely it is that only one database request is sufficient to
derive the desired number of targets from the index. This was also evaluated by single query
kNN-Joins with α = 10 and the same search parameters as in the last experiment. The
amount of queries where the condition is true (only one request was required) in relation to
Pconf is shown in Fig. 10c. For each confidence value Pconf ∈ {0.05 · i |i = 1, . . . , 20} 1, 000
queries are executed. As desired, the amount of queries where the condition is true rises up
to 100%, if the confidence value increases up to 1. However, the actual confidence is quite
higher than Pconf , since the confidence can only be increased step-wise by incrementing ω.

6 Related Work

There is already limited work done in integrating kNN operations in database systems.
For instance, PostgreSQL can be extended by PostGIS [Po18] which allows running kNN
queries for low dimensional (geographical) data. Index structures can be created with
GiST (Generalized Search Trees) to speed up such operations. An integration of vector
similarity search for high dimensional data into Spark has been done by [BBS17] for
word embeddings. Here, LSH [Ch02] or spherical k-means [DM01] is used to partition
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(a) Estimated Size Values (b) Divergence (Absolute) (c) Confidence
Fig. 10: Estimation of Target Set Size

vectors for filtering. However, the actual distance calculation might be done with exact
methods. We proposed FREDDY [Gü18] which supports approximated kNN queries
for high dimensional data, however, can not efficiently execute kNN-Join operations. A
system called ADAMpro [GAKS14] adds approximated kNN-Search techniques on top of
a database system for multimedia retrieval. Furthermore, also approximated kNN-Joins
are already integrated into a relational database system by [YLK10]. However, this is only
applicable for low dimensional data. This work differs from previous work in the way that
it employs state-of-the-art approximated nearest neighbor search techniques to support
approximated kNN-Joins also for high dimensional data. To do so several modifications and
optimization specific for kNN-Joins in RDBMSs have been done.

Approximated Nearest Neighbor Search The difficulty to find the nearest neigh-
bors especially in high dimensional vector spaces has led to the development of several
kinds of approaches for approximated nearest neighbor (ANN) search. However, not
all of them are applicable for kNN-Join operations in RDBMSs. On one hand, recently
graph-based methods are developed [Ha11] which are fast, however, do not allow online
index updates. On the other hand, there are so-called cell probe methods which divide the
search space into several cells. One of the most popular ones E2LSH [Da04] applies locality
sensitive hashes (LSH) to achieve such a partitioning. Jegou et al. [JDS11] employ product
quantization for partitioning. Additionally, their approach can be combined with inverted
indexing similar to [SZ03] for even faster search. One advantage of product quantization
is, that it is easy to add vectors during runtime in an online update manner which is
particularly useful for the application in relational database systems. Thus, we based our
index on such quantization techniques. In the context of word embeddings, vectors for text
values of multiple tokens can be added during runtime by an averaging method [CJ15]. For
such updates, the quantizations of the new vectors have to be calculated. Vectors can be
removed by simply deleting the quantization entries from the index. For frequent inserts
and deletions, the online product quantization approach proposed by [XTZ18] suggests
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updating the centroids of the quantizer functions. In this way, the index can react to context
drifts of its containing data.

7 Conclusion

We propose a novel index structure for approximated kNN-Joins on high dimensional data
which is flexible enough to deliver good performance on different cardinalities for query
and target vector set. It enables non-exhaustive search for different target sets. We have
shown that the proposed index structure can achieve faster response times than product
quantization as an instance of a state-of-the-art exhaustive search method. We provide a
practical implementation of the operator and our optimizations in PostgreSQL.

Future Work By adjusting the post verification factor pvf one can influence the
precision and response time of the kNN-Join. However, there are further search parameters,
in particular α, which have an influence here. It might be hard for a user to find out
which parameter configuration leads to a specific precision and response time. Thus, an
oracle which can provide the optimal parameters to achieve a good precision by fulfilling
constraints regarding the execution time would improve the usability of the system.
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In-Database Machine Learning: Gradient Descent and
Tensor Algebra for Main Memory Database Systems
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Abstract: Machine learning tasks such as regression, clustering, and classification are typically
performed outside of database systems using dedicated tools, necessitating the extraction, transfor-
mation, and loading of data. We argue that database systems when extended to enable automatic
differentiation, gradient descent, and tensor algebra are capable of solving machine learning tasks
more efficiently by eliminating the need for costly data communication.

We demonstrate our claim by implementing tensor algebra and stochastic gradient descent using
lambda expressions for loss functions as a pipelined operator in a main memory database system. Our
approach enables common machine learning tasks to be performed faster than by extended disk-based
database systems or as well as dedicated tools by eliminating the time needed for data extraction. This
work aims to incorporate gradient descent and tensor data types into database systems, allowing them
to handle a wider range of computational tasks.

1 Introduction

Applications in the increasingly important domains of machine learning, data mining, and
statistical analysis often use multi-tier architectures. This needlessly impedes the knowledge
discovery process by separating data management from the computational tasks. The lowest
tier consists of a database system that, often undervalued and considered as a basic data
storage, typically uses SQL as established unified declarative data manipulation language.

When analyzing a taxi dataset, the database system continuously receives tuples containing
taxi trip data. The data then has to be extracted so it can be analyzed in tools like Caffe,
MATLAB, R, Spark, TensorFlow, or Theano. Even disregarding the various interfaces
involved, we cannot avoid the expensive extract, transform, load (ETL) process needed to
pull the data out of the data management tier. As modern main memory database systems—
which combine online analysis processing (OLAP) and online transactional processing
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(OLTP) [FKN12]—already allow data mining beside real time analysis, the integration of
machine learning algorithms represents the next step of moving computation to the data.

Modern machine learning essentially transforms data in tensors until a loss function is
applicable. These machine learning models are to the vast majority trained using gradient
descent. We believe that integrating a gradient descent optimizer in the database system
will encourage data scientists to perform more computational tasks within database systems.
In the taxi data example, a gradient descent operator would allow online optimization using
the latest data as soon as it is received without the need to extract or transfer it.

The main contribution of this work is to provide an architectural blueprint for integrating
gradient descent into modern main memory database systems. To achieve that, we need an
automatic differentiation framework, an architecture for fitting the optimizer into a database
system’s query plan, a tensor data type, and a user-friendly language extension. We design
gradient descent as a new relational operator that uses SQL lambda functions [Pa17] to
specify model functions. When extending SQL, an already standardized and established
language, by gradient descent and tensor algebra, we only require one new operator and one
new data type, enabling existing database systems’ interfaces to be reused without the need
of learning a new language.

The rest of this paper is structured as follows: First, after summarizing the existing research,
we describe our automatic symbolic differentiation framework and the gradient descent
operator together with the proposed tensor algebra to be integrated into database systems.
Having implemented these operators, we then explain how they can be used for machine
learning tasks. Finally, we compare the performance of our enhanced database management
system with that of other machine learning systems using the Chicago taxi rides dataset.

2 Related Work

This section describes current state-of-the-art machine learning tools, which will provide
a baseline in the later evaluation, as well as similar automatic differentiation and parallel
gradient descent frameworks, and the current state of research on moving data analytics
into database systems, which we continue in this work.

Dedicated machine learning tools, such as Google’s TensorFlow [Ab16] and Theano [Ba12],
support automatic differentiation to compute the gradient of loss functions as part of their
core functionality. As they are external to the database system, they require the extraction
and transfer of data. To integrate gradient descent, we only need the automatic differentiation
component of the tools. Here, we use TensorFlow’s expression tree for loss functions as a
reference for the automatic gradient differentiation. Also, we use TensorFlow as a baseline
in our experiments.

Automatic differentiation methods can be divided into numeric (approximating the derivative)
or symbolic differentiation; that again can be split into forward and backward accumula-
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tion [BPR15] depending on the direction in which the chain rule is applied. As existing
gradient differentiation tools do not allow for tensor derivatives, Laue et. al. [LMG18]
proposed a framework for automatically differentiating higher order matrices and tensors.
This is based on the Ricci calculus and allows both forward and backward accumulation.
The framework was built with the same aim as ours but—as their source code has not been
published—we had to prototype a similar one.

If database systems are to support tensor derivatives, they will need a tensor data type. The
work of Luo et al. [Lu17] integrated linear algebra based on matrices and vectors into a
relational database system in the way we need. It demonstrated database systems to be an
“excellent platform“ for distributed and scalable computations and also that integrated array
or matrix data types are superior to their table representations. To execute linear algebra in
database systems, Kernert [Ke16] deeply integrated linear algebra functionalities into an
in-memory database system and adapted dense and sparse matrices to a column-oriented
storage layer.

The MADlib [He12] analytics library extends existing database systems such as PostgreSQL
to perform data mining and statistics tasks. It provides a matrix data type and table functions
for linear and logistic regression, which we use as another baseline. EmptyHeaded [Ab17]
and HyPer [Pa17] integrate data mining algorithms into database systems as operators.
Whereas EmptyHeaded compiles algorithms and relational algebra together, HyPer provides
data mining operators as part of its relational algebra. This work extends its relational algebra
for machine learning. Another architecture for scalable analytics is XDB [Bi14] that unifies
transaction guaranties from database systems, partitioning, and adaptive parallelization
strategies for analytical workloads. Vizdom [Cr15] is an interface for Tupleware [CGK14]
for visually sketching machine learning workflows. Both approaches also intend to combine
the benefits of database and of analytics systems.

For the vision of a declarative framework for machine learning, Kaoudi et al. [Ka17] adapt
database systems’ optimizers for gradient descent computation. Using a cost function it
chooses a computation plan out of stochastic, batch, or mini-batch gradient descent. Another
notable automatic differentiation framework is Hogwild [Re11]. It presents an approximative
way of lock-free parallel stochastic gradient descent without synchronization.

3 In-Database Gradient Descent

This paper’s main contribution is to present a gradient descent operator that can be used
within a database system to reduce data transfers. This means we need a way to represent
loss functions in SQL, so we first introduce some necessary mathematical background and
define the terms used in our implementation. As well as integrating the resulting operator
into the query plan, we also need a framework for computing the gradient of a given loss
function, so we introduce our prototype framework for automatic gradient differentiation
based on partial derivatives. We conclude by integrating gradient descent into the relational
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algebra via two operators, one for gradient descent (used for the training dataset) and one
for labeling (used to label test datasets). Finally, we demonstrate how these operators fit into
the pipeline concept used by modern database systems.

3.1 Mathematical Background

Many machine learning tasks can be expressed as minimizing a mathematical function.
Parametrized model functions m ®w(®x) such as linear combination are used to predict the
label y (on data ®x and weights ®w with m elements each). A loss function lX ,y( ®w) measures
the deviation (residual) on all n datasets X of the predicted values m ®w(X) from the actual
labels ®y, for example, mean least squares:

m ®w(®x) =
∑
i∈m

xi ∗ wi ≈ y,

lX ,®y( ®w) =
1
n

∑
i∈n
(m ®w( ®xi) − yi)2.

Gradient descent, a numerical method, finds the loss function’s minimum by moving in
the direction of the steepest descent, which is given by −∇lX ,®y( ®w). Starting with arbitrary
initial weights ®w0, each step updates these values by the gradient, multiplied by the scaled
learning rate α, until the minimum is reached:

®wi+1 = ®wi − αi ∗ ∇lX ,®y( ®wi),
®w∞ ≈ { ®w |min(lX ,®y( ®w))}.

Batch gradient descent considers all tuples ®x ∈ X per iteration step, whereas stochastic
gradient descent takes one tuple for each step:

l®x,y( ®w) = (m ®w(®x) − y)2,
®wi+1 = ®wi − αi ∗ ∇l®x,y( ®wi).

3.2 Automatic Gradient Differentiation

As we need an automatic differentiation framework to compute the gradients, we develop
a framework for automatic tensor differentiation based on expression trees. Our database
system uses this as the computational core of the gradient descent operator but is also suited
for other applications. For that purpose, we have made the source code online7.

7 https://gitlab.db.in.tum.de/MaxEmanuel/autodiff
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Fig. 1: Expression tree for (a) the loss function and the partial derivatives (b) ∂l
∂a and (c) ∂l

∂b , used to
compute the gradient: the nodes (blue) represent operations, the variables (green) represent weights or
parameters to be optimized and therefore used for the derivatives, the placeholders are replaced by the
incoming tuples, and constants (ocher) represent a fixed value.

The framework expects the loss function as input and builds an expression tree out of it. The
expression tree allows to derive symbolically when optimizing the loss function by gradient
descent. The gradient descent operator (introduced below) passes the loss function to the
framework, obtaining the gradient in return. Since the operator forms part of the relational
algebra, it can consume the input tuples natively as it evaluates the gradient to update the
loss function’s weights at each iteration step.

The advantages of integrating gradient descent into the database system are that com-
putationally intense tasks can then run on the database server and data transfers are
reduced.

3.2.1 Basics

To carry out automatic gradient differentiation, we first build an expression tree based on
the given loss function. This tree consists of placeholders, later replaced by the incoming
tuples, variables representing the weights to be minimized, constants for constant numbers,
and operation nodes (see Fig. 1a). Given a model function ma,b(x) = a ∗ x + b that has the
variables a, b and the placeholder x the loss function is:

l®x,y(a, b) = (a ∗ xi + b − y)2.

After building the expression tree, we compute the partial derivations symbolically and
combine them into a single gradient, based on the partial derivatives of all the variables:

∇l®x,y(a, b) =
(
∂l/∂a
∂l/∂b

)
=

(
2(axi + b − y) ∗ xi
2(axi + b − y) ∗ 1

)
.
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3.2.2 Node Evaluation

The framework provides functions to evaluate single or multiple expression tree nodes.
Nodes are implemented as structs, consisting of a numerical operator identifier and the
child node identifiers. A compile-time registry stores the node types corresponding to each
operator identifier as a binary function. To evaluate a node, the framework needs to handle
node types listed above; variables and constants evaluate to their value, placeholders return
the values of the corresponding entries of the placeholder mapping, while operators are
evaluated by fetching all their child nodes, applying the appropriate evaluator function
(drawn from the operator registry), and returning the result.

An internal associative cache with node identifiers as keys stores information about previously
evaluated nodes. This enables us to avoid unnecessary work by reusing cached values when
possible, only fully evaluating nodes (and adding the results to the cache) when there is a
cache miss.

3.2.3 Deriving Nodes

The framework takes symbolic derivatives of some operator nodes (i.e., addition, mul-
tiplication, subtraction, and division) directly, by setting their respective variable nodes
to one and the other variables to zero in the expression tree. We handle other operator
nodes, such as the power function, according to the chain rule. Here, the unchanged term is
implemented as a reference to the corresponding node of the original expression tree. In this
way, we can calculate the derivatives of arbitrary-degree polynomials recursively. We use
forward accumulation to compute the derivatives of multiple variables, thereby generating
an expression tree for each derivative (see Fig. 1b, 1c).

When computing the gradient, multidimensional variables are treated as multiple single
variables, with the derivatives being generated by combining the partial derivatives with
respect to each variable into one gradient vector.

3.3 Integration in Relational Algebra

Now, we turn to this paper’s main contribution, namely the creation of an in-database
gradient descent operator. In this section, we specify the loss function using lambda functions
and embed the resulting operator into the database system.

To begin, let us return the taxi data example. Here, the database stores data about previous
trips, including information about the tip amount and how the fare was paid. This may
be used as training data for assessing future taxi rides (i.e., as a test dataset) and hence
may need to be labeled. Since data is added frequently, we do not have time to extract the
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create table trainingdata (x float, y float); create table weights(a float, b float);
insert into trainingdata ... insert into weights ...

select * from gradientdescent(

λ(data, weights) (weights.a*d.x+weights.b-d.y)2, -- the loss function is specified as λ-expression
(select x,y from trainingdata d), (select a,b from weights), -- training set and initial weights
0.05, 100); -- learning rate and max. number of iteration

List. 1: Gradient descent operator using a lambda expression as loss function.

necessary data but still want to work on the most up-to-date information. We will need both
a gradient descent operator (to minimize the parametrized loss function) and a labeling
operator if we are to assess future rides.

First, we demonstrate how lambda functions can be used to express user-specified loss
functions in SQL, then we explain how to integrate the operators needed for gradient descent
into the relational algebra. Finally, we explain the concept of pipelines in database systems
and explain how our operator enables parallelism.

3.3.1 Lambda Functions

Lambda functions are anonymous SQL expressions used “to inject user-defined code“ [Hu17]
into analytics operators. Originally developed to parametrize distance metrics in clustering
algorithms or edge weights in the PageRank algorithm, lambda functions are expressed
inside SQL queries and allow “variation points“ [Pa17] in otherwise inflexible operators. In
this way, lambda expressions broaden the applications of the default algorithms without
the need to modify the database system’s core. Furthermore, SQL with lambda functions
substitutes any new query language, offers the flexibility and variety of algorithms needed
by data scientists, and ensures usability for non-expert database users. In addition, lambda
functions allow user-friendly function specification, as the database system automatically
deduces the lambda expressions’ input and output data types from the previously defined
table’s attributes.

Here, we use SQL lambda expressions to specify the loss function whose gradient we wish
to compute. Given two relations, R{[a, b]} (containing the initial weights) and S{[x, y]}
(containing the data), the loss function (discussed above) can be specified, for example, as
the following linear combination:

λ(R,S)(R.a ∗ S.x + R.b − S.y)2.

In this way, we can specify arbitrary loss functions in SQL (see List. 1). Lambda functions
allow functions to be defined without providing further informations. The relation’s attributes
implicitly define the placeholder or variable nodes’ type. There is no need to redefine the
variable size, and we can also take the derivatives of higher-dimensional tensors.
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Fig. 2: Architecture for fitting gradient descent into database systems’ pipelines: (a) shows the basic
query plan of the gradient descent operator: a binary operator with training data, initial weights as
parameters, and the lambda expression for the loss function, it returns the optimized weights, that can
be passed over to a labeling operator, that labels test data; (b) shows the parallelized variant, where
the tuples are collected in sub threads, unified in the main thread, where the optimization happens in a
parallel loop; (c) shows the sub threads computing local weights without materialization, there are as
many input pipelines as iterations exist; (d) shows the combined approach, where local weights are
computed initially.

3.3.2 Operator Tree

To integrate gradient descent in relational algebra, we need two operators, one gradient
descent operator to calculate the weights and one to label the incoming tuples using the
parametrized loss function. These are both binary operators as they expect two underlying
operator trees each, one for delivering the input data (training data for the gradient descent
operator and test data for the labeling operator) and one for the weights (the initial ones and
the optimal ones respectively). Both operators use lambda expressions, introduced in the
previous chapter, for specifying the loss function.

The gradient descent operator is applied to a training dataset, such as the dataset of previous
rides in our taxi data example, to generate optimal weights and enable the labeling operator
to label future examples. Alternatively, a subset of the original dataset can be used for
training, by splitting the full dataset into training and testing datasets using standard SQL
queries. Either way, we predict at least one attribute (the label) as a function of the other
attributes (the features). The gradient descent operator first calculates the weights and passes
them over to the labeling operator (see Fig. 2a). The gradient descent operator requires
labeled training data, initial weights, and a lambda function for the model. The labeling
operator consumes and materializes the optimized weights, computes labels for all incoming
feature tuples, and adds them to the results set.
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The lambda expression must be aware of the tensors’ dimensionality. This is possible when
the tensor size and the shapes of the input parameters are known at the compile time of the
SQL query. Then, only one tuple containing all variables uses the pipeline for the initial
weights. So, we suppose the incoming pipelines delivering the weights to contain only one
tuple with all parameters. Another way is to enumerate the elements of every variable and
to push every element as a single tuple. However, this is less user-friendly as the variables’
dimensions would then need to be specified separately inside the lambda functions. This
also applies to the pipeline between the two operators: either the weights must be sent in a
fixed order or all the weights must be included in one tuple.

Both operators work independently and stand-alone. Normally acting together, they also
operate disassembled, when the weights should be computed only once but used multiple
times. Considering the taxi data example, we would materialize the optimized weights once
a day, to obtain consistent data for the following estimates, but then use the same weights
many times to label future taxi ride data. In addition, since the labeling operator simply
evaluates the specified lambda function and adds a new attribute (label) to each tuple, it can
be used with weights computed by other optimization methods.

3.3.3 Pipelining and Parallelism

We now investigate this architecture for integrating a gradient descent operator into a
database system in more detail. In database systems, operators can be combined to form an
operator tree with table scans as leafs. An operator tree may have multiple parallel pipelines
and each tuple flows through one pipeline. We apply the producer-consumer concept [Ne11]
to the operators to incorporate the algorithms in our main memory database system. It pushes
tuples toward their target operators and provides parallelism by dividing the process into
multiple execution pipelines. Operators can be classified as pipeline friendly or into pipeline
breakers and full pipeline breakers by their behaviour of passing elements through directly,
consuming all elements, or consuming and materializing all elements before producing
output. Multiple execution pipelines are realized as sub-threads of the operator whereas the
main thread is responsible for global computations in pipeline breakers.

This paper does not aim for comparing the performance of stochastic and batch gradient
descent but for make them fit into a database system. Therefore, we discuss different
strategies regarding the methods’ needs inside a database system. To recap, batch gradient
descent requires all tuples per iteration, whereas stochastic gradient descent expects one
tuple at a time. The first method optimizes the weights by taking the average deviation as
loss function, so all tuples needs to be materialized before. When expecting only one tuple
at a time, the tuples can be consumed separately or even in parallel when a synchronization
mechanism exists. Both methods work well when all tuples have been materialized before.

The intuitive way is to design gradient descent as a full pipeline breaker to consume all
incoming tuples before producing the calculated weights. The tuples have to be materialized
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before, so the design allows any optimization method to be called afterwards. For batch
as well as for stochastic gradient descent, the operator’s main thread performs multiple
iterations until the weights converge to the loss function’s minimum. Parallel loops grant
distributed execution either by evaluating the gradient for each tuple independently (batch)
or by updating weights as atomic global variables (stochastic). The weight synchronization
for stochastic gradient descent is based on previous works on parallelization of optimization
problems [Xi17; Zi10], which means taking the average weights after the computation
is complete (and is not the focus of this work). Fig. 2b shows the parallelism of the
materializing gradient descent operator. It consists of one main thread and one sub-thread
per incoming pipeline. The sub-threads consume and materialize the incoming tuples, while
the main thread collects them, consumes the input weights, and minimizes the loss function
in parallel.

Specialized for database system’s pipelines, we devise a non-materializing operator suited
for stochastic gradient descent only. While it still is a pipeline breaker, it computes stochastic
gradient descent in each pipeline on partitioned sets of data without materialization.
Multiple iterations are implemented by copying the underlying operator tree condoning
the disadvantages of recompiling the whole subtree and the fixed number of iterations.
Fig. 2c shows the gradient descent implementation with a separate input pipeline for each
iteration. For each pipeline, multiple sub-threads compute local weights. The main thread is
responsible for computing the global weights after each iteration is complete.

Finally, the combined approach combines the benefits of parallel pipelines with the
advantages of only compiling the subtree once and being able to terminate when the process
has converged. First, it precomputes the weights in separate pipelines handling subsets of the
data and then iterates gradient descent on the materialized tuples until it converges. Fig. 2d
shows the sub-threads only computing the local weights once for each input pipeline and
materializing the tuples. The main thread computes the global weights of the first iteration,
then performs the remaining iterations in parallel on the materialized tuples using either
batch or stochastic gradient descent.

The labeling operator is pipeline friendly and highly parallel. It evaluates the parametrized
model function for each tuple and adds the result as a new attribute without the need to
materialize any of the tuples.

4 Tensors for Database systems
Since many mathematical problems are based on tensor algebra, we also extend PostgreSQL’s
array data type to handle tensors by adding algebraic operations.

Here, we define dense tensors as a data structure whose size is evaluated at runtime but
which can also be specified by a table attribute when a tensor is created. The number of
dimensions is given first, followed by the width in each dimension. After that, the items
themselves are stored sequentially, ordered beginning with the highest-numbered dimension.
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4.1 Transpose

We define transpose as swapping the order of the first two dimensions,
with further dimensions being treated as one huge block element. Here,
SELECT tensor_transpose(a) FROM tensors produces the transpose of T t of the
tensor T as follows:

(tt )i1i2i3...im = ti2i1i3...im .

4.2 Addition/Subtraction/Scalar Product

We handle addition or subtraction elementwise, meaning the tensors S and T must have
identical dimensions, and the scalar product acts elementwise for a given scalar r ∈ R:

T,S,T + S,T − S,r ∗ T ∈ RI1×...×Im ,
(t + s)i1...im = ti1...im + si1...im ,

(r ∗ t)i1...im = r ∗ ti1...im .

4.3 Product

Matrices like A ∈ Rm×o,B ∈ Ro×n with equal inner dimensions can be multiplied to create
the product C by summing up the product of m row elements with n column elements for each
entry ci j =

∑
k∈[o] aikbk j . We can generalize this multiplication process to create products

of tensors with equal inner dimensions where the new entries are sums of corresponding
products:

T ∈ RI1×...×Im=o,U ∈ RJ1=o×...×Jn ,

S = TU ∈ RI1×...×Im−1×J2×...×Jn ,

si1i2...im−1 j2... jm =
∑
k∈[o]

ti1i2...im−1kuk j2... jm .

4.4 Tensor Usage for Equation Systems

Simple and multiple linear regression can be also computed without gradient descent by
instead relying on tensor operations. If we set the gradient equal to zero, we will solve
simple and multiple linear regression problems in terms of equation systems such as:

0 !
= ∇lX ,®y(a, b) =

1
|X |

∑
i∈ |X |

(
2(axi + b − yi) ∗ x
2(axi + b − yi) ∗ 1

)
.
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Using the helper variables x̂ =
1
|X |

∑
x∈X x and ŷ =

1
|Y |

∑
y∈Y y to represent the means of

the labels and features, we obtain the following equations, which can easily be expressed in
SQL (see List. 2):

a =

∑
i∈ |X |
(xi − x̂)(yi − ŷ)
∑

i∈ |X |
(xi − x̂)2 ,

b = ŷ − ax̂.

with means as (select avg(x) as mean_x, avg(y) as mean_y from datapoints),
sums as (select sum((x - mean_x) * (y - mean_y)) as nominator, sum(power(x - mean_x, 2)) as

denominator from datapoints, means),
a as (select ’a’, nominator / denominator as value from sums),
b as (select ’b’, mean_y - a.value * mean_x as value from means, a)

select * from b union select * from a;

List. 2: Simple linear regression in SQL.

To handle the increased number of variables involved in multiple linear regression, we can
make use of the tensor operations defined above. Assuming we can invert the matrix

X ′ =
©«
1 x1,1 . . . x1,n
...

...
. . .

...

1 xm,1 . . . xm,n

ª®®®¬
∈ Rm×(n+1),

then we can obtain the weights that minimize the loss function from the following
equation [LAC09], which can be expressed in our extended SQL (see List. 3):

®w = (X ′T X ′)−1X ′T ®y.

select (array_inverse(array_transpose(x)*x))*(array_transpose(x)*y)
from (select array_agg(x) x from (select array[1,x_1,x_2] as x from datapoints) sx) tx,

(select array_agg(y) y from (select array[y] y from datapoints) sy) ty;

List. 3: Multiple linear regression in SQL using tensor operations.

4.5 Tensor Differentiation for Gradient Descent

Now, we combine the previous sections on gradient descent and tensors to show how
minimization problems involving gradient descent can easily be handled using tensor
differentiation with the help of tensor data types. As an example, we calculate k-Means
cluster centers by using SQL tensor data types with our gradient descent operator.
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Gradient descent allows us to compute the centers for the k-Means clustering algorithm based
on a vector of initial weights. In List. 4, the two-dimensional points are provided as a set of
two attribute tuples and the initial centers are given as one tuple consisting of two vectors.
We then compute the centers via gradient descent by using a lambda function that expresses
the minimum distance from each point to the currently nearest center. These distances are
then optimized by adjusting the centers (weights). Afterwards, standard SQL-92 queries
can be used to assign the points to their respective clusters.

create table points (x float, y float); create table weights(wx float[], wy float[]);
insert into points ... insert into weights ...
select * from gradientdescent(

λ(data, weights) min(0 <= i < length(wx, 1), (x − wx[i])2 + (y − wy[i])2),
(select x,y from points), (select wx,wy from weights),0.05,100);

List. 4: Gradient descent for k-Means cluster computation.

5 Evaluation

In this section, we benchmark the gradient descent operator using the automatic gradient
computation framework for various model functions and the different architectures of
integrating gradient descent in HyPer, our in-memory database system.

These benchmarks are based on the Chicago taxi rides dataset8. For each ride, this included
the duration (in seconds), distance (in miles), fare, and payment type used. We used simple
linear regression to predict the fare based on the trip distance, and used multiple linear
regression to also consider the ride time. Finally, we used logistic regression to infer the
payment type (i.e., whether or not the fare was paid by credit card) from the fare cost.

We ran all tests using HyPer, our extended main memory database system developed for
mixed OLAP and OLTP transactions. As a baseline, we considered two other database
systems, namely MariaDB 10.1.30, PostgreSQL 9.6.8 with the MADlib v1.13 extension,
as well as two dedicated tools, namely TensorFlow 1.3.0 (with GPU support enabled and
disabled) and R 3.4.2. All experiments were run multi-threaded on a 20-core Ubuntu 17.04
machine (Intel Xeon E5-2660 v2 CPU) with hyper-threading, running at 2.20 GHz with
256 GB DDR4 RAM. An Nvidia GeForce GTX 1050 Ti was installed to enable TensorFlow
computations on a GPU. We provide the test scripts for reproducibility with a data generator
online9.

All tests were carried out five times and the average runtimes recorded. A Python script
managed the program calls and measured the total user time spent on each one. The runtimes
include the time taken to load the data into TensorFlow and into R, and also the TensorFlow
session creation time. To assume the database system as the data storage tier, the data there
was considered to have already been loaded.

8 https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

9 https://gitlab.db.in.tum.de/MaxEmanuel/regression_in_sql
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5.1 Linear Regression Using Equation Systems
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(a) Simple linear regression.
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(b) Multiple linear regression.

Fig. 3: Runtime for solving (a) simple or (b) multiple linear regression by equation systems.

Simple linear regression was solved using common SQL-92 queries in our main memory
database system and the competitor database systems. In TensorFlow, we used tensor algebra
for solving equation systems for linear regression. In MariaDB and PostgreSQL, we defined
the matrix operations needed to solve multiple linear regression as a single query, while
our main memory database system and R already support tensor algebra. The MADlib
extension for PostgreSQL provides a predefined function for solving equation systems for
linear regression that we used.

As Fig. 3 shows, our in-memory database was able to carry out both linear regression tasks
in less than 0.3 seconds, significantly outperforming all the baseline methods. For small
numbers of tuples, even the other classical database systems performed substantially better
than TensorFlow, which required at least three seconds for every task.

5.2 Gradient Descent Benchmarks

For the gradient descent benchmark, we evaluated linear regression, multiple linear regres-
sion, and logistic regression models, minimizing a least squares loss function. In addition,
we performed k-Means center computations with a specialized loss function. Each gradient
descent optimization run consisted of 5,000 iterations, with a learning rate of 0.0000000071.

For TensorFlow and R, we used gradient descent library functions to perform linear
regression and logistic regression. For the baseline database systems, we implemented
gradient descent for both models using PL/pgSQL in PostgreSQL and procedures in
MariaDB. Additionally, we benchmarked the MADlib’s logistic regression function for
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(b) Multiple linear regression.

Fig. 4: Runtime for (a) simple and (b) multiple linear regression using gradient descent.
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Fig. 5: Runtime for (a) logistic regression and (b) clustering using gradient descent.

PostgreSQL. We computed the centers for k-Means in TensorFlow using the corresponding
library function, in our main memory database system using both the dedicated k-Means
operator and the gradient descent operator, and in R using the k-Means clustering library.

The results for linear regression (see Figs. 4a, 4b) show that both the TensorFlow’s and R’s
library functions run in constant time for small numbers of input tuples and perform better
than the hardcoded in-database gradient descent functions, which scaled linearly.

Considering that linear regression can be solved by equation systems without gradient
descent, all database systems performed better for linear regression than the TensorFlow’s
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and R’s library functions. Nevertheless, our approach, gradient descent in a main memory
database system, was as performant as dedicated tools using predefined models.

For the logistic regression tasks (see Fig. 5a), also dedicated tools’ library functions, still
faster than the classical database systems, scaled linearly in the input size but were slower
than our approach running in HyPer.

Fig. 5b also shows that our gradient descent operator was the fastest at computing the
k-Means centers and even beating TensorFlow, although they both omitted the cluster
assignment step. The R k-Means library function was faster than TensorFlow and slower
than our database system (time for assigning points to clusters not excluded).

We further investigate on the time needed for data loading and for the actual computation.
In Fig. 6, we see the runtime split up into CSV data loading, computation time, and
TensorFlow’s session creation. Essentially is that the time needed for data loading represents
the time to be saved by doing more computations inside of database systems. Also we
observed that the time for TensorFlow’s session creation is more expensive when working
on the GPU whereas the computation itself sometimes is faster. This explains the better
results using TensorFlow without GPU support on smaller datasets.
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Fig. 6: Runtime split up into the different operations (declarations of variables, CSV data loading,
TensorFlow’s session creation, actual computation) using (a) 105 and (b) 106 tuples for simple/multiple
linear regression using equation systems and for simple and logistic regression by gradient descent: the
time needed for data loading could be saved by doing more computations inside of database systems.

In summary, much time is spent on data loading when performing computations using
dedicated tools. This time can be saved without any drawbacks by shifting computations
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into the core of database systems. So it is worth to optimize various gradient descent tasks
inside of database systems when such an operator exists.

5.3 Pipelining
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Fig. 7: Benchmarks for the different architectures of gradient descent in the database system’s pipelines
by varying the number of (a) available threads, (b) the input size, and (c) the number of iterations.

Finally, we evaluated several different approaches to integrating gradient descent into the
database systems’ pipelines. For this reason, we measured the performance of three different
linear regression implementations: materializing, non-materializing (pipelined), and the
combined approach. We varied the number of available threads (from one to ten, see Fig. 7a),
the training set size (from ten to 106, see Fig. 7b), and iterations (from one to 100, see
Fig. 7c). The other parameters remained constant, defaulting to 10 iterations, 106 tuples and
one thread. Parallelism is enabled for the scale tests only to avoid the overhead of preparing
multiple pipelines during the other tests.

In all tests, the non-materializing implementation was the fastest when the methods could not
terminate early because all iterations are precompiled as input pipelines. The materializing
and the combined implementations performed very similarly but more slowly, but had the
advantage of stopping when the weights converged or reaching a predefined threshold. All
three implementations behaved similarly, the runtime depends linearly on both the size of
the training set and the number of iterations.

All implementations scaled linearly with the number of threads with performance increasing
by about 20 % percent for each additional thread. The parallelization of the non-materializing
version scaled best whereas the overhead of synchronizing the weights for the materializing
one allows the parallelization to be faster from the fourth added thread. When enabling
parallelism but providing only one thread for execution, the non-materializing implementa-
tion performed worse than the others as it could not make use of the overhead of preparing
sub-threads for multiple input pipelines.

The combination of both strategies performed slightly but not significantly better in all
tests. As the tuples still have to be materialized and the weights have to be computed in
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parallel loops, only one iteration could be saved by precomputing the weights in front. In
our scenario, up to 10 % could be saved. But with increasing number of iterations the
performance gain would be negligible.

To conclude, the non-materializing version appears to be the fastest when all iterations must
be completed or when it is not possible to allocate enough memory for materializing the
tuples. If gradient descent converges quickly, a materializing approach is the most suitable,
due to its ability to terminate early. The combination of both methods is only suited when few
iterations are needed as of little performance gains otherwise. Also the non-materializing
architecture is only applicable in combination with stochastic gradient descent, whereas the
materializing one works with batch gradient descent as well.

6 Conclusion

In this paper, we have presented in-database approaches to machine learning that use
automatic differentiation, in-database gradient descent, and tensor algebra.

To achieve this, we extended recently introduced lambda functions to act as loss functions
for gradient descent, and we also developed three strategies for integrating gradient descent
into the pipelining concept of today’s modern in-memory database systems. For our gradient
descent, we developed an automatic gradient differentiation framework based on expression
trees.

Together with tensor algebra, we showed that both extensions are sufficient for solving
common machine learning tasks in the core of database systems without the use of external
tools. A direct comparison with other relational database systems (both classical disk-based
and modern in-memory systems) showed that this enabled linear regression tasks to be
computed more rapidly, even by classical disk-based database systems. Moreover, pure
approximation tasks like logistic regression can be solved as quickly by an extended main
memory database system as by dedicated tools like TensorFlow and R, our strongest
competitors.

This work was aimed at shifting more of the computational work to database servers. Given
that modern machine learning has come to rely on tensor data and loss functions, we felt it
was important to present an architectural blueprint for combining gradient descent with
tensor algebra in a modern main memory database system. Here, we reused SQL with
lambda functions as a language for specifying loss functions in a database system but,
independently of the acceptance of SQL by data scientists, gradient descent will form
one of the fundamental building blocks when database systems begin to take over more
computational tasks, which modern hardware certainly allows. However, if in-database
machine learning is to gain increased acceptance, a declarative meta-language for translation
into SQL will be required.
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Efficient Data-Parallel Cumulative Aggregates for
Large-Scale Machine Learning

Matthias Boehm1, Alexandre V. Evfimievski2, Berthold Reinwald3

Abstract: Cumulative aggregates are often overlooked yet important operations in large-scale
machine learning (ML) systems. Examples are prefix sums and more complex aggregates, but also
preprocessing techniques such as the removal of empty rows or columns. These operations are
challenging to parallelize over distributed, blocked matrices—as commonly used in ML systems—due
to recursive data dependencies. However, computing prefix sums is a classic example of a presumably
sequential operation that can be efficiently parallelized via aggregation trees. In this paper, we describe
an efficient framework for data-parallel cumulative aggregates over distributed, blocked matrices.
The basic idea is a self-similar operator composed of a forward cascade that reduces the data size by
orders of magnitude per iteration until the data fits in local memory, a local cumulative aggregate over
the partial aggregates, and a backward cascade to produce the final result. We also generalize this
framework for complex cumulative aggregates of sum-product expressions, and characterize the class
of supported operations. Finally, we describe the end-to-end compiler and runtime integration into
SystemML, and the use of cumulative aggregates in other operations. Our experiments show that this
framework achieves both high performance for moderate data sizes and good scalability.

Keywords: Cumulative Aggregates, ML Systems, Large-Scale Machine Learning, Data-Parallel
Computation, Apache SystemML

1 Introduction

Large-Scale ML Systems: Machine learning (ML) and artificial intelligence in general are
transforming our lives from recommendations and driving assistants to finance, health care,
and enterprise ML. Large data collections are essential for learning these ML models [Co09;
Da10], especially for complex models with many parameters. Thanks to feedback loops
for label acquisition like active learning [CAL94; CGJ94; RMJ06] and weak supervision
techniques [Ra16; Tr18], there is also abundant labeled data. These large labeled data
collections in turn necessitate large-scale ML systems with the ability for distributed
computation whenever necessary. State-of-the-art large-scale ML systems, therefore, follow
either of two predominant distributed architectures: data-parallel operations for batch
algorithms, often on top of data-parallel computation frameworks such as MapReduce
[DG04], Spark [Za12], or Flink [Al14]; or parameter servers for mini-batch algorithms
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[De12]. In SystemML [Bo14; Bo16], we support the general case of local and distributed
data-parallel operations, task-parallel parfor loops, as well as local and distributed parameter
servers, which can be seamlessly combined in a high-level language with R-like syntax.

Cumulative Aggregates: While data-parallel matrix multiplication [Bo16; Gh11; HBY13;
Ro17; YSC15; Yu17], element-wise operations and aggregations [Bo18], meta learning
[Sc15], and statistical functions [TTR12] have received lots of attention, important and
challenging distributed operations like cumulative aggregates are largely overlooked in the
literature. An example is the computation of column-wise prefix sums via

Z = cumsum(X) with Zi j = Σ
i
k=1Xk j = Xi j + Z(i−1) j, (1)

where Z and X are n × m matrices, and output cells Zi j are defined as the column-wise
sum from 1 through i, or recursively (with Z0j = 0). Other common cumulative aggregates
include cummin(X), cummax(X), cumprod(X) for cumulative minima, maxima, and
products. Applications of cumulative aggregates include (1) iterative algorithms for survival
analysis such as Cox hazard regression or Kaplan-Meier, (2) spatial and structural data
processing via linear algebra, and (3) data preprocessing such as the sub-sampling of rows
or the removal of empty rows, which both internally rely on cumulative aggregates.

Parallel Cumulative Aggregates: Although the recursive formulation in Equation (1)
seems inherently sequential, computing prefix sums is a classic example of an operation
that allows for efficient parallelization via aggregation trees [Bl93; CBZ90]. The basic
idea is a logical tree over the input data, level-wise parallel aggregation (up sweep) and
redistribution of offsets (down sweep) to compute the final output. This general approach of
parallel cumulative aggregates is broadly applicable, but the integration into large-scale ML
systems—with unordered distributed datasets—has received little attention so far.

Contributions: Our primary contribution is a holistic description of a framework for
distributed, data-parallel cumulative aggregates and its integration in Apache SystemML,
which is representative for state-of-the-art, large-scale ML systems:

• Background: In Section 2, we provide background on SystemML’s compiler and
matrix representations, and introduce straw-man solutions for cumulative aggregates.

• DistCumAgg Framework: In Section 3, we then describe our self-similar framework
for distributed cumulative aggregates. Besides basic aggregates, we also introduce
complex cumulative aggregates for common sum-product recurrence expressions.

• System Integration: Furthermore, in Section 4, we describe the end-to-end compiler
and runtime integration of the DistCumAgg framework in SystemML, and the use of
cumulative aggregates in other operations such as the removal of empty rows.

• Experiments: Finally, in Section 5, we report on experiments in SystemML, including
baseline comparisons with R, Julia, and MPI, micro benchmarks, as well as scalability
experiments with increasing data and cluster sizes.
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2 SystemML Preliminaries

To provide the necessary background of large-scale ML systems for data-parallel operations,
we first describe Apache SystemML’s [Bo14; Bo16] compiler and distributed matrix
representations. Subsequently, we introduce straw-man cumulative aggregates at script level
and give an overview of support for cumulative aggregates in other ML and DB systems.

Script Compilation: SystemML provides a high-level language with R-like syntax to
express algorithms via linear algebra such as matrix multiplications, aggregations, and
statistical functions. These scripts are parsed into a hierarchy of statement blocks, delineated
by control flow. For each basic block, we then compile directed acyclic graphs (DAGs) of
high-level operators (HOPs) and perform various simplification rewrites. Size information
is propagated from the inputs over the entire program and bottom-up through these HOP
DAGs to compute memory estimates per operation. These estimates—together with driver
and executor memory budgets—are in turn used to select physical operators for local and
distributed operations, which eventually yield an executable runtime plan. For this purpose,
we provide single-node CP (control program), as well as distributed Spark and MapReduce
operators for all supported operations4 and computation primitives.

Distributed Matrix Representation: Large-scale ML systems for data-parallel operations
commonly rely on blocked matrix representations, where matrices are stored as distributed
collections of block indexes and fixed-size blocks [Bo16; Lu17; Ma16; Ro17; Yu17; Za16].
Individual blocks—also known as tiles [HBY13; ZHY09] or chunks [St11]—are then stored
in dense, sparse, or ultra-sparse formats. The use of squared b × b blocks (e.g., with block
size b = 1K in SystemML) works very well in practice because it ensures aligned blocks
during join processing and aggregations independent of the join dimension, transpose
operations can be computed in a block-local manner, and even dense blocks (8 MB) still fit
in L3 cache, while block overheads are usually amortized across many values. For local CP
operations, the entire matrix is represented as a single block to reuse runtime operations,
avoid unnecessary overheads, and simplify local operations.

Straw-man Cumulative Aggregates: ML systems with language support for loops and
indexing can emulate cumulative aggregates at script level. In fact, we used these alternatives
in various SystemML use cases before we added built-in support in 2014. Figure1 shows
two examples that both compute cumulative column sums B of an n × m input matrix A.
We will use these straw-man implementations for baseline comparisons. Although both
functions perform only O(nm) additions, they have very different characteristics and thus,
it is useful to understand the resulting time complexity. First, cumsumN2 is the most obvious
implementation, where we maintain a row vector of column sums csums as we make a
single pass over the input and output matrices. However, due to copy on write semantics,
each row-wise matrix left-indexing B[i,]= internally copies the entire matrix B, which
results in O(n2m) time complexity. Due to the absence of loop-carried dependencies over

4 There are few exceptions such as specific solvers and deep neural network operations for which distributed
operations are rarely necessary and thus, not yet supported.
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 1: cumsumN2 = function(Matrix[Double] A)  
 2:   return(Matrix[Double] B) 
 3: {
 4:   B = A; csums = matrix(0,1,ncol(A));    
 5:   for( i in 1:nrow(A) ) {
 6:     csums = csums + A[i,];
 7:     B[i,] = csums;
 8:   }
 9: }

 1: cumsumNlogN = function(Matrix[Double] A)  
 2:   return(Matrix[Double] B) 
 3: {
 4:   B = A;  m = nrow(A); k = 1;    
 5:   while( k < m ) {
 6:     B[(k+1):m,] = B[(k+1):m,] + B[1:(m‐k),];
 7:     k = 2 * k;
 8:   }
 9: }

Fig. 1: Straw-man Cumsum Functions (amenable to update-in-place).

B, this pattern qualifies for update in-place (with O(nm)), but only for local, in-memory
operations whereas distributed RDDs are always immutable. Second, cumsumNlogN aims to
overcome this issue by using a trick of shifted addition and exponentially increasing k, which
results in a time complexity of O(n log n · m) with copy on write. This shifting is similar to
the data-parallel plus-scan by Hillis and Steele [HS86]. For local operations, SystemML
again uses update-in-place because the data dependencies between right- and left-indexing
correctly serialize the reads and writes on B. Finally, both script-level alternatives were
unsatisfactory in practice—especially for distributed operations—which motivated the
support for local and distributed built-in operations in SystemML.

Cumulative Aggregates in ML Systems: Numerical computing frameworks such as R,
Matlab, and Julia all support cumsum(X), cummin(X), cummax(X), cumprod(X), while
NumPy provides only cumsum(X) and cumprod(X). For handling matrix inputs, Matlab,
Julia, and NumPy use overloaded functions that specify the aggregation dimension with
mostly column-wise defaults. In contrast, R users explicitly apply vector operations, for
example, via apply(X, 2, cumsum) for computing column-wise prefix sums. R also provides
parallel apply functions, but they require X to fit in memory of a single node. In contrast,
SystemML provides built-in support for local and distributed cumulative aggregates, as well
as complex aggregates like cumsumprod(X), which we will discuss in Section 3.3.

Cumulative Aggregates in SQL: Given the importance in practice, we further review
support for cumulative aggregates in SQL. Besides naïve approaches via self-joins and
recursive formulations, the most practical approach is based on window functions as
introduced in SQL:2003’s OLAP operations [Me03]:

SELECT Rid, V, sum(V) OVER(ORDER BY Rid) AS cumsum FROM X

which defaults to a row range of ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.
While cumulative aggregation with a running sum—as used in PostgreSQL [Le15]—works
well for this scenario, Leis et al. further introduced a so-called segment tree to avoid
unnecessary redundancy for semi-additive aggregation functions like min and max over
variable-sized frames [Le15]. Interestingly, this segment tree is very similar to the concept
of aggregation trees from the HPC literature [Bl93; CBZ90]. In contrast to these settings
with ordered input data and direct access, we focus on data-parallel cumulative aggregates.
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Fig. 2: Overview of the Distributed Cumulative Aggregate Framework (with k=2).

3 Data-Parallel Cumulative Aggregates

In this section, we describe DistCumAgg a framework for distributed, data-parallel cumu-
lative aggregates. We first give an overview of the generic framework and subsequently
discuss basic and complex cumulative aggregates as instantiations of this framework.

3.1 DistCumAgg Framework Overview

Framework Design: A major goal of our DistCumAgg framework is a seamless integration
with blocked matrix representations, and hybrid runtime plans of local and distributed
operations. At the same time, we do not make assumptions about the size of inputs or
intermediates. The key idea to accomplish that is a self-similar operator chain as shown
in Figure 2, consisting of a forward cascade of aggregations until the data fits into driver
memory, a local cumulative aggregate over aggregates, and a backward cascade to produce
the final result. Self-similarity allows for arbitrary lengths of cascades k (aggregates of
aggregates) and the reuse of local cumulative aggregate operators as block operations.

Forward Cascade: Each iteration of the forward cascade applies an aggregation function
fagg to each matrix block to yield a row vector of column aggregates. These aggregates
are then merged into an intermediate blocked matrix by mapping the input block index
(i,j) to row i and column block j. Given typical block sizes of b = 1K, this aggregation
reduces the data size by three orders of magnitude for dense input data. However, the data
might still be too large. We, therefore, perform k iterations until the data fits into the driver
memory. Assuming the aggregate intermediates are dense, estimating the size is simply
done by scaling the input dimensions down by bk . We do not perform these aggregations at
once—as one might consider for optimization—because the intermediates are needed for
the backward pass to ensure data-local operations without data shuffling.
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Tab. 1: Instantiation of Basic and Complex Distributed Cumulative Aggregates.

Operation Init fagg foff fcumagg

cumsum(X) 0 colSums(B) B1: = B1: + a cumsum(B)
cummin(X) ∞ colMins(B) B1: = min(B1:, a) cummin(B)
cummax(X) −∞ colMaxs(B) B1: = max(B1:, a) cummax(B)
cumprod(X) 1 colProds(B) X1: = B1: � a cumprod(B)

cumsumprod(X) 0 cbind(cumsumprod(B)n1, B11 = B11 + B12 � a cumsumprod(B)
prod(B:2))

Local Cumulative Aggregate: The output of the last forward iteration is then collected
into a local matrix at the driver, where we perform a local cumulative aggregate fcumagg
over the partial aggregates, yielding cumulative aggregates that can be used as offsets.

Backward Cascade: The backward cascade produces the final results based on the previously
computed aggregates of all iterations and cumulative aggregate of the innermost iteration.
We first parallelize (i.e., distribute) the innermost cumulative aggregate, and then perform k
backward iterations inside-out. Each iteration splits the blocks of cumulative aggregates into
rows and joins this collection with the corresponding input blocks of the forward cascade.
The partial cumulative aggregates are then applied via foff as offsets to the first row of each
data block. Finally, we compute a block-local cumulative aggregate fcumagg to yield the
cumulative aggregate of the given iteration or final result, respectively.

Caching and Broadcasting: Regarding data-flow optimization, there are two simple
techniques that greatly improved performance. First, for Spark distributed operations, we
optionally cache aggregates of the forward cascade in storage level MEMORY_AND_DISK to
avoid lazily recomputing these intermediates and thus, reading the main input multiple times.
Second, to avoid unnecessary shuffling in the backward cascade, we perform a broadcast
join—instead of a repartition join [Bl10]—of the data input and offsets, if the offsets fit into
the broadcast memory budget. Using Spark, this applies to the innermost iteration because
the broadcast variable must fit twice in memory of the driver as the broadcast operation
serializes, compresses, and divides the in-memory object into chunks.

Instantiation: The generic DistCumAgg framework allows instantiating a variety of
distributed cumulative aggregates by assigning concrete functions to fcumagg, fagg and foff.

3.2 Basic Cumulative Aggregates

We now give an overview of instantiating the basic cumulative aggregates cumsum(X),
cummin(X), cummax(X), and cumprod(X) for distributed operations. Table 1 shows
the function mapping, where B refers to a single matrix block of X, a is a row vector
of cumulative aggregates joined to the data block B, and � denotes an element-wise
multiplication. Note that the functions fagg, foff, fcumagg reuse existing unary aggregates,
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Fig. 3: Example Distributed Cumulative Sum (with k=1, Zi = Xi + Zi−1).

element-wise operations, and cumulative aggregates, respectively. Since foff is applied
shifted by one block, we further need initialization values for the first block, which are—by
operation semantics—0,∞, −∞, and 1 for cumsum, cummin, cummax, and cumprod.

Example 1 (Distributed Cumulative Sum) Figure 3 shows a distributed cumsum with
k = 1 iterations. We have an 11 × 1 input matrix, again with block size 3, resulting in
4 blocks. To compute the cumulative sum in a distributed manner, we first compute the
block aggregates and merge them into a single in-memory matrix. Now we can perform
cumsum(A) over the partial aggregates and distribute the intermediate. However, we need
to shift these intermediates by one before the join because we want to use these as offsets
for the next block. Accordingly, the first value is padded by the initialization value (0 for
sum). We apply these offsets via element-wise addition to the first row of each block. Finally,
we compute the block-local cumulative sum to produce the result. If we can broadcast the
partial cumulative aggregates, the entire pipeline does not require any shuffle of the input
matrix but only of partial aggregates, which are significantly smaller than the input.

3.3 Complex Cumulative Aggregates

Apart from basic cumulative aggregates, SystemML also supports the complex cumulative
aggregate cumsumprod that is recursively defined as follows:

Z = cumsumprod(X) = cumsumprod(Y,W) with Zi = Yi +Wi � Zi−1. (2)

Common applications of cumsumprod are weighted (e.g., decayed) cumulative sums and
frame-wise cumulative sums, where any Wi = 0 acts as a frame boundary. The inter-
leaved additions and multiplications seem to complicate preaggregation, but because
multiplication distributes over addition we can still instantiate the DistCumAgg frame-
work as shown in Table 1. Intuitively, we factor out the scaling per block, which allows
again self-similar preaggregation. First, fagg now returns a 1 × 2 matrix computed via
cbind(cumsumprod(B)n1, prod(B:2)). Second, fcumagg remains the local cumsumprod(B)
operation which produces a scalar a per block. And third, we reapply the scaling through
foff via B11 = B11 + B12 � a before the final block-local cumsumprod(B).
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Fig. 4: Example Distributed Cumulative Sum-Product (with k=1, Zi = Yi +Wi � Zi−1).

Data-Parallel Computation: To fit into the DistCumAgg framework for data-parallel
operations, we restrict cumsumprod(X) to the special case where X is an n × 2 matrix that
concatenates the column vectors Y and W. This restriction ensures that all cumulative
aggregates are unary operations and that related entries in Y and W appear in the same
block, which enables efficient, block-local operations.

Example 2 (Distributed Cumulative Sum-Product) Figure 4 shows a distributed cum-
sumprod with k = 1 iterations. Similar to Example 1, the input matrix has 11 rows, block
size 3, and thus, 4 blocks. The second column is the weight vector W. For a distributed
cumsumprod, we first compute a 1 × 2 aggregate per block, holding cumsumprod(B)n1
and prod(B:2). These aggregates are merged into a local matrix on which we apply a
cumsumprod to yield a vector of scaling factors. The factors a are then applied to the first
element of respective blocks via B11 = B11 + B12 � a for computing the final result Z.

3.4 Characterization of Applicable Operations

Following the instantiation of basic and complex cumulative aggregates, we aim to
characterize the operations that are applicable to our data-parallel DistCumAgg framework.

Theoretical Foundation: The HPC literature has studied the parallel evaluation of recurrence
equations extensively [Bl93; HK77]. Hence, we directly reuse known results from [Bl93]
and impose additional restrictions for our DistCumAgg framework. Given a recurrence
xi = ai ⊕ (bi ⊗ xi−1), it can be efficiently parallelized if (1) ⊕ is associative, (2) ⊗ is semi-
associative (with an associative companion operator) or associative, and (3) ⊗ distributes
over ⊕. These conditions apply to first- and higher-order recurrences.

Additional Restrictions: Efficient, data-parallel computation over blocked matrices, and
the integration into our self-similar framework further require two restrictions:

• No Higher-Order Recurrences: Due to limited data access across blocks, higher-order
recurrences such xi = ai ⊕ xi−1 ⊕ xi−2 are disallowed. We also limit the number of
inputs to less or equal the block size to ensure co-partitioning of inputs.

274 Matthias Boehm, Alexandre Evfimievski, Berthold Reinwald



Data-Parallel Cumulative Aggregates 9

• Vectorized Operations: We require that ⊕ and ⊗ have existing aggregate and element-
wise operations, which enables the composition from existing block operations.

Strength Reduction: Note that cumsumprod(X) uses cumsumprod(B)n1—i.e., the last
block entry—as part of fagg. Similarly, for cumsum(X), we could use cumsum(B)n:.
However, this simplifies to colSums(B), which avoids materializing the cumsum output
block.

4 System Integration

A robust and holistic system integration faces additional requirements. In this section, we
discuss the end-to-end compiler and runtime integration of our DistCumAgg framework
into SystemML as well as the use of cumulative aggregates in other operations.

4.1 Compiler and Runtime Integration

After script parsing and validation, a cumulative aggregate is represented by a single
high-level operator (HOP), specifically a typed unary operator like u(cumsum). This HOP
is then compiled into plans of physical operators as follows.

Simplification Rewrites: At HOP-level, we perform multiple rounds of size propagation and
simplification rewrites. First, during intra- and inter-procedural analysis, we infer the output
sizes of cumulative aggregates by propagating the input dimensions and assuming dense
outputs. Second, we apply the following simplification rewrites in terms of transformation
rules, which avoid unnecessary intermediates and data shuffling in distributed environments:

rev(cumsum(rev(X))) → X + colSums(X) − cumsum(X)
colSums(cumsum(X)) → colSums(X � seq(nrow(X), 1))

X � cumsum(diag(matrix(1, nrow(X), 1))) → lower.tri(X)
cumsum(X) → X iff nrow(X) = 1.

(3)

Examples of static—i.e., size-independent—rewrites are the computation of suffix sums
rev(cumsum(rev(X))) from the prefix sums, as well as the computation of aggregates such
as sum(cumsum(X)) or colSums(cumsum(X)) from entries in X scaled by their inclusion
frequencies. Furthermore, the expression X� cumsum(diag(matrix(1, nrow(X), 1))) selects
the lower triangular matrix of a squared matrix X (with nrow(X) = ncol(X)) and thus, can
be extracted via lower.tri(X). In contrast, dynamic rewrites have additional size constraints:
for example, cumsum(X) → X only applies if X is a single-row matrix. Finally, we also
support cumulative aggregates in SystemML’s code generation framework, which similarly
requires size information for costing and validity constraints [Bo18].
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Fig. 5: Compilation Chain of Cumulative Aggregates.

Execution Plan Generation: After rewrites, we then use the size information for computing
memory estimates. Compared to the local memory budget, these estimates are in turn
used for execution type selection of local (CP) or distributed Spark (SP) operations. A CP
operation maps to a multi-threaded physical operator, while an SP operation maps to a DAG
of operators as shown in Figure 5. For a single-iteration cumsum(X), we compile a unary SP
cumagg, a CP cumsum, and a binary SP cumoff. These operators are annotated with the
execution types, operation types (e.g., Kahan addition [TTR12]) and additional flags like
broadcasting, number of threads, and in-place updates. This LOP DAG may also include
checkpoints for caching if needed. In case of nrow(X) ≤ b, we compile only a cumoff
of X and a constant vector because the single row block does not require offsets. Finally,
we generate runtime instructions from the LOP DAG in a depth-first traversal. Based on
live variable analysis, this runtime plan also includes rmvar instructions for cleaning up
temporary intermediates and their lineage-aware broadcasts and RDD variables [Bo16].

Runtime Operators: Important aspects of the runtime integration are the different physical
operators and data transfer between local and distributed operations:

• CP cumsum operator: For local in-memory operations of fcumagg, we provide a
basic operator with copy-on-write semantics. This operator is parameterized with
the specific fcumagg and allows for single- or multi-threaded operations. In case of
multi-threading, we compute offsets similar to the DistCumAgg framework but with
static range partitioning in the number of threads. Optionally, this operator performs
in-place updates—as shown in Figure 5—to avoid the expensive output allocation.

• Spark Partial Cumulative Aggregate: The data-parallel Spark ucumac aggregation
(e.g., ucumack+ in Figure 5) is an operator for performing fagg during the forward
cascade. In detail, this entails (1) a data-local block aggregation into a row of partial
column aggregates, (2) the insertion of this row into its position of an empty target
block, and (3) the global merge of these partial blocks. For memory efficiency and
scalability, partial blocks are communicated in sparse format.

• Spark Cumulative Offset: The data-parallel Spark bcumoff offset aggregation, then
applies the offsets via foff and performs the final block-local fcumagg. Performance is
largely influenced by the join of data and offsets. If configured for broadcast, we use
an efficient broadcast join that avoids data shuffling and overcomes Spark’s limitation
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of 2GB broadcasts with partitioned broadcasts [Bo16]. Otherwise, we parallelize the
offsets, split them into rows, and fall back to a repartition join. Similarly, if the data is
hash partitioned, we also use a repartition join because Spark exploits the partitioning
for shuffling only offsets [Bo16]. Finally, we perform a zero-copy offset aggregation
during fcumagg to avoid an additional copy-on-write, and thus, GC overheads.

The data transfer between CP and Spark operations is handled through SystemML’s
bufferpool [Bo16]. For example, each CP operation pins its inputs via acquireRead, which
under the covers evaluates pending RDD operations and collects the output. To reduce
latency, we overlap the RDD evaluation with the allocation of the local matrix.

4.2 Cumulative Aggregates in Other Operations

Cumulative aggregates are not just versatile tools at script level but also used as key primitives
in other operations with complex dependencies. Examples are the removal of empty rows or
columns via removeEmpty, the subsampling of rows and columns via permutation matrix
multiplication, and the computation of cumulative distribution functions.

Semantics of removeEmpty: We use removeEmpty as an example. For instance, the expres-
sion removeEmpty(target=X, margin="rows", select=rowSums(X!=0)>=thrU) removes
users—i.e., rows—with too few ratings (< thrU) from a ratings matrix X in preparation for
matrix factorization. Generally, removeEmpty selects non-empty rows or columns, or if a
select vector is provided all rows or columns whose vector entry is non-zero.

Data-Parallel removeEmpty: Parallelizing removeEmpty is challenging over distributed,
blocked matrices because the decision on the removal of a row depends on all columns of
this row, and the output position of a row depends on the removal decisions of all previous
rows. However, with cumulative aggregates, parallelization becomes simple. To explain this,
we decompose removeEmpty into separate phases. Local operations exploit sparse formats
and early-out opportunities, but here we focus on data-parallel operations only:

• Selection Vector Computation (No-op if user-provided): For distributed data-parallel
operations, we simply compile distributed rowMaxs(X , 0) or colMaxs(X , 0)
operations, respectively. These operations result in a 0/1 indicator vector s.

• Row/Column Selection: Subsequently, we want to select rows/columns from the
blocked representation of X according to s into the blocked representation of the
output. The key to accomplish that is a potentially distributed r = cumsum(s), where
ri holds the output position of the ith input row. This is similar to parallel packing
of selected elements [CBZ90] and filtering through compaction [Ho05]. Finally, we
simply reshuffle and merge relevant rows/columns into the target representation.
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During compilation of removeEmpty, we construct a temporary HOP DAG including
u(cumsum) to prepare the r vector. This way, we reuse the entire compiler and run-
time integration described in Section 4.1 including hybrid runtime plans and internal
optimizations.

5 Experiments

Our experiments study both local and distributed cumulative aggregates. First, we compare
SystemML with numerical computing frameworks such as R and Julia for singlenode
operations. Second, we investigate the scalability of distributed cumulative aggregates,
including the impact of internal optimizations, and a comparison with MPI.

5.1 Experimental Setting

Cluster Setup: We ran our experiments on a commodity 2+10 node cluster of two head
nodes, and 10 worker nodes. All nodes have two Intel Xeon E5-2620 CPUs @ 2.1 GHz-
2.5 GHz (24 virtual cores), 128 GB DDR3 RAM @ 1.3 GHz, six 3 TB disks, 1Gb Ethernet,
a nominal peak memory bandwidth of 2 × 43 GB/s, and run CentOS Linux 7.2. We used
OpenJDK 1.8.0_151, Hortonworks 2.5, Apache Hadoop 2.7.3, and Apache Spark 2.3.1, in
yarn-client mode, with 10 executors, 19 cores per executor, 40 GB driver memory, 60 GB
executor memory, and default memory fractions (0.5/0.6), which results in an aggregate
cluster memory for data between 10 · 60 GB · 0.5 = 300 GB and 360 GB.

Baselines and Data: Our baselines are cumsum built-in operations and the straw-man
scripts from Figure 1 in SystemML 1.2++ (12/2018) [Bo16], Julia 0.7 [Be17], and R 3.5, as
well as a C-based MPI baseline using OpenMPI 3.1.3. All systems use double precision (i.e.,
FP64); SystemML is configured with a default block size of b = 1K and a local memory
budget of 70% of the maximum heap size. Finally, we use synthetic data for studying these
baselines on a variety of scenarios with different data sizes.

5.2 Baseline Comparison

In a first set of experiments, we compare the script-level straw-man implementations and
built-in support in SystemML, R, and Julia to provide a baseline for distributed operations.
We use a single worker node, with -Xmx96g -Xms96g -server for SystemML, unlimited
memory for R and Julia, and we report the average runtime of 100 operations.

Increasing Data Size: For a basic comparison, we fix the number of columns as m = 256
and systematically increase the number of rows. Figure 6 shows the results with log-scaled
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Fig. 6: Cumsum Performance with Increasing Number of Rows, Constant Number of Columns.
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Fig. 7: Cumsum Performance with Increasing Number of Columns, Decreasing Number of Rows.

axes. First, although cumsumN2 and cumsumNlogN are amenable to update-in-place5, these
script level functions are one to two orders of magnitude slower than the built-in functions.
Here, cumsumNlogN shows higher overhead than cumsumN2 due to larger intermediates.
However, without update-in-place rewrite in SystemML, cumsumNlogN largely outperforms
cumsumN2 (e.g., 0.9 s vs. 86.7 s for 10K rows). Second, Julia performs best on cumsumN2
and cumsumNlogN because for SystemML and R, instruction interpretation overhead
constitutes a bottleneck at n = 256 columns. Third and most importantly, the built-in
functions of SystemML, and Julia show very similar performance, while R has additional
overhead for its column-wise apply. SystemML slightly outperforms Julia due to multi-
threaded operations, which are, however, dominated by result allocation.

Varying Matrix Shape: To validate the observation of high instruction interpretation
overheads, Figure 7 shows the results for a constant data size of 64M cells (512 MB) but
increasing number of columns (and thus, decreasing number of rows). First, Figure 7(c) shows
that all built-in functions are rather invariant to the number of columns. Second, Figures 7(a)
and 7(b) show that SystemML’s and R’s performance increases with increasing number of
columns and thus decreasing number of operations, which is especially pronounced for
cumsumN2 (Figure 7(a)) where the number of operations is linear in the number of rows. In

5 SystemML and R have copy-on-write semantics but apply update-in-place via rewrites and reference counting.
In contrast, Julia uses update-in-place by default and requires an explicit B = copy(A) if this is not desired.
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Fig. 8: Impact of Multi-Threading, In-place Updates, Broadcasting and Block Sizes.

fact, SystemML outperforms R and Julia for these script-level algorithms if the number of
columns is sufficiently large. Surprisingly, Julia shows a slowdown with increasing number
of columns, especially for cumsumNlogN, which is likely due to GC overheads.

In-Place Operations: For the sake of a better understanding of builtin operations perfor-
mance, Figure8(a) shows the impact of multi-threading and in-place updates, as well as
a break-down of computation times. Here, ST/MT stand for single- and multi-threading,
while the i-suffix indicates in-place updates. Multi-threading improves the compute time by
4.7x, but its runtime is then dominated by result allocation. Hence, in-place operations—as
applied between forward and backward cascade—further significantly improve performance.

5.3 Impact of Broadcasting and Block Sizes

In a second set of experiments, we evaluate distributed cumulative aggregates in SystemML
for the common scenario of dense matrices that fit in aggregate cluster memory and require
only k = 1 iterations. We use a—randomly generated—dense 10M × 2K input matrix
(i.e., 160 GB) and study the impact of broadcasting, partitioning, and block sizes. To force
Spark’s lazy evaluation, we report the average runtime of 100 print(min(cumsum(X)))
evaluations, including creating the Spark context once (≈ 15 s).

Broadcast vs Repartition Join: As described in Section 4.1, joining the data and computed
offsets via a broadcast or co-partition join instead of a repartition join, allows for data-local
computation without shuffling of the main input. Broadcast joins apply only to the innermost
iteration, while co-partition joins apply to all iterations, except the outermost iteration
unless the data is already partitioned. Here, we force the individual types and repartition
the data for co-partition joins just once. Figure 8(b) shows significant improvements with
broadcast/co-partition joins—whose differences will be analyzed separately—compared to
a repartition join by up to 19.6x (17.3x at default block size of b = 1K).
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Fig. 9: Scalability with Increasing Data Size (from 4 MB to 4 TB).

Impact of Block Sizes: In SystemML, we use 1K as the default block size because it offers a
great balance between (1) low per-block memory requirements and good cache behavior, as
well as (2) amortized block overheads. For distributed cumulative aggregates, the block size
also influences the size reduction per iteration, and thus, the number of partial aggregates,
the number of iterations, and the broadcast overhead. In Figure 8(b), we observe—despite
the moderate range of block sizes from 64 to 2048—significant performance impact of up to
more than an order of magnitude. Repartition joins are less sensitive to block sizes because
they are dominated by shuffling, but the default of 1K is generally a good compromise.

5.4 Scalability

In a third set of experiments, we test the scalability of cumulative aggregates over a spectrum
of data and cluster sizes. We use a 10 GB driver and report the average runtime of r
print(min(cumsum(X))) evaluations, including creating the Spark context once.

From 4 MB to 4 TB: Figure 9(a) shows the runtime of SystemML’s execution modes—
with 10 GB driver and r = 10 repetitions—with increasing data size. Forced single-node
operations are fast for small data but run out-of-memory at 40 GB. Already at 4 GB, we
see a slowdown because pinning 2 × 4 GB in a 10 GB driver leads to evictions on every
cumsum. In contrast, forced Spark operations show high overhead for small data due to Spark
context creation, low parallelism in the number of partitions, and distribution overheads, but
good performance for distributed, in-memory data and scalability for larger datasets. When
the data size exceeds cluster memory at > 50G cells, we see a 34.2x slowdown for 3.3x
increase in data size. Similarly, multi-iteration, repartition-based operations cause another
5.4x slowdown for the next 3.3x size increase. SystemML’s default hybrid mode combines
the advantages and provides efficiency for small as well as scalability for large datasets.
Table 9(b) further shows an idealized MPI baseline (implemented in C) using 10 nodes and
19 slots per node. This baseline performs worker-local data generation, as well as r = 10
repetitions of a local fagg, MPI_Scan (MPI_SUM), local fcumoff, fcumagg, and aggregation, as
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Fig. 10: Scalability with Increasing Cluster Size (from 2 to 10).

well as a final MPI_Reduce (MPI_MIN). For sufficiently large data, SystemML shows—despite
the handling of unordered blocks—only a 2.3x slowdown and thus, competitive performance.

Weak and Strong Scaling: Finally, we study the weak and strong scaling behavior of
broadcast- and co-partition-based cumulative aggregates with r = 100 repetitions. First, for
weak scaling (WS), we simultaneously increase the data and cluster size and thus, expect
constant runtime. Figure 10(a) shows moderately increasing runtimes but generally good
scaling behavior. Specifically, we have a 2.3x and 1.7x slowdown when increasing from
(2 nodes/40 GB) to (10 nodes/200 GB). Second, for strong scaling (SS), we increase the
cluster size but keep the data size constant at 40 GB. Comparing the runtime with 2 and 10
nodes, we expect a speedup of 5x but observe only 1.7x and 2.3x. This is due to the small
data size of 40 GB, a moderate number of ≈ 40 GB/128 MB = 312 partitions (and thus,
tasks), and a decreasing number of task waves d312/(19 · #Nodes)e. Overall, co-partitioning
scales better because the initial partitioning is amortized over 100 repetitions, and piecewise
broadcast fetching shows high latency over 1Gb Ethernet. To validate this explanation, we
repeated the broadcast experiments on a 6 node cluster of similar HW but 10Gb Ethernet.
When scaling from 2 to 6 nodes, we see a significantly better WS runtime overhead of 1.3x
instead of 1.6x, and an SS speedup of 2.3x instead of 1.5x.

6 Related Work

We review related work from high-performance computing (HPC), database systems, recent
large-scale ML systems, and the more general problem of sum-product optimization.

HPC Parallel Prefix Scans: Parallel prefix sums are a key building block in many HPC
applications and therefore well-studied in the literature. Hillis and Steele presented an
O(n log n) parallel scan6 (prefix) operation [HS86] for computing prefix sums—similar
to cumsumNlogN in Figure 1—that generalized to associative operations. Blelloch later

6 The name scan was derived from the APL [FI73] plus-scan for computing vector prefix sums [Bl93].
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publicized more efficient parallel prefix scans, where for n data items and p processors,
each processor sums up dn/pe elements, and partial offsets are computed via an up- and
down-sweep through a virtual aggregation tree [Bl89; Bl93; CBZ90]. These scan primitives
are widely applicable to evaluate polynomials, solve recurrences or tridiagonal linear
systems, and even implement radix- and quick-sort [CBZ90]. Sanders further analyzed and
compared alternatives for MPI_Scan [ST06]. Parallel algorithms for first- and higher-order
recurrences have also been theoretically investigated [CK75; HK77; KMW67; KS73]. More
recently, several works introduced efficient scan primitives for GPU [Ho05; HSO07] and
FPGA [AS14] devices. However, all of these works focused on traditional message-passing
or shared-memory HPC systems with random data access. In contrast, we described efficient
cumulative aggregates for data-parallel ML systems with blocked matrix representations on
top of frameworks such as MapReduce [DG04], Spark [Za12], or Flink [Al14].

Window Functions in Database Systems: Recently, the parallelization of cumulative
aggregates has also received attention in the context of efficiently evaluating SQL window
functions [Be13; Le15]. Database systems primarily parallelize over independent partitions
of the PARTITION BY clause, but additional approaches exist for large partitions. First,
Bellamkonda et al. introduced a method [Be13] that includes the ORDER BY keys into
Oracle’s data distribution keys to create artificial partitions. Based on an existing range
partitioning and sorting, the query coordinator then collects partial aggregates and distributes
offsets back. Second, Leis et al. introduced the dynamic classification of partitions for
inter- and intra-partition parallelism [Le15], where the latter relies on parallel sorting, and
materializing a segment tree of partial aggregates, which can be computed in parallel. In
contrast to our DistCumAgg framework, these works rely on partitioning and sorting, focus
primarily on shared memory, and do not support complex cumulative aggregates.

Large-Scale ML Systems: Predominant architectures for large-scale—i.e., distributed—ML
Systems are (1) data- or model-parallel parameter servers [De12; Li14], and (2) systems
for data- and/or task-parallel distributed operations. Distributed cumulative aggregates
are only relevant for the second category of data-parallel ML systems. In this context,
systems such as RIOT [ZHY09], PEGASUS [KTF09], SystemML [Bo16], SciDB [St11],
Cumulon [HBY13], Distributed R [Ma16], DMac [YSC15], Spark MLlib’s block matrices
[Za16], Gilbert [Ro17], MatFast [Yu17], and SimSQL [Lu17] all rely on blocked matrix
representations, which means that our DistCumAgg framework could seamlessly be applied
in these systems. Yet, to the best of our knowledge, SystemML is the only ML system that
provides built-in support for distributed cumulative aggregates.

Sum-Product Optimization: In contrast to most ML systems like OptiML [Su11], Theano
[Be10], SystemML [Bo16], and TensorFlow XLA [Go] that perform simplification rewrites
via heuristic pattern matching, sum-product optimization aims at a systematic exploration of
rewrite opportunities. Existing work such as AMF [MP99] and SystemML-SPOOF [El17]
use axioms and algebraic properties, or elementary transformation rewrites to systematically
explore valid, alternative plans. Due to the complexity of reasoning about recurrences,
none of these sum-product frameworks support cumulative aggregates yet. However, it is
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an interesting direction for future work to automatically derive rewrites for these complex
cumulative aggregates, especially regarding the interactions with other operations.

7 Conclusions

To summarize, we introduced the generic DistCumAgg framework for efficient, data-parallel
cumulative aggregates over distributed, blocked matrix representations. We described the
end-to-end compiler and runtime integration in SystemML, and physical operators that
seamlessly fit into hybrid runtime plans of local and distributed operations. Our experiments
have shown competitive performance for local and distributed in-memory operations, as well
as almost linear scalability with increasing data size and degree of parallelism. In conclusion,
many presumably sequential operations can be efficiently computed over distributed, blocked
matrix representations on top of data-parallel frameworks like Spark. Cumulative aggregates
are used in a variety of algorithms and for data preprocessing, which makes them valuable
tools for data scientists. Interesting future work includes sum-product rewrites, dedicated
GPU operators, and other recursive computations like time series analysis.

Acknowledgments: We thank José Molero for help with the MPI experiments and our
anonymous reviewers for their valuable comments and suggestions.
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From Natural Language Questions to SPARQL Queries:
A Pattern-based Approach
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Abstract: Linked Data knowledge bases are valuable sources of knowledge which give insights,
reveal facts about various relationships and provide a large amount of metadata in well-structured form.
Although the format of semantic information – namely as RDF(S) – is kept simple by representing
each fact as a triple of subject, property and object, the access to the knowledge is only available using
SPARQL queries on the data. Therefore, Question Answering (QA) systems provide a user-friendly
way to access any type of knowledge base and especially for Linked Data sources to get insight into
the semantic information. As RDF(S) knowledge bases are usually structured in the same way and
provide per se semantic metadata about the contained information, we provide a novel approach that
is independent from the underlying knowledge base. Thus, the main contribution of our proposed
approach constitutes the simple replaceability of the underlying knowledge base. The algorithm is
based on general question and query patterns and only accesses the knowledge base for the actual
query generation and execution. This paper presents the proposed approach and an evaluation in
comparison to state-of-the-art Linked Data approaches for challenges of QA systems.

1 Introduction

Question answering (QA) is a research discipline at the intersection of natural language
processing (NLP), information retrieval, and database processing aiming at answering
questions formulated in natural language. Though, QA is a rather old research problem
with early system solutions dating back to the sixties, the field has gotten great attention
and research made a significant progress over the last few years. This can be exemplified
by IBM’s DeepQA system Watson which won the quiz show Jeopardy! in 2011. Another
well-known example are the personal assistants based on voice recognition such as Apple
Siri, Amazon Alexa or Microsoft Cortana which are able not only to execute spoken
commands (e.g. “Put x on my shopping list”) but also to answer (simple) questions in
natural language. However, leveraging large knowledge bases to answer complex questions,
supporting question types beyond factoid questions, and dealing with ambiguities are still
challenging problems.

QA works usually in a sequence of the following steps: (1) question parsing and focus
detection, (2) question classification, (3) query generation, (4) answer candidate generation
(query execution), and (5) result ranking. In our work we focus on the steps (3) to (5) where
1 TU Ilmenau, Databases & Information Systems Group, Ilmenau, Germany, first.last@tu-ilmenau.de
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we consider structured databases / knowledge bases as sources for answers. Our goal is
to provide a generic approach not hardcoded for a specific schema or database. For this
purpose, we leverage a RDF database such as DBpedia and generate SPARQL queries. A
RDF database allows a schema-agnostic approach where the schema has not to be known
for query generation because all facts are represented by triples. In addition, it allows
to exploit more advanced semantic concepts such as semantic equivalence, similarity or
inference mechanisms. Finally, large collections of Linked Data based on a core set such
as DBpedia or Wikidata represent a great source for answering a wide range of (not only)
factoid questions.

Compared to existing works our query generation approach is independent from the
underlying knowledge base by representing queries to answer questions through basic graph
patterns whose mapping to knowledge base-specific properties or labels are determined at
runtime. Our main contributions are (i) a pattern-based approach matching common (but
also complex) natural language questions, (ii) loosely coupling to an underlying knowledge
base, no training or specific information required, and (iii) first evaluation results showing
similar or even out-performing results compared to specifically trained systems.

2 Problem Statement

The Open Challenge on Question Answering over Linked Data (QALD)2 has been organized
as an evaluation campaign as part of the Extended Semantic Web Conference (ESWC)
and the CLEF Initiative (Conference and Labs of the Evaluation Forum) since 2011. The
challenge focuses on bringing together scientists who work on question answering and
compare new approaches according to a published dataset. The latest challenge – QALD 7
– has taken place at the ESWC 2017. For the evaluation of our approach we will use the
training and test datasets provided for this challenge. Evaluation results will be presented in
Section 4.

As a first summary the organizers of the QALD challenge published a survey on challenges in
Question Answering over Linked Data [Hö17]. The authors give an overview of approaches
that have been submitted to several conferences or challenges between 2011 and 2015 –
overall they list 72 publications and 62 distinct systems. After review of these systems the
authors identified seven challenges developers of QA systems are facing and that addressed
in the respective publications. From these challenges, we address the following:

• Lexical Gap: As in every QA system the phrases of natural language require to be
mapped to parts of the relevant ontology and knowledge base: resources, classes,
properties. We try to overcome the lexical gap by creating a set of general questions
and retrieve the potentially correct result by matching result type and question type
and applying a specific ranking.

2 https://qald.sebastianwalter.org/index.php?x=home&q=home
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• Ambiguity: The mapping of phrases to the underlying knowledge to retrieve resources,
classes and properties often results in a higher amount of output than desired. We
apply a scoring at each mapping step and and decide at the end about the correct
query containing the correctly mapped phrases by applying also the ranking of the
query result.

• Complex Queries: SPARQL in its latest version is able to manage queries containing
different operators, such as GROUP BY, COUNT, or FILTER operations. We derive
the necessity of such operators in a query by identifying the question type and
comparing it to the result type of different generated queries.

• Templates: For our approach, several question types have been analyzed and we
derived respective query transformation patterns that can be applied to any domain or
knowledge base w.r.t. the identified question types.

• Independence from Knowledge Base: In addition to the ones listed by the authors of
[Hö17] we take the challenge of developing a system that works independent from the
underlying knowledge base. Our approach is based on general patterns and rankings
and knowledge specific lookups.

3 System Architecture

Our presented approach processes given natural language questions in seven different steps,
each fulfilling an individual task. The steps are the following (also shown in Figure 1):

1. Question parsing and focus detection
2. Generation of general queries with the phrases of the natural language question

according to pre-defined patterns
3. Mapping subject/predicate/object of the general question to representations within

the underlying knowledge base
4. Query execution
5. Result ranking
6. Output of the highest ranked SPARQL query and the corresponding result.

Within our algorithm only step 4 and 5 are dependent on the underlying knowledge base as
the concrete properties, entities and ontology classes or categories are requested. All other
steps are independent from the knowledge base and can be applied to any use case.

3.1 Preliminaries – Knowledge Base Transformation

As described in the previous section, our approach is only loosely dependent on an underlying
knowledge base. This means, we are able to work with any knowledge base that fulfills a
few a preliminaries:

• the knowledge base is constructed in RDF(S)/OWL
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Fig. 1: Overall process of Question Answering

• there is terminological knowledge available about the used vocabulary/ontology
(TBox)

• the actual facts are available as assertional knowledge (ABox).

To be able to use the knowledge base, some transformation processes have to be carried
out – primarily for reasons of efficient search and lookup. The terminological part of the
knowledge base (including OWL and SKOS) is analyzed for class and category labels (for
the mapping/lookup process) and transferred to a easily accessible lookup store. Figure 2
shows the RDF(S) parts of a knowledge base which are used to build lookup structures for
the knowledge base specific parts of our approach.

Fig. 2: RDF triples required for generation of lookup structures

We extract the class/category information from the knowledge base to be able to reference
type information in questions, such as “Which university is located in Berlin?”. In some
cases, the classes included in the ontology do not provide sufficient information about such
type information, because the ontology is too general. For instance, for the question “Which
Italian dessert contains coffee?” it is required to look up “Italian dessert” within the classes
of the ontology. For instance, within DBpedia, the most specific class for this question
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would be “Food”. But the entity dbr:Tiramisu3 (which would be a correct answer for the
question) provides a fact that it is a subject of the category “Italian dessert”. Therefore, we
also extract category information provided by dc:subject4 properties in some knowledge
bases. The labels for properties are extracted to be able to find verb relationships within the
knowledge base, such as a property for relationship between two persons: “Who supervised
Alfred Kleiner?”. The labels for the entities are extracted to find the actual subject of a
question within the knowledge base.

For these lookup stores (primarily indexed tables in a relational database) the original
and – if available – alternative labels of classes/categories, properties (both terminological
knowledge) and the actual entities (assertional knowledge) are extracted from the knowledge
base.

As we have evaluated our approach based on the dataset provided by the QALD 7 challenge,
the underlying knowledge would be DBpedia. For the labels of the entities DBpedia provides
more information to be able to collect more synonyms for each entity. As DBpedia is derived
from Wikipedia the labels of redirects and disambiguation pages can be used as additional
labels. In this way, the entity dbr:Diana,_Princess_of_Wales are assigned 25 different
labels, e.g. “lady di”, “princess diana”, “lady diana spencer” amongst others. Thereby, the
probability of being able to find the correct entity mentioned in natural language is increased.
However, the labels of the entities can be more or less relevant. The calculation of a relevance
score helps to rank the retrieved entities for a natural language phrase. The same applies for
provided alternative labels within the knowledge base (as provided by skos:altLabel5).
Therefore, for each label a score is calculated between [0.0 ... 1.0]. Original labels achieve
the highest score. The scores for all alternative labels are calculated according to similarity
to the original label, type of the assigned entity (e.g. person’s family names), acronym
format etc. The calculation for each score is described more in detail in [St14].

For the mapping of verb phrases from the question to DBpedia properties the ontology only
provides original labels and no synonyms, similar to the labels for the ontology classes. This
circumstance is an essential disadvantage for the mapping of properties. For instance, the
fact that two people are/were married is represented by DBpedia property spouse while in
natural language several other expressions are used, such as “wife/husband of”, “married”,
“in a relationship” etc. Therefore, as an additional source for property labels we are using the
PATTY dataset as described in [NWS12] to find potential properties for the verb phrases in
the question. The dataset has been derived from a large collection of text documents and we
calculated – similar to our entity lookup store – a score for each phrase-property mapping
which represents a relevance value for the mapping of the phrase to the property. These
scores are used for the ranking of the generated SPARQL queries to find the potentially
most correct one for the given input question. As PATTY is a DBpedia specific dataset, our

3 DBpedia specific prefixes here and in the remainder of the paper stand for: dbr – http://dbpedia.org/resource/;
dbo – http://dbpedia.org/ontology/

4 The Dublin Core vocabulary: http://dublincore.org/documents/dcmi-terms/
5 SKOS Core vocabulary: https://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/
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approach is restricted to the label extraction as described in Figure 2 when using knowledge
bases other than DBpedia.

3.2 Separate Steps of the Algorithm

As depicted in Figure 1 our algorithm consists of separate steps that are either dependent on
or independent from the underlying knowledge base. The first parsing and generation of
first triples is independent form the knowledge base and can be applied to any vocabulary.
Afterwards, the general triples are transformed to knowledge base specific SPARQL queries
and are executed on a SPARQL endpoint. In turn, the final ranking and result selection is
independent from the knowledge base and builds upon previous ranking and the identified
question type. The separate steps are described in detail in the following sections.

3.2.1 Knowledge Base Independent – Question Parsing and Pattern Matching

Question parsing and focus detection. The question is parsed using the Stanford lexical
parser6 [MMM06]. The output of the parser is a parse tree (amongst others) as seen in
the example of Listing 1. The parse tree reveals the sentence type as well as the word
types (identified as Part-of-Speech (POS) tags) and the relations of the words among one
another. In the example the sentence is of type “SBARQ” which means the sentence is
“Direct question introduced by a wh-word or a wh-phrase.”7. To make the sentence type
more specific, a second tag is classifying the actual question phrase. In our example it is
“WHADVP” which means the question begins with a adverb phrase such as how or why. A
full list of identified sentence/question types w.r.t. the dataset used for the evaluation of our
system (cf. Section 4) is shown in Table 1. According to the question type the focus of the
question is identified. Thereby, the subject that is used as result variable in the SPARQL
query is identified. Within the actual question several patterns (combinations of word types)
may occur which require to be translated to RDF triples for the SPARQL query. For instance,
the phrases “the mayor of Chicago” and “Chicago’s mayor” result in different POS tag
combinations: NP (the mayor) PP (of) NP (Chicago) and NP (Chicago’s) NN (mayor)
respectively. Both combinations result in the same RDF triple: ?x onto:mayor res:Chicago

.8 Such patterns are found in multiple question types and are dissolved independent from
the identified question type. Therefore, we identified an extensive list of POS combinations
which are translated to RDF triples as described in the following paragraph9.

List. 1: Sample parse tree for the sentence “When did princess Diana die?”

6 https://nlp.stanford.edu/software/lex-parser.shtml
7 https://gist.github.com/nlothian/9240750
8 The prefixes here and the reminder of the paper stand for: onto – namespace of the ontology of the underlying

knowledge base; res – namespace of the resources of the underlying knowledge base
9 A list of example sentences, the identified patterns and the transformation to the respective SPARQL query

pattern can be found here: https://bit.ly/2ROwXPM
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(ROOT (SBARQ
(WHADVP (WRB When ) )
(SQ (VBD d id ) (NP (NNP p r i n c e s s ) (NNP Diana ) )

(VP (VB d i e ) ) ) ( . ? ) ) )

Tab. 1: List of identified question types

Sentence
Type

Question
Type

Example

SBARQ

WHADVP When was the Battle of Gettysburg?
WHADJP How much did Pulp Fiction cost?
WHNP Who designed the Brooklyn Bridge?
WHPP In which city does the Chile Route 68 end?

S Show me all books ... . List all basketball players ... .
SQ Is Berlin the German capital?

Generation of general query triples. The natural language question then requires to be
translated to RDF triples. Each RDF triple constitutes a fact which means that the phrases
from the question are transferred to single facts. For instance, the question “Show me all
books by Joanne K. Rowling.” includes two facts:

• the results have to be of type “book”, and
• the results are somehow created by “Joanne K. Rowling”.

The first fact results in a general triple ?x rdf:type onto:Book . Here, the object requires
to be a class from the underlying ontology. The second fact results in a general triple ?x

onto:by res:Joanne_K._Rowling .10 Here, the property requires to be included in the
ontology and the object requires to be part of the knowledge base. These general triples
are generated by analyzing the patterns of POS tags in the parse tree of the question. We
identified an extensive list of patterns and assigned respective RDF triples. The respective
subject, property and object in the RDF triple are represented by the phrases extracted
from the question – as placeholders (except for pre-defined semantic properties, such as the
property rdf:type which is part of the RDF vocabulary and used as property to state the
class membership of a resource of the knowledge base). RDF facts are represented using
properties to connect a subject and an object. Due to the fact that our approach is working
independent from the underlying knowledge base, we do not know beforehand in which
order properties connect subject and object. For instance, for the phrase “supervisor” the
knowledge base could contain the property onto:supervisor which connects a student in
the subject with the respective supervisor in the object. The knowledge base could also
contain the property onto:supervisorOf which connects the supervisor in the subject with
the student in the object. Therefore, we provide two versions for each triple generated from
a POS tag combination resulting in more than one SPARQL query for each question. All
queries are scored and ranked in a later step.

10 The triple looks like this before mapping the property and the object to the underlying knowledge base.
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3.2.2 Knowledge Base Specific – Mapping and Execution

After the question is parsed and the general triples are generated the underlying knowledge
base is taken into account to create the final queries including the knowledge bases specific
entities, properties and classes/categories. Therefore, the extracted phrases from the parsed
question are replaced URIs and finally the question specific aggregations and other operators
are added. The queries are then executed on a SPARQL endpoint.

Subject/property/object mapping. In this step, the generated general queries are trans-
ferred to actual RDF triples as specific for the underlying knowledge base.

For the mapping of the subjects of the general triples the extracted phrases from the parse
tree are directly looked up. For the objects, three different options are possible:

• direct lookup in case an entity is required according to the pre-defined pattern
• lookup for ontology classes in case a triple for rdf:type information is required
• the phrase is inserted as literal.

All mapping processes – for subject, property and object – may result in more than one result
per phrase. For each result a query is generated in combination with all already derived
queries. Taking into account the mapping scores from PATTY and the entity lookup an
overall score for each generated query is calculated by multiplying all derived scores.

The result of this step is a set of RDF triple combinations (as required within the WHERE
clause of a SPARQL query) and the corresponding mapping score for each combination. In
the next step the final queries are generated and executed.

Fig. 3: Components specific for the Underlying Knowledge Base

Query execution. In this step the final queries are created and necessary operators added.
The required operators are derived from the question type. For instance, for a WHADJP
question – starting with “How many” or “How often” – the expected answer should by a
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number. As the underlying knowledge base is unknown – as one of the challenges – to our
system, the result type “number” can be derived in two different ways: either the range of
the mapped property already provides a number or a COUNT operator has to be applied to
count the number of resulting entities. Therefore, we create queries for each possibility, such
as the example in Figure 4a depicts. In addition to the COUNT operator, other aggregation
operators might be applied to the query. For instance, the question “Who is the Formula One
race driver with the most races?” requires ORDER, LIMIT and OFFSET operators in the
query. According to the POS patterns the required triples are generated and the respective
variable used for the ORDER operation is identified. The type of ordering is identified
according to pre-defined list of phrases: “most”, “highest”, “tallest” etc. for descending
order or “least”, “smallest”, “youngest” for ascending order. Figure 4b shows the resulting
SPARQL query for the mentioned example. After all queries are created and all required
operators are applied the resulting queries are executed on the specific SPARQL endpoint.

(a) ... for questions where a number is expected as
answer type.

(b) ... for questions where ordering of results is
required.

Fig. 4: Examples of query generation

3.2.3 Knowledge base Independent – Finalization and Result Output

Result ranking. For each query the results are derived and final ranking is applied
according to the expected answer type (as pre-defined from the question type). For most of
the question types the answer type is an entity or a list of entities. For question starting with
“When” the resulting answer must be a date. And for questions starting with “How many” or
“How often” the answer type is a number. The final ranking of the queries and the respective
results is applied by comparing the expected answer type and the actual answer type. If the
expected and actual answer type are matching the query receives the full score of 1.0. If
the query does not produce any result the score naturally is set 0.0. If the query produces a
result, but the answer type is not matching to the expected one, the mapping score is set to
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0.5. We do not suppress answers with incorrect answer types, because of several reasons.
On the one hand, knowledge bases (especially the ones that are automatically extracted or
created) some times do not provide any literal types. Dates might not be formatted as date,
but still be a correct answer. On the other hand, a question starting with "When"might often
require a date as answer type, but a year (“1980”) or a season (“Spring 1968”) might also
be a reasonable answer and contained in the underlying knowledge base like this (instead of
a date).

The overall ranking of a query including results is calculated from the mapping score and
the answer type score by multiplying both scores. Each query only receives one overall
score. The set of results of a query (in case of a list of entities) is regarded as one answer. In
this way, all queries are scored and sorted. The query with the highest score is assumed as
potentially correct and the respective produced result is set as answer for the input question.
At the current stage, our system assumes that a given natural language question actually has
an answer. The case of a question that cannot be answered using the underlying knowledge –
because of missing information11 – is not taken into account, yet.

4 Evaluation

Evaluation Dataset. To evaluate our approach a dataset containing the natural language
questions as well as the answers formatted as SPARQL endpoint results is required. As
stated in [Hö17] only two challenges provide benchmarks with the required structure:

• Open Challenge on Question Answering over Linked Data (QALD) - as introduced
in Section 6

• BioASQ – a challenge on large-scale biomedical semantic indexing and question
answering12

The second challenge only provides questions from the bio-medical domain and the first
challenge provides all-purpose QA benchmarks. The DBpedia constitutes the most well-
known all-purpose knowledge base provided as RDF. We therefore choose to take into
account the QALD challenge and use the dataset of the latest challenge to evaluate our
approach13. The challenge provides a training dataset some weeks before the submission
date and a test dataset to provide the final results of a submitting system. The latest challenge
was the first one where participating systems were requested to provide their system as
Docker image. In this way, the challenge organizers were able to evaluate the submitted
systems directly – in contrast to submitted result files as XML/JSON the years before this last
challenge. As the challenge already took place at the Extended Semantic Web Conference
(ESWC) we are able to compare our results to the results of the participated systems.

11 And according to the open world assumption, missing information might mean that something is not existent, but
this is not compulsory.

12 http://bioasq.org/
13 https://project-hobbit.eu/challenges/qald2017/
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The QALD challenge is organized in four tasks. For our evaluation we chose “Task 1:
Multilingual question answering over DBpedia” using the English version of the questions.
The dataset for this task provides the following information for each question record:

• id – sequential order of the questions
• answertype – either “resource”, “string”, “number”, “date”, or “boolean”
• aggregation – true/false – stating if the required query contains aggregation operators
• onlydbo – true/false – stating if other knowledge bases than DBpedia are required
• question – the actual question provided in eight different languages, for each question

additional keywords are provided
• query – a SPARQL query which provides the correct results
• results – the (list of) results – for each result the type and the value are given

For the evaluation of our system we only used the actual natural language question (without
the given keywords) and the (list of) results. Everything else (answer type, result type,
necessity of aggregation) is not used from the dataset and detected by our system (identified
as pattern in the question).

Evaluation Measures. For the comparison of our approach to competing systems the
measures Recall, Precision and F1-Score are used. For each question q recall, precision and
F1-score are calculated as following:

recall(q) =
number of correct system answers for q

number of benchmark answers for q

precision(q) =
number of correct system answers for q

number of system answers for q

F1-score = 2 ∗ recall (q) ∗ precision(q)
recall (q) + precision(q)

We calculated all measures as macro measures which means that they have been calculated
separately for each question and all measures are averaged over all questions for the overall
result.

Evaluation Results. For the QALD 7 challenge only two systems have been submitted
providing results for English language: ganswer2 and WDAqua[UNC16]. Thus, we used
only these two systems for comparison because only for these systems the results are
reproducible. For the calculation of recall, precision and F1-score only questions have
been taken into account for which the system was able to provide a result. We therefore
calculated our measures for the evaluation in the same way. The results for the training and
test dataset are shown in Table 2. Our approach achieves similar results or even outperforms
the other competing system which participated in QALD 7 challenge. For QA systems
the precision of the provided answers is more important than the recall: We would rather

From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 299



12 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

provide an answer like “Amongst others correct answers are the following” – which means
some correct answers might be missing – than proving something “Our answer is this, but
it might incorrect”. Therefore, our future work will focus on an increased precision – of
course in best combined with a reasonable high recall. Nevertheless, these first results show
that our approach which is set up to be as independent as possible from the underlying
knowledge base is able to compete with other systems that might be trained specifically for
a domain and dataset.

Tab. 2: Evaluation results for the QALD 7 training and test datasets

Training Dataset Recall Precision F1-Score
Our approach 0.588 0.570 0.578
ganswer2 0.592 0.557 0.556
WDAqua 0.540 0.490 0.510
Test Dataset Recall Precision F1-Score
Our approach 0.665 0.584 0.622
ganswer2 0.498 0.487 0.492
WDAqua 0.160 0.162 0.161

As our approach consists of several separate steps we took a closer look at success and failure
of our approach. Therefore, we evaluated each step separately and counted the questions
where the step succeeded in comparison to the initial set of questions at the beginning of
each step. The results are shown in Table 3. In this overview, two steps respectively the low
success rates of two steps are striking: property mapping and final ranking. As described in
Section 3.1 we are using the PATTY dataset for the property mapping. Unfortunately, the
dataset only contains 58% of all properties contained in the DBpedia ontology. For some
reason, very common properties, such as dbo:deathDate or dbo:birthDate, are missing
in the dataset. This fact leads to the low success rate of 52.1% regarding the property
mapping. The second lowest success rate is achieved by the overall ranking, which partly
is again caused by the PATTY dataset. For each property mapping, a score is provided
regarding relevance (cf. Sect. 3.1). Unfortunately, this ranking is sometimes misleading. As
this ranking score (together with the scores from subject and property mapping as well as
the validity check of the answer type) influences the final ranking, sometimes the wrong
query is ranked highest although the used property does not match the phrase of the natural
language question at all. The next paragraph will discuss the evaluation results in detail and
regarding the proposed challenges.

Discussion. The evaluation results show that our system achieves similar or even better
results than the systems that have been submitted to the 7th QALD challenge. However,
the detailed analysis of the evaluation results reveals the weakest parts of our approach. As
we are using the PATTY dataset to map natural language phrases to properties from the
underlying DBpedia knowledge base, there are several questions that cannot be answered,
because the dataset does not contain any property for the given phrase. This means, that
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Tab. 3: Success rates of separate steps of our algorithm, evaluated on the QALD 7 training dataset

Algorithm step Evaluation
Overall Questions 166
Focus detection successful 154 / 92.7%
Parsing successful 152 / 98.7%
Triple Generation successful 132 / 86.8%
Subject Mapping successful 127 / 96.2%
Property Mapping successful 62 / 48.8%
Object mapping successful 60 / 96.8%
Query Building successful 60 / 100%
Ranking successful 44 / 73.3%

for many questions no query can be generated, because the respective property is missing.
The current DBpedia lists 1439 properties of which only 225 properties are listed in the
PATTY dataset. Therefore, only 60% respectively 80% of the questions of the QALD
7 test and training dataset can be answered by our system. Thus, the lexical gap is an
essential challenge for QA systems. Another problem constitutes the ranking of queries
based on the separate rankings derived from property and subject/object mapping. For
the relevance ranking of different properties provided by PATTY we use a co-occurrence
measure of phrase and property within the dataset. Unfortunately, this results in some cases
in wrong final rankings. For instance, Table 4 shows the rankings of generated queries
for the questions “How often did Jane Fonda marry?” and “How often did Alan Rickman
marry?”. According to the property relevance ranking the property dbo:child achieves a
higher score than the property dbo:spouse. As all other ranking scores are identical, for
the first question the wrong query is chosen as potential correct which delivers the wrong
answer. This problem only occurs for entities who actually have children – as it is the case
for Jane Fonda. Otherwise – as it is the case for Alan Rickman – the query with the property
dbo:child does not provide a result (which results in a score of 0.0 for the answer type) and
the query containing dbo:spouse is ranked highest. These problems result from the structure
and quality of the underlying knowledge base respectively the transformed/deployed lookup
stores. We discuss this topic further in Section 5. In addition, the evaluation results are
influenced by the quality of the datasets. Unfortunately, the datasets contains questions
where intuitively the provided answers are wrong. For instance, for the question “Which
cities does the Weser flow through?” the entity dbr:Fulda_(river) is listed as expected
correct result. But this entity is a river and not a city and it results from the missing type
check in the SPARQL query provided in the dataset. By adding the type information in
the SPARQL query the retrieved results are reduced which results in a lower recall for the
evaluation.
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Tab. 4: Comparison of Ranking of two queries

Query Mapping Answer
Type

Final

Subject Property
SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Jane_Fonda dbo:child ?y . }

1.0 0.23 1.0 0.614

SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Jane_Fonda dbo:spouse ?y . }

1.0 0.08 1.0 0.514

SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Alan_Rickman dbo:spouse ?y . }

1.0 0.23 1.0 0.614

SELECT (COUNT(DISTINCT ?y) as ?x) WHERE {
dbr:Jane_Rickman dbo:child ?y . }

1.0 0.08 0.0 0.0

5 Challenges

In this section we discuss our experiences during the development of our system especially
regarding the challenges described in Section 2.

Lexical Gap. As shown in the evaluation, the lexical gap is an essential factor when
natural language questions cannot be answered. For DBpedia, there are multiple sources
to extract synonymous labels for the entities, as described in Section 3.1. But for the
terminological knowledge – classes/categories and properties – primarily only the original
labels are provided. And this is the case for most knowledge bases. Therefore, the quality of
the results using other knowledge bases than DBpedia depends on how the lookup stores
can be complemented with additional synonymous labels. For this purpose we are following
different strategies to be able to include various knowledge bases:

1. determine synonymous information from external vocabularies, such as WordNet14
2. extract mappings of natural language phrases and knowledge base properties from

embedded RDFa15 information in text/web documents
3. extract additional information from mapped external ontologies

For the first case, WordNet provides synonymous phrases for each entry within the vocabulary.
This information can be mapped to the original labels of the labels of the knowledge base to
be complemented. The problem here is that the semantic character of the knowledge base is
ignored and synonymous information might be applied to wrong resources. Therefore, this
approach requires to be evaluated regarding ambiguity of the knowledge base and quality of
the achieved mappings.

For the second strategy, web documents containing RDFa information are analyzed for
the deployed terminological and assertional knowledge and thereby the natural language

14 https://wordnet.princeton.edu/
15 A markup language extension to HTML5 to enrich web documents with RDF to assign mentioned places, person,

etc.: https://www.w3.org/TR/xhtml-rdfa-primer/

302 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

https://wordnet.princeton.edu/
https://www.w3.org/TR/xhtml-rdfa-primer/


From Natural Language Questions to SPARQL Queries 15

information can be mapped to the used vocabulary. Web documents with RDFa annotations
are emerging – especially in the field of educational content – and editors have been
developed to provide user-friendly interfaces16. But the problem is that only a few popular
vocabularies and knowledge bases are applied and it might be difficult to find documents
containing very specific information as required for QA systems.

The third strategy is the mapping of separate parts of an ontology to other ontologies and
get thereby additional information about the mapped parts. Different ontologies might use
different labels for equivalent classes or provide additional mappings to further ontologies.
Thus, synonymous information might be extracted and complemented in the original
ontology.

Ambiguity. Our approach uses scores to rank different generated queries resulting from
multiple entities achieved by the mapping process. As shown in Section 4 this separate
mapping step is mostly successful (96,2% and 96,8% respectively for subject and object
mapping). Therefore, our approach has proven to be successful regarding ambiguity of
mapped entities. As discussed in the previous section, the problem of ambiguity is even less
difficult for other knowledge bases than DBpedia because of mostly missing synonymous
information.

Complex Queries. A natural language question that seems to be simple to be answered
might result in a very complex formal query within the QA system. For instance, the
question “What is the second highest mountain?” requires the actual triple to find heights of
mountains, an operator to sort the heights in descending order, the limit of only one result
and an offset to start with the second result in the descending order. All this information
needs to be derived from the given natural language phrase. Our approach deduces this
information from the question type and specific keywords from the lexically parsed question.
The phrases “second” or “third” can be mapped to pre-defined patterns of operators (as
described in Section 3.2.2). However, the pre-defined lists of keywords might be dependent
on the underlying knowledge base where specific terms and facts might require specific
aggregation functions. Therefore, we will explore specific characteristics of domains and
topics with the application of our approach to further knowledge bases.

Templates. For the QALD 7 training dataset containing 216 questions we identified six
different question types and 36 lexical patterns. Obviously, many lexical patterns are not
specific to a question type and occur in various questions. We therefore do not expect the
number of required patterns when applying different knowledge bases to increase excessively.
It might be necessary to observe knowledge bases more in detail to derive specific patterns.
For instance, property-object combinations that occur very often in a knowledge base might

16 http://aksw.org/Projects/RDFaCE.html
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be a hint that this is a common fact and might be handled similar to class memberships –
without the actual RDF triple of rdf:type and the URI of a specific class. For instance,
the triple res:some_City onto:isMetropolis "true". would be equivalent to a class
membership information such as res:some_City rdf:type onto:Metropolis . This class
membership information must be derived to be able to answer questions like “Which
metropolises are located in Europe?”. In addition, more general query patterns might be
helpful to find the correct fact within the knowledge base. This applies for facts that might
be distributed over more than one triple. For instance, within a knowledge base containing
information about software projects the question “Who committed the most lines of code?”
the information about lines of code might be assigned to a “commit event” including the
original committing developer and the facts need to be aggregated over several commit
events. This again requires knowledge about the deployed knowledge base which should be
extracted during the preprocessing step.

Knowledge Base. Although our approach is set to be as independent from the knowledge
base as possible, we are aware of the fact that available information and structure of
the data contained in the knowledge base is an essential factor for the quality of a QA
system. As described in the previous section, some information might be very domain
specific and characteristic for knowledge base and is required to be detected and extracted
or complemented before our system could answer specific questions. Another problem
might be missing or wrong information in the knowledge base which is often the case for
automatically extracted data, as applies for DBpedia. For instance, the information about the
elevation of Mount Everest is missing in DBpedia although it is included in the respective
Wikipedia article (this fact might be a hint that Siri is using DBpedia for its QA system
– cf. Sect. 6). Furthermore, the type information is often missing for entities which leads
to missing results when the type is checked in the SPARQL query. Otherwise, too many
results might be provided when the type of the questioned subject is omitted. On the other
hand, sometimes the type information is set incorrectly for certain entities. For instance, the
actor “Terence Hill” is typed as dbo:Mountain (strangely along with other persons with
the surname “Hill”). This again leads to wrong results when the SPARQL contains the
type check. Here again, the solution might be to omit the type check in the query which
demands an appropriate query generation algorithm to be able to rule out irrelevant results
by additional facts in the query.

6 Related Work

Li et al. introduced an interactive natural language query interface that constructs SQL
queries according to natural language questions [LJ14]. The interface therefore interacts
with the user and requests feedback on chosen queries respectively concepts. The requesting
user is involved in the query construction process at two different stages. First, the natural
language phrase is parsed into a lexical tree. Afterwards nodes of the parse tree are identified
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which can be mapped to components of the requested SQL schema. At this stage the first
warning is given back to the user in case the mapping fails for one or more nodes. Also, the
successful mappings will be presented to the user. After all nodes are interpreted correctly
(with the help of the user) the linguistic parse tree is adapted to be valid for their system.
Implicit nodes can be inserted, if necessary, and the user is able to support this process.
The verified query tree is then transferred to a SQL statement containing joins, aggregate
functions etc.

Deutch et al. presented an similar approach where a natural language query is transferred
to a lexical query tree and the nodes are mapped to variables to be able to construct a
conjunctive query (CQ) [DFG17]. The authors not only focus on the conversion process to
be able to query a database for the requested natural language question, but also provide a
natural language answer according to provenance tracking of tuples from the query tree and
applying them to the answer tree.

Amongst others these two approaches present interfaces to convert natural language to SQL
statements. In contrast to that our approach is built upon RDF knowledge bases respectively
constructing SPARQL queries and does not use any user feedback for creating the formal
queries. The following approaches are therefore all based on RDF knowledge bases and
focus on translating natural language (NL) questions to SPARQL queries.

Freitas et al. developed a vocabulary independent approach for querying Linked Data so the
user does not need to know about the vocabulary of the data sets. The main components
of their system are (1) entity search, (2) spreading activation and (3) measuring semantic
relatedness [Fr11]. The challenges their system is able to deal with are the lexical gap,
ambiguity, complex operators and distributed knowledge. The essential question behind
the key entity search is which components of the natural language query of the user can be
mapped to classes or instances in the knowledge base. After detecting those key entities, the
URI of the key entity is looked up and used as a pivot entity for the next step, which will be
spreading activation. Before spreading activation can be started, the NL query has to be
parsed in a form that can be mapped to the SPO form of data represented in RDF. After that,
every pivot entity is used as a starting point for the spreading activation process. If there is
more than one node that is higher than a given relatedness threshold, it will lead to a second
path and in the end the path with the highest relatedness wins.

The system PARALEX introduced by Fader et al. in 2013 faces the challenges lexical
gap, ambiguity as well as procedural, temporal or spatial questions and uses templates
similar to our approach [FZE13]. However, PARALEX has a slightly different approach
with focussing on a broad range of different questions asking for the same fact rather than
on complex questions. It is only able to handle queries that can be represented as a triple, for
example portrayer(Emma Watson, Hermione Granger). PARALEX tries to map a given
question to be answered by such a triple. Examples for those questions are: “Who portrayed
Hermione Granger?”, “Who is the actress of Hermione Granger?”, “Who played the role of
Hermione Granger?” or “Who is the actress that played the role of Hermione Granger in
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Harry Potter?”. Although those questions may differ, they can all be answered by the factoid
triple above. The system stores triple entries in a database that are of the form r(e1, e2) and
it can answer queries with one unknown variable that is either e1 or e2. Therefore queries
look like r(?, e2) for example for the question “Who portrayed Hermione Granger?” or
r(e1, ?), which would answer the question “Which roles did Emma Watson play?” if we
assume a triple like portrayed(Emma Watson, Hermione Granger) alongside others. To
map the phrases of a question to an entry in the triple data store, a lexicon had been built by
means of a learning algorithm which consists of two stages: first it is initially set up and
then derivates are added to increase the precision. The main disadvantage of the system is
the missing ability to answer complex questions, because it is not able to build the query.

In 2014, Xu et al. introduced their system Xser [Xu14] and participated with their approach
in the QALD 5 challenge (held at CLEF 2015 Initiative) achieving the highest recall and
precision (recall=0.72, precision=0.74) among the competing systems. Their approach is
based on two steps: first the NL question is analyzed for predicate argument structures using
an semantic parser. In the second step, the actual queries based on the underlying knowledge
base are generated. In contrast to our system, their approach requires to be trained using
knowledge base specific training data.

Bast et al. presented an extensive survey in the field of semantic search on text and
knowledge bases [BBH16]. Within this survey several combinations of the search input
and the underlying data are explored. Obviously, a semantic search can be performed by
analyzing a natural language as input. Therefore, the authors examine several approaches on
understanding natural language and finding relevant search items for the input query.

Also in 2015, the system SemaGraphQA introduced by Beaumont et al. participated in
the QALD 5 challenge [BGL15], achieving significantly worse results compared to the
best performing system Xser as previously introduced (recall=0.32, precision=0.31). They
participated again in the QALD 6 challenge achieving an increased precision but decreased
recall (recall=0.25, precision=0.70). Their system uses a graph-based approach matching
parts of the NL question to the knowledge base and building a syntactic graph.

The best performing system of the QALD 6 challenge (co-located with ESWC 2016) has
been CANaLI introduced by Mazzeo et al. [MZ16]. CANaLI achieved a overall precision
and recall of 0.89 for english questions of Task 4 of the challenge (“Multilingual question
answering over DBpedia”). However, the system is working on a semi-automatic basis using
user feedback to map to correct properties and entities in the knowledge base. We also use
the datasets of Task 4 of QALD-6 to evaluate our system, but will not compare to CANaLI,
because our system is working completely self-sufficient from the external help of the user.

When it comes to explaining the research field of question answering to people outside of
the research community popular systems like Alexa, Siri & Co. perfectly fit to describe the
challenges. These systems seem to know and understand everything and the research field
might appear redundant. But, a closer look reveals the limits of the systems. The domain
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of understanding a user is often very limited. For instance, you can ask for tomorrow’s
weather or where some place is or to call somebody from your contact list (using your
smartphone). Additionally, some simple questions can be answered: The question “How
high is Mount McKinley?” is correctly answered with “Denali is 20,308 ft above sea level”
(even replacing the name with current correct one). But the similar question “How high is
Mount Everest?” only answered by providing the article about Mount Everest on Wikipedia.
The more complicated example (from the QALD challenge) “Who became president after
JFK died?” only gives web resources regarding John F. Kennedy. These examples show
that these systems are limited to popular and rather simple questions. The foundation of
these systems are trained databases containing e.g. often requested web queries and the
corresponding most frequent chosen web result.

7 Conclusion

In this paper, we presented our novel approach to question answering over Linked Data
knowledge bases. In addition to the common challenges of QA systems, we designed our
system to be as independent as possible from the underlying knowledge base. The preliminary
transformation process extracts required information from the RDF(S) knowledge base and
this information is used for a mapping step as part of the complete algorithm. Afterwards a
SPARQL endpoint is required to execute the actual queries. A long-term goal is to provide
a web interface where a knowledge base can be uploaded by a user, the transformation
process is conducted and the SPARQL endpoint established. Subsequently, the user is able
to ask natural language questions on the prepared knowledge base. Our approach has been
evaluated on the latest datasets provided by the QALD challenge. First results show that our
approach performs similarly or even better than the competing systems that participated in
the last challenge. Our future work includes two main aspects: on the one hand we want
to achieve a reasonable saturation of patterns for general purpose questions. This means,
we will further explore common natural language questions for so far missing patterns
without overfitting the assembled set of patterns and be as general as possible. On the other
hand, we will transfer our approach to knowledge from other domains and further research
the applicability of the detected patterns so far. Overall, we were able to show that a QA
system is not necessarily required to be trained on a specific domain or knowledge base.
Nevertheless, the discussed challenges provide sufficient input for further enhancements
and developments in this complex research field.
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Abstract: The Hyper database system was started as an academic project at Technical University
Munich. In 2016, the commercial spin-off of the academic Hyper database system was acquired by
Tableau, a leader in the analytics and business intelligence (BI) platforms market. As a human-in-the-
loop BI platform, Tableau products machine-generate query workloads with characteristics that differ
from human-written queries and queries represented in industry-standard database system benchmarks.
In this work, we contribute optimizations we developed for one important class of queries typically
generated by Tableau products: retrieving (aggregates of) the domain of a column. We devise methods
for leveraging the compression of the database column in order to efficiently retrieve the duplicate-free
value set, i.e., the domain. Our extensive performance evaluation of a synthetic benchmark and over
60 thousand real-world workbooks from Tableau Public shows that our optimization enables query
latencies for domain queries that allow self-service ad-hoc data exploration.

1 Introduction

The Hyper database system was started as an academic project at Technical University
Munich. Hyper is developed as a general-purpose database system for transactional as
well as analytical workloads, operating simultaneously on one state, embracing the SQL
standard and ACID transactional guarantees, while delivering highest performance in both
workload classes. In 2016, the commercial spin-off of the academic Hyper database system
was acquired by Tableau, a leader in the analytics and business intelligence (BI) platforms
market. The machine-generated query workload by Tableau’s products greatly differs from
the queries in publicly available industry-standard benchmarks that Hyper was initially
optimized for [Vo18]. Not only let modern BI tools easily express very complex queries via
an intuitive drag-and-drop interface, users of such tools also expect to be able to quickly
analyze data of all sizes and of all types. Standardized benchmarks like TPC-H, TPC-C,
TPC-DS, the CH-Benchmark, or the SQLite test suite are relevant, but do not represent the
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observed long tail in both, query and data set complexity. In addition, there is a growing
demand to analyze the freshest state of the data as it becomes available and in interactive
ways, where each result is the starting point of further questions. As such, it is infeasible to
pre-compute results. To meet the low-latency query response time requirements of modern
interactive BI, Hyper needed to be adapted to specific classes of queries commonly generated
by BI tools like Tableau.

A common class of queries generated by modern BI tools are domain queries. In this context,
domain refers to the set of distinct values that a column in a relation may contain. The
domain of a column or an aggregate of the domain is retrieved in various contexts, e.g., to
define filters or to properly size the axes in a multi-dimensional chart. What makes domain
queries challenging is the fact that most real-world data sets are not properly normalized or
are the result of a query that joined together different but related pieces of information into
a single relation. Denormalized schemata inherently lead to duplicate values in columns
and cannot efficiently be re-normalized on the fly.

In Hyper’s storage layer, relations are horizontally partitioned into fixed-size chunks. Each
chunk is again vertically partitioned into columns. Chunks can either be hot, i.e., containing
tuples frequently modified by transactions, or cold, i.e., mostly scanned or accessed by
point queries. Cold chunks are compressed using light-weight compression techniques
and are called Data Blocks [La16]. To guarantee low-latency access to the freshest state
of the data, de-duplication of columnar values is only feasible on a per-chunk level, since
global de-duplication is inherently non-linear in the size of the data set. In this paper, we
introduce optimizations for domain queries in the Hyper system that leverage de-duplication
in Hyper’s Data Blocks storage format. In particular, we contribute:

• A description of how domain queries can be detected.
• A way to efficiently execute domain queries leveraging the Data Blocks storage

format.
• An extensive evaluation of domain query optimization in Hyper on synthetic and

real-world data sets, including an analysis of 60,000 workbooks from Tableau Public.

2 Background

2.1 Challenges in the Context of Tableau

Tableau generates SQL queries for the Hyper database systems triggered by user input from
and scheduled background tasks.

In this paper, we show how we addressed the two key aspects of the observed SQL workload:
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• Denormalized storage: Many underlying data models in Tableau uses are flat,
denormalized tables. This is due to several factors, including for performance reasons,
similar to Blink [Ra08].

• Machine-generated queries: In contrast to most standard benchmarks for database
systems, the queries issued by Tableau are machine-generated. For a database system,
this has both up- and downsides: On the positive side, all queries are following a
similar structure. The database can be optimized to detect some of the common
patterns in the queries and provide optimized implementations for those queries.
On the other hand, the machine-generated queries tend to be more complex than
hand-written queries.

2.2 The Data Blocks Storage Format

A0chunk0 B0 C0

Uncompressed

A1 B1 C1chunk1
...

A B C

Data Blocks

...

dictionary (B)
truncated (A) keys (B)

truncated (C)

single value (A)
truncated (B)

dictionary (C)
keys (C)

Fig. 1: The DataBlocks storage format

In this paper, we present how to apply domain query optimization to Hyper’s primary
storage format, Data Blocks. Nevertheless, this optimization is applicable to other data
storage formats. The Data Blocks format was originally introduced by Lang et al. [La16].
Figure 1 schematically depicts how a relation with three columns (A, B, C) is represented in
the Data Blocks format.

The table is split into multiple chunks of a fixed maximum size, e.g., 217 tuples. Each
Data Block is self-contained and stores one or more attribute chunks in a byte-addressable
compressed format. The attributes within a Data Block are stored in a columnar fashion.
Columns are compressed using lightweight compression methods such as dictionary
encoding or single-value encoding. Optimal compression methods are chosen per column
within a block based mostly on the expected compression ratio. Note that the same column
might be compressed through different compression methods within different blocks. In
the figure, e.g., the first chunk of column A is stored using the compression truncated
while the second chunk is stored as a single value. In addition, each block contains a small
materialized aggregate (SMA) [Mo98] storing the minimum and maximum value contained
in the block for each column.
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The goal of Data Blocks is to conserve memory while allowing a high OLTP and OLAP
performance. By maintaining a flat structure without pointers, Data Blocks are also suitable
for eviction to secondary storage [FKN12]. A Data Block contains all tuple data, but no
metadata, such as schema information.

Compression is employed to optimize processing speed by better exploiting the available
memory bandwidth. Smaller storage size is an additional benefit of compression but not
the primary goal of Data Blocks. Hence, Data Blocks are compressed using light-weight
compression methods which still allow efficient scans as well as point accesses for OLTP
workloads. In particular, Data Blocks currently use the following compression formats:

For dictionary-compressed columns, a small dictionary containing the domain of the Data
Block is built. The tuple values are represented as tightly-packed offsets into that dictionary.
The width of the offset values varies between 1 and 8 bytes depending on the size of the
dictionary.

If not only the domain size, but also the domain range is small, it is efficient to store the
tuple values as relative offset to a base value. The values are truncated by subtracting the
minimum value within the chunk from each tuple value. Thereby, the storage space for the
dictionary can be saved. In other literature, this compression method is also referred to as
frame-of-reference compression.

In case a column contains the same value for all rows in a chunk, it is single-value

compressed, i.e., the value is only stored exactly once.

3 Domain Query Optimization

Domain queries are a special type of query issued by Tableau in order to obtain the domain
of a column, i.e., the set of different values that occur in the column. The obtained domain
is used, e.g., for populating filter lists and drop down menus. In this section, we describe
how Hyper leverages duplicate-free structures in the storage layer (e.g., dictionaries, single
value compression) to speed up domain queries. Furthermore, we show how we extend the
applicability of the domain-query optimization (DQO) to additional queries which are not
issued as domain queries, but happen to be applicable for this optimization, too. Finally, we
evaluate the impact of DQO both on a synthetic test set and on real-world data.

3.1 Use Case

Tableau allows ad-hoc interactive data exploration. One of the most basic interactions is
filtering, which allows users to drill down into a subset of their data. By using filters, users
can restrict the set of data being visualized based on arbitrary predicates. For this purpose,
Tableau provides the user controls with which they can zoom in on or exclude parts of the
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data set. Figure 2 shows some of the available filters. Using the Order Date slider, the data
can be filtered to a certain date range. The Segment and Region filters allow to include and
exclude specific values from the domain. As can be seen, for all 3 filters Tableau offers
all values available in the data set. In order to display this list of available data to the user,
Tableau needs to know the domain of the filtered values. For the Order date slider, it must
know the range, i.e., the minimum and maximum date present in the OrderDate column.
For the Segment selection list and the Region drop-down menu, it must know all distinct
values from the underlying column, i.e., its domain.

SELECT column_x FROM user_data GROUP BY column_x;

Listing 1: SQL query issued to populate a drop-down list

SELECT MIN(column_x),MAX(column_x) FROM user_data;

Listing 2: SQL query issued to populate a drop-down list

Fig. 2: Filters in Tableau

For both types of filters, Tableau issues queries to the
underlying database system. Depending on the type
of filter, Tableau issues a query in the form of either
Listing 1 (for drop-down menus and selection lists) or 2
(for sliders).

Since the creation of filters in order to drill down into
a visualization is part of the daily workflow of data ana-
lysts, answering the corresponding SQL queries quickly
is important in order to provide a real-time experience.
In the research context, Hyper’s optimizations were
geared towards standard benchmarks such as TPC-H,
TPC-DS and TPC-C. Since those benchmarks do mostly
not include domain queries, Hyper was initially not
optimized for such queries.

In an ideal world, domain queries would not be chal-
lenging to process. On a normalized schema, a domain
query can usually be answered by scanning a column
that consists only of distinct values. Many real-world
data models however are denormalized into a single

flat table and cannot easily be re-normalized. As such, it is not uncommon to have many
duplicates in a column that need to be filtered to return a duplicate-free domain.
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3.2 Overview Of Approach

Both query types issued by Tableau to populate its filter controls can be answered without
reading all row values, just by looking at the column’s domain. For the query in Listing 1 this
is obvious since the query explicitly asks for the column’s domain. The query in Listing 2 can
also be answered using only the column’s domain since the result of a MIN/MAX aggregation
is not influenced by duplicated values.

In some cases, domain queries can be removed as part of the logical optimization. If
the query from Listing 1 is issued against a column which is known to be unique, the
GroupBy operator will be eliminated by Hyper. For denormalized data models, however,
initially unique values from the domain tables are duplicated by the joins that computed the
denormalized, flat table representation. Hence, this logical optimization is in many cases not
applicable. With no possibility to remove the GroupBy during logical query optimization,
Hyper leverages optimizations during the execution phase to speed up domain queries.

Without DQO, Hyper uses a normal table scan over the queried column. This table scan
produces one column value for each row. Doing so it, e.g., expands single value compressed
columns by duplicating the column’s static value for each row. Each of those tuple values is
then passed to a GroupBy operator which removes duplicate values again.

Obviously, the execution time of this query can be improved by skipping the generation
of the duplicates in the table scan. In order to speed up this query, we give a hint to the
table scan operator and make it aware of the fact that duplicates will be discarded by its
parent operator. The table scan then has the freedom to skip producing duplicated tuples
altogether. It can take advantage of the underlying physical data representation, e.g., single
value compression, dictionaries or run length encoding, to reduce the number of produced
values.

Note that the GroupBy operator remains in place even if the underlying table scan is
instructed that it should not produce duplicate values. This means that the table scan has the
freedom to skip duplicated tuples but is not forced to do so. E.g., if no dictionary is available
the table scan is still allowed to produce duplicated tuples. It is even encouraged to do so
instead of de-duplicating values on its own. After all, the GroupBy operator constitutes
the most efficient de-duplication logic in Hyper. Table scan operators can only be more
efficient than the GroupBy operator at de-duplicating values when they are able to exploit
the underlying physical storage which would not be accessible to the GroupBy operator.

3.3 Detecting Applicability of DQO

In order for domain query optimization to be applicable, two conditions must be fulfilled:
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• The consumer of the scanned tuples must be duplicate-agnostic, i.e., its output must
not depend on the number of times tuples with identical values are emitted.

• The table must be stored in a format which allows one to easily suppress the generation
of duplicates.

We decided to address the first requirement during logical optimization and set a flag on
each table scan operator which is eligible for DQO. Only during query runtime the table
scan then inspects the actual storage structures and suppresses duplicates as applicable.
This split allows us to keep the strong separation between the logical query optimizer
and the storage layer in tact. Hyper’s query optimizer is agnostic of the storage layer and
storage level knowledge is not being exposed to the logical optimizer. Furthermore, in many
cases an ahead-of-time decision on the storage format is not even possible. During the
compilation and optimization of prepared queries, for example, the data contained in the
scanned columns and the used compression formats during the execution of the query might
not yet be available.

We detect if a table-scan is in a duplicate-agnostic context by inspecting the algebra
representation of the query plan. We do so after applying all other algebraic optimizations,
most notably after constant folding and join reordering. Detecting domain queries after
constant folding allows us to apply DQO in more cases since the algebra tree was already
simplified and, e.g., tautological selection predicates are already removed.

Detecting domain queries only after join reordering comes with one potential drawback:
The cardinality estimates used for join reordering are unaware of the potential cardinality
reduction achieved through DQO. Hence, the join optimizer might pick a sub-optimal
join order. We made this design decision in the sake of robustness: Even if we detect the
applicability of DQO on the logical level, it is not yet clear if this can be exploited on
the physical level. Hence, we prefer to use the non-DQO-aware cardinality estimates for
join reordering since those estimates represent the worst-case cardinalities which we will
experience if DQO cannot be applied, e.g., due to the absence of adequate physical storage
structures.

The easiest set of conditions to identify either of the two queries shown in Section 3.1 would
be:

1. The top level operator must be a GroupBy operator.
2. Its child operator must be a table scan.
3. The GroupBy operator must either a) be a grouping on only one column from the

base table and contain no aggregates, or b) contain only MIN/MAX aggregates applied
to one column from the base table.

While those conditions match both domain queries shown so far, they limit the applicability
of DQO unnecessarily. Hence, we went for a more general approach to detect domain
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queries: The optimizer tracks for each algebraic operator in which context it will be executed.
We distinguish between two different types of contexts:

An operator in a duplicate-sensitive context needs to produce all instances of duplicated
tuples. In contrast, in a duplicate-insensitive context the operator can decide to skip
instances of duplicated tuples.

Duplicate-sensitivity is propagated top-down within the query tree. Most operators such
as σ, ./, Π just pass the duplicate-sensitivity down: if the operator itself occurs in a
duplicate-insensitive context, all its inputs are also duplicate-insensitive and vice versa.
Some operators, such as the set variants of UNION, INTERSECT and EXCEPT always evaluate
their inputs in a duplicate-insensitive context. Another example for this case are semi-joins
and anti-joins which pass down the duplicate sensitivity for one side while unconditionally
evaluating the other input in a duplicate-insensitive context.

For domain queries as issued by Tableau, the most important operator is the GroupBy
operator Γ. The GroupBy operator determines the input duplicate sensitivity independently
of its output duplicate sensitivity. It only takes into account the computed aggregates. If
all aggregates are duplicate-insensitive, the input operator is in an duplicate-insensitive
context. For that purpose, we annotated all duplicate-insensitive aggregation functions,
among others: MIN, MAX, BOOL_OR and all DISTINCT variants of aggregate functions such as
COUNT(DISTINCT ...).

Γmin(x)

Πx←T1.a/60

./T1.b=T2.b

T1 σT2.c<20

T2

Fig. 3: Algebra tree of a more complex
domain query

Figure 3 contains an exemplary algebra tree. The top-
level Γ is evaluated in a duplicate-sensitive context
as the result of a SQL query is by definition a multi-
set and hence duplicate-sensitive. Since the GroupBy
only computes a MIN aggregate, its result does not
depend on the absence or presence of duplicated input
tuples. Hence, theΠ operator is evaluated in a duplicate-
insensitive context. The duplicate insensitivity is passed
down to the join which can be rewritten into a semi-
join given that no columns from its right side are
accessed by the upper parts of the plan. Independent
of replacing the join by a semi-join, the duplicate
insensitivity propagates down through the whole tree.
Hence, both table scans can skip duplicated tuples.

However, the scan on T1 cannot benefit from DQO. Two
columns from T1, a and b, are accessed. Data Blocks

always compress columns individually and there is no data structure which allows to
de-duplicate (a, b) tuples. Other storage formats might contain data structures such as
dictionaries spanning multiple columns and hence could benefit from DQO. We are not
aware of any such storage format which is widely adopted.
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For T2, the query also accesses multiple columns (b and c). In this case, the selection is
a SARGable predicate and the query still benefits from DQO thanks to the stored SMA
synopses (see Section 3.4).

If a table scan occurs in a duplicate-insensitive context, a flag on that table scan is set. This
flag will be picked up during execution of the compiled query. Except for this, the operator
tree stays unchanged.

SELECT TITLE_CASE(c2s.segment_name)
FROM orders

JOIN customer_to_segment c2s
ON orders.customer_id = c2s.id

WHERE customers.order_date > ’2015 -01 -01’::date
GROUP BY TITLE_CASE(c2s.segment_name)

Listing 3: Complex domain query generated for the Segment filter from Figure 2

Note that Tableau actually issues such complicated queries. Listing 3 shows a SQL query
which translates to a query tree of the shape shown in Figure 3. In this exemplary scenario,
the TITLE_CASE function is issued since the Tableau user created a custom computation to
cleanup the inconsistent casing of the segment names. The Join was added by the customer
using Tableau’s data modelling capabilities to map a customer to the corresponding segment.
The WHERE clause is generated since the Segments list is implicitly dependent on the selected
range of order dates. The Segment list only shows segments for which there exist orders in
the selected date range. Thereby, it is ensured that users cannot accidentally filter down the
input data so that no more data points qualify.

3.4 Efficient execution of domain queries

After detecting a domain query, it is up to the table scan to exploit the optimization potential
of the physical storage format. If a DQO was detected, i.e., if the consumers of the table scan
ignore duplicates, the table scan operator is free to suppress duplicate values. However, the
table scan is by no means forced to do so. It can just as well produce partially de-duplicated
tuples or just the original tuples, since its parent operator stays unmodified and still eliminates
duplicates which might get produced.

Figure 4 shows the unoptimized execution of a simple domain query against the Data Block
format. The GroupBy operator receives its input tuples from each individual block. The
individual tuple streams are implicitly unioned before passing them to the aggregation
operator. In the example the first block is compressed using a dictionary. When scanning
this Data Block, Hyper looks up every token from the data stream in the dictionary and
passes the resulting values to the GroupBy operator. The second Data Block contains only
one distinct value and this value is stored using single-value encoding. When the table scan
scans this block, it duplicates this single value once for every row stored in the Data Block,
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Fig. 4: Unoptimized execution of a domain query against Data Blocks with different compression
methods

i.e., 217 times. The third block of the column is stored using a dictionary again. This time
however, the block does not contain any tuple with the region being North. Accordingly, the
corresponding dictionary does not contain an entry for it. All in all the Γ operator receives
3 × 217 tuples. It eliminates all duplicates and produces the domain consisting of only
3 tuples. Those 3 tuples are then sent to Tableau.

Comparing this to the optimized execution shown in Figure 5, the benefit from domain
query optimization becomes obvious. Thanks to DQO, the Γ operator receives only 5 tuples
instead of approximately 40 thousand tuples. Since every Data Block is a self-contained
unit, there is no way to leverage the Data Block format to de-duplicate values across block
boundaries. Hence, there still exist duplicated values which needs to be de-duplicated by
the Γ operator.

Within each block, as many duplicates as efficiently possible are suppressed. For each block,
the applied strategy depends on its compression method. For dictionary-compressed blocks
(the first and the third block in Figure 5 the dictionary is scanned instead of the individual
tuple values. For single-value-compressed blocks (the second block in our example), the
duplication step is simply skipped and instead only the one single value is generated.

In addition, to those two compression methods, we also implemented DQO for frame-of-
reference-compressed data if the offset from the reference value is stored using 1 byte. For
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Fig. 5: Optimized execution of the query in Figure 4

this compression type, the values are de-duplicated on the fly: A small bit set is used to
mark values which were already seen. Initially, all bits are set to false. Before passing a
value to the parent operator, the corresponding bit in the bit set is checked. If it is set, the
same value was already seen before and the duplicated value is skipped. Otherwise, the
value is seen for the first time and gets produced. In this case. the corresponding bit in the
bit set is set so that additional duplicates of the same value are suppressed.

We mentioned before that table scan operators should not do de-duplication since the
GroupBy operator already provides the most efficient general purpose de-duplication
algorithm. However, for 1-byte-offset-compressed blocks, this general guideline does not
apply. Since the offset is stored in 1 byte, there are at most 256 distinct values among the 217

rows of the Data Block. Therefore, it is known upfront that the de-duplication will remove a
significant percentage of tuples. The upstream Γ operator implements a general purpose
hash based algorithm. In this case, however, we know that all values are within a dense
range of 256 integer values. We can exploit this knowledge and outperform Γ by using a
small bit set instead of a more heavy-weight hash table.

For the other flavors of frame-of-reference compression, i.e., for 2-byte and 4-byte offsets, it
is not clear upfront that de-duplication using a byte array will be helpful. The corresponding
bit sets would require 8KB and 512MB of RAM, respectively. Since it is not clear if the
additional effort to de-duplicate the values on the table scan level would pay off, we do not
de-dupicate values at the table scan level for frame-of-reference encoding with 2 and 4 byte
offsets.

Furthermore, the Data Block format allows to evaluate SARGable additional restrictions on
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Fig. 6: Optimized execution of a domain query with an additional predicate

columns other than the column whose domain is being queried. By doing so, we allow the
query from Listing 3 to also profit from DQO.

Figure 6 shows the evaluation of a domain query The restriction is first evaluated against
the SMA of the restricted column. In case, this comparison yields that the condition always
evaluates to true for all values in the, the block’s domain is scanned scanned instead of the
individual tuples. If the SMA indicates that the condition evaluates to false for all values in
the block, the whole block is skipped. Only if the evaluation of the restrictions on the SMA
is inconclusive, the block must be scanned in a normal fashion, i.e., tuple-by-tuple. The
fallback to a normal scan is done on a block-by-block basis. Thereby, even if individual
blocks cannot take advantage of DQO, other blocks can still profit from it.

In the special case of MIN/MAX aggregates, we can even go a step further and directly use the
minimum and maximum values from the SMA.

3.5 DQO-aware selection of compression method

Since not all available compression schemes support domain queries well, we also adjusted
the heuristic for picking the compression. Earlier, the compression method was chosen
purely based on the size of the resulting compressed data. In general, this heuristic also aligns
with scan performance: Incidentally, the compressions providing better compression ratios,
also provided the better scan performance. With DQO, this statement no longer holds true,
though. E.g., Frame of reference compression with 2 byte offsets is smaller than dictionary
compression with 2 byte token indices since dictionary compression needs additional space
to store the dictionary. On the other hand, domain queries on dictionary-compressed data
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are more efficient than the same query on frame-of-reference-compressed data. While one
can simply scan the dictionary to answer a domain query on dictionary-compressed data,
the frame-of-referenced compressed data would require a full scan of all tuple values within
the block.

To mitigate this effect, we adapted the heuristic to take the impact on domain queries into
account. We still select compressions primarily based on the achieved compression ratio.
However, compression methods which support domain queries get a 16KB head start. In
other words, dictionary compression with 2 byte tokens is preferred over Frame of reference
compression with 2 byte offsets as long as the dictionary is not bigger than 16KB. In theory
this could regress performance, as we are using more instructions to unpack each tuple.
However, even with the additional indirection through the dictionary, we are still limited by
memory bandwidth and not instruction count.

4 Evaluation

To illustrate the impact of domain query optimization, we provide performance numbers for
hand-crafted domain queries against artificial input data. We controlled the duplication ratio
within this data set. In this set-up, we measured the end-to-end performance within Hyper
including all phases of query processing (parsing, semantic analysis, query optimization,
query compilation and query execution). Thereby, this evaluation provides us a notion of
the overall impact of DQO on query time for individual SQL queries issued against Hyper.
We did not include the time spent by Tableau to generate the SQL queries.

Furthermore, we evaluated DQO on our test set introduced in [Vo18]. This test set contains
over 60 thousand real-world Tableau visualizations demonstrating the real-world impact
of DQO. We first present statistics on the data set which show the potential impact of
DQO. Next, we measured the impact of DQO on the query times for loading a complete
visualization without taking user interaction into account.

In all experiments, we also monitored changes in file size. As described in Section 3.5, the
heuristic for choosing the compression was adapted to prefer compression schemes which
lead to a slightly larger on-disk size if it thereby enabled domain scans. However, in practice
we did rarely see an increases in file size caused by the changed compression heuristic. The
additional space consumption was masked by already existing padding and alignment in the
database file.

4.1 Performance Improvements on Synthetic Data

In order to gauge the impact of DQO in isolation, we measured the execution times for the 3
queries shown in Listing 4.
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SELECT column_x FROM user_data GROUP BY column_x;
SELECT column_x FROM user_data

GROUP BY column_x ORDER BY column_x;
SELECT MIN(column_x) FROM user_data;

Listing 4: SQL queries used for measuring DQO performance benefits.

The first query (subsequently referenced as distinct) requests the domain of a column in its
most straightforward way. It represents a minimal domain query. Removing any part from it
would make it no longer eligible for DQO. This query allows the most targeted performance
measurement focused only on DQO. The second query (referenced as distinct sorted) is
similar but sorts the data before returning it to the client. Thereby, it requires some additional
processing to the performance measurement and the gains from DQO are expected to be
smaller in comparison to the overall execution time. Domain queries issued by Tableau are
posed in this exact form. The third query (referenced as min) focuses on measuring the time
spent in the table scan. In contrast to the other queries, it does not require de-duplicating the
values and thereby does not require building a hash table. Instead, the minimum is already
computed while iterating over the tuples. Since keeping the minimum updated is cheap,
this query measures mostly the time spent in the table scan. For this reason, this query is
expected to be the fastest one among the test queries.

The queries were executed against generated data sets with a fixed number of 5 duplicated
values within an increasing number of rows. The columns contain strings with moderate
string lengths of up to 30 characters. We vary the number of tuples between 217 and
1024 × 217. Thereby, the smallest tested relation consists of 1 Data Block while the largest
one consists of 1024 Data Blocks.

By varying the number of tuples while keeping the distinct count constant, this experiment
measures the most important axis along which domain queries must scale for Tableau:
Tableau users are usually interested in filtering on a small domain, e.g., the regions in which
they sold their products. The set of different regions rarely increases and tend to be quite
small. At the same time, the number of orders and hence the overall number of tuples in the
table increases over time.

All queries were run 5 times and we report the average times of the last 4 runs. The first
run was excluded since it exposed large variance due to disk caching effects Compilation
times and execution times were measured separately. Compilation time refers to the time
needed for parsing the SQL query, turning the abstract syntax tree into an operator tree,
logically optimizing the operator tree, generating & optimizing the corresponding LLVM
and compiling the LLVM code to machine code. It does not include the time needed to
receive the SQL text over the network. Execution time includes the time needed for the
actual query execution and for serializing the results into network buffers. However, it does
not include the time, until the client actually received the result, i.e., the network buffers
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were not flushed. All reported times were measured on a Ubuntu Desktop machine with
64GB RAM a 16-core Intel Xeon E5-2630 CPU clocked at 2.40 GHz with all 32 hyper
threads enabled.
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Fig. 7: Execution times for the domain queries with and without DQO on an increasing number of
tuples with the number of distinct values being fixed to 5

Figure 7 shows the measured execution times. As expected, the min query represents a lower
bound on the execution time for all other queries. Looking at the numbers without DQO,
comparing execution times for the distinct and distinct sorted, they are mostly on-par. This
means that the sort operation which is part of the disctinct sorted has a negligible overhead
and that the main contributor to query time for domain queries as issued by Tableau is the
actual duplicate elimination.

With DQO enabled, execution times for all scenarios are by orders of magnitude faster. The
improvement is larger as the data sets get larger. With DQO, compilation time dominates
query time in all measured experiments. Query compilation accounts for approximately 0.11
seconds independent of scanned input data. Compared to the execution time which are still
less than 1 millisecond for the largest measured this input data, query compilation is an
order of magnitude slower.

Note that even with DQO, the query time is still linear in the table size and not in its domain
size. Although DQO significantly reduces the number of tuples produced by the table scan,
the number of tuples still depends linearly on the number of tuples in the base table. This is
because Data Blocks build per-block dictionaries. Duplicates are only getting de-duplicated
within each Data Block, and each Data Block passes on the deduplicated values from its
dictionary. Hence, the number of scanned tuples and thereby also the query execution time
is still linear in the number of Data Blocks. Since the number of Data Blocks is linear in the
number of overall tuples, the number of tuples produced by the table scan is still linear in
the number of tuples.
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4.2 Impact of DQO on Tableau Public

To judge the potential impact of DQO, we first did a static analysis of all 60 thousand
visualizations from Tableau Public. Those 60 thousand visualizations are backed by
approximately 120 thousand database files.
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Fig. 8: Duplication ratio on Tableau Public visualized as the number of columns grouped by their
duplication ratio

Figure 8 shows a histogram binning the two million columns contained in the database
files by their duplication factor. The duplication factor is calculated as the number of tuples
divided by the number of distinct values in the column. It thereby gives an upper bound
on the number of tuples eliminated by DQO. It is depicted on the depicted on the abscissa
using a logarithmic scale. The ordinate axis shows the number of columns with a given
duplication factor. Highly duplicated columns are not shown in the figure since they would
have distorted the overall scale of the chart. The long tail reaches a duplication factor of 116
million, i.e each unique value appears 116 million times.

The first bar of the histogram represents all columns with less than 5% duplicate values.
250k columns fall in this category. Among those columns 201.5k columns are completely
duplicate free. For the duplicate-free columns, i.e., for 9.5% of all columns, DQO cannot
provide any benefit. Also for the remaining 48.5k columns from this category the gain from
DQO is only marginal, since the duplication factor is less than 5%. Hence, 12% of the
columns are not profiting from DQO. The remaining 88% could potentially profit from
DQO. In fact, for 71% of the columns at least 50% of the values are duplicates. Besides the
presences of duplicates, DQO also requires one of the supported compression methods to
be used. To our advantage, the compression heuristic tends to select eligible compression
methods for duplicated data: The higher the duplication, the more likely a DQO-suitable
encoding is chosen.

Most of the visualizations hosted on Tableau Public are based on only a small data set. Half
of all columns contain less than thousand rows. If this data was saved using Data Blocks,
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Fig. 9: Number of columns with more than one Data Block grouped by the duplication ratio.

for the vast majority of visualizations not even one Data Block would be filled. Queries
on such small data sets are answered in a few milliseconds and most time is spent in the
communication layer, for SQL parsing and for scheduling overheads. Focusing on columns
with a significant number of rows, i.e., filling at least one Data Block, the numbers shift
considerably. Figure 9 shows the same data as Figure 8 again, this time focusing on columns
with a larger number of tuples.

We observed that larger datasets tend to contain more duplicate values. Our working theory to
explain this correlation between data set size and duplication is the often denormalized data
model: We suspect that many of the duplicates would not exist if the data was represented
in a normalized schema and are only introduced during denormalization. In contrast, most
small datasets were generated from Excel files or CSV files and did not join any data. Hence,
for those small datasets Tableau did not denormalize the data and did not introduce the
duplication which can be found in most larger extracts.

With this overview of the data in mind, the logical follow-up question is: How often are
domain queries posed? In order to answer this question, we manually inspected the queries
posed against 88 data sets uploaded to Tableau Public. The data sets were chosen based on
their size, focusing on large data sets. The selected data sets have a zipped size between 300
megabytes and 1 gigabyte. In the process of rendering the visualizations based on those data
sets, 2,940 queries were posed against Hyper. Most of those queries, in total 1,742, were
meta data queries asking, e.g., for the contained tables and their columns. The remaining
1,198 queries resulted in 1,240 table scans on base tables. Approximately 12% of them
(in absolute numbers: 157) would be theoretically eligible for DQO. Not all of those table
scans were able to profit from DQO, however. This was because all of those table scans
were operating on a column stored with a suitable encoding/compression. 128 of the table
scans were able to profit from DQO for at least one of the scanned Data Blocks.
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To measure the impact of DQO on an actual workload, all 2, 940 queries from the examined
visualizations were run against Hyper. We used the Ubuntu hardware described in Section 4.1.
Without DQO Hyper needed 94.6 seconds on average to execute all queries including
non-domain queries and meta data queries against a given dataset. DQO brings this time
down by 1.5% to 93.2 seconds. These times include all time spent for query processing in
Hyper, including both query compilation and query execution time. They do not include the
time needed by Tableau to generate the queries and to interpret and visualize the results.
To simulate a moderate load situation, we were always running two queries were run in
parallel. The whole experiment was repeated 10 times and we report the arithmetic average
over all 10 runs. Given the previous numbers on the duplication factor usually encountered
in extracts and that about 6% of the queries are domain queries, the performance benefit of
only 1.5% might be surprising at first. In most cases other queries dominate processing
time.

To see how the measured 1.5% performance improvement generalizes beyond those 88 data
sets, we measured the query times on all 60 thousand visualizations in our test set. Note,
that we used a different hardware setup for this last experiment. We used a machine with a
Xeon E5-2699 CPU clocked at 2.2GHz with 2 processors and 44 cores. The machine is
equipped with 512GB RAM and is running under Windows Server 2012. We chose this
differing test machine configuration to make the measurements finish in a feasible time. We
do not think, the different hardware to influence the relative benefit of DQO significantly.

Among the already fast visualization (i.e., the query time was already smaller than 200ms),
there was only a marginal gain as DQO improved the geometric mean of the query times
by 0.15%. For those workbooks, the impact of DQO is small mostly because the computation
of the visualization was already fast anyway and most time was spent in other stages of
query processing. In general, we are targeting our performance features to address slowness
experienced by the customer. As such, we usually focus on the visualizations taking
more than than 0.2s to compute. For fast scenarios a customer usually does not notice
improvements. Focusing on the slower visualizations, we measured an improvement of
1.69% in the geometric mean which aligns with the 1.5 percent improvement measured in
the previous experiment.

When taking a closer look at the visualizations profiting from DQO, we saw that for
1,454 visualizations out of the 60,000 visualizations, the overall query time increased
performance by more than 10%. In 2 cases we even saw performance improvements of
over 100%. In the most extreme case we saw, performance was increased by slightly more
than 250%, reducing query time from 386ms to 110ms.
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5 Related Work

Tableau is based on Stolte’s dissertation work on interactive data visualization [St03; STH08].
In earlier work, we analyzed the database workload of typical Tableau applications and
found that it differs very much from the well-known analytical TPC benchmarks [Vo18].

Before being supplanted by Hyper, data storage and query processing in Tableau was
performed by the Tableau Data Engine (TDE) [Te15; WET11; WT14]. In TDE, domain
queries are optimized as part of logical query optimization. TDE exposes dictionary lookups
to the logical optimizer as joins between a table containing the dictionary tokens and the
dictionary [WET11]. Domain query optimization is thereby subsumed by join culling: The
optimizer notices that the table contents itself are not required to answer the query. Therefore,
it removes the table scan from the query plan and only the dictionary scan remains.

Hyper was designed as a hybrid OLTP and OLAP main-memory database system [KN11].
It compiles queries and stored procedures to machine code via the LLVM compiler frame-
work [Ne11], and uses morsel-driven parallelism for execution on multi-core CPUs [Le14].
Hyper uses Datablocks [La16] as its columnar storage format using lightweight compression.
The tradeoffs of various compression schemes have been studied by Damme et al. [Da17].
Column sketches [HKI18] are a recently proposed form of lossy compression of columns
that allows one to carry out the query processing directly on the compressed data. Mo-
erkotte [Mo98] introduced Small Materialized Aggregates as lightweight synopses of data
columns. The same idea was later also utilized in IBM Netezza as zone maps6. Binnig et
al. [BHF09] developed SAP HANA’s ordered dictionary, which allows processing range
queries on compressed columns.

6 Conclusion

In this paper, we introduced the notion of domain queries in the context of BI platforms such
as Tableau. Domain queries are mostly used to populate filters with a list of all distinct values
available in a data set. We have also shown how these domain queries can be answered
efficiently in the Hyper database system, that is the data engine in Tableau products for
data extracts. For this purpose, we first showed how to detect domain queries on relational
algebra trees. After this, we went on to demonstrate how to optimally execute domain
queries against Hyper’s Data Block storage format.

We evaluated our implementation of domain query optimization (DQO) on synthetic data
sets. Those experiments have shown that DQO can easily reach query time speedups of
multiple orders of magnitude. To show the real-world impact of DQO, we further analyzed
a set of 60 thousand real-world Tableau visualization from Tableau Public [Vo18]. A static
analysis of these workbooks was conducted to get a feeling for the potential impact of DQO.

6 https://www.ibm.com/developerworks/community/blogs/Wce085e09749a_4650_a064_bb3f3b738fa3/

entry/understanding_netezza_zone_maps?lang=en
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We manually inspected the queries posed against the largest data sets in our test set: 12%
percent of the inspected queries qualified as domain queries. Measuring the impact of DQO
on the query times for the queries issued during rendering those visualizations, we saw a
performance improvement of up to 250%.
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Einsatz kognitiver Verfahren am Deutschen Patent- und
Markenamt
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Abstract: Die Begutachtung von Patentanträgen ist ein aufwändiger Prüfprozess, dessen Ziel es ist,
eine Entgegenhaltung zu finden. Dabei stellt die Verschleierung des Patentanspruchs durch gezielte
Umschreibungen eine große Herausforderung dar. In enger Zusammenarbeit zwischen dem Deutschen
Patent- und Markenamt und der interface projects GmbH entstand ein modernes Recherche- und
Klassifikationssystem auf Basis von durch neuronale Netze gelernten Distributed Word Embeddings.
Der Beitrag stellt verschiedene Verfahren zum Lernen von Word Embeddings vor und bewertet diese
hinsichtlich ihrer Eignung für die Prüfung von Patentanmeldungen.
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1 Einleitung

In den letzten fünf Jahren konnten erhebliche Fortschritte beim Einsatz von maschinellen
Lernverfahren, basierend auf künstlichen neuronalen Netzen, verzeichnet werden. Im Be-
reich der Text- und Multimedia-Analyse wird in diesem Zusammenhang typischerweise
von kognitiven Verfahren gesprochen. Hierzu zählen insbesondere Verfahren zur Klassi-
fikation, Verschlagwortung, Erkennung relevanter Entitäten und zur Unterstützung einer
semantisch-assoziativen Suche (kognitive Suche). Insbesondere profitieren systematische
Rechercheprozesse und die Erschließung unbekannter Dokumente von solchen Verfahren.

Wie in kaum einem anderen Bereich gehört das systematische Recherchieren zur Kernauf-
gabe der Prüfer in Patentämtern. Die stark ansteigende Anzahl von Patentanmeldungen auf
nationaler und internationaler Ebene stellt eine große Herausforderung bei der Bearbeitung
der Schutzrechtsverfahren dar. Gleiches gilt für Patentabteilungen in Unternehmen und For-
schungseinrichtungen. Erschwerend kommt hinzu, dass bei der Erstellung der Patentschriften
gezielt Umschreibungen verwendet werden, welche die Nähe der angemeldeten Innovation
zu bereits erteilten Patenten verschleiern und eine Entgegenhaltung zum angemeldeten
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Patentanspruch verhindern soll. Die durch kognitive Verfahren durchgeführte Analyse der
Patentschriften unterstützt die Patentprüfer bei der Aufdeckung solcher Verschleierungen,
indem besser nach inhaltlich ähnlichen Patentschriften für entsprechende Entgegenhaltungen
recherchiert werden kann. Eine andere Herausforderung besteht in der gezielten Zuordnung
eines hinsichtlich der fachlichen Aspekte der Patentanmeldung erfahrenen Prüfers. Hier
unterstützen kognitive Verfahren bei der Klassifikation der eingehenden Patentanmeldungen.

In diesem Beitrag werden verschiedene kognitive Verfahren vorgestellt, die im Rahmen der
Zusammenarbeit zwischen dem Deutschen Patent- und Markenamt (DPMA) und der Firma
interface projects GmbH auf der Basis des Produktes intergator6 entwickelt und am DPMA
eingeführt wurden.

1.1 Die Evolution der Text-Indexierung: von Term-Vektoren zu Distributed Word
Embeddings

Für ein effizientes Text-Information-Retrieval wurden in den letzten Jahrzehnten zahlreiche
Verfahren entwickelt. Weit verbreitet sind insbesondere sogenannte Vector-Space-Modelle
(VSM), die nahezu jede Text-Suchmaschine verwendet - oft unter Anwendung des TF-IDF-
Maßes zur Bestimmung der Relevanz der einzelnen Terme. Die Dimension der Vektoren
wird durch die Anzahl unterschiedlicher Terme in dem zu durchsuchenden Korpus bestimmt.
Ein Vektor repräsentiert ein Dokument im Korpus. Die Ähnlichkeit von Dokumenten
kann leicht durch den Kosinus zwischen den Dokument-Vektoren bestimmt werden. Die
Nachteile von Term-VSM liegen in der hohen Dimensionalität des Vektorraums. Zudem
sind die Vektoren sehr schwach besetzt. Verfahrensbedingt geben diese Vektoren auch
keinerlei Information über die semantische Ähnlichkeit von Dokumenten. Erfolgt eine
Suchanfrage mit einem Begriff, der in den gesuchten Dokumenten nicht enthalten ist, erhält
man keine Treffer. Trotz einer breiten Palette von weiteren Methoden des Natural Language
Processing (NLP) können viele linguistische und semantische Aufgabenstellungen meist
nicht befriedigend gelöst werden. Hinterlegte Wörterbücher und sonstige Begriffssysteme,
einschließlich aufwendig erstellter Ontologien, können von den Nutzern in der Regel weder
bereitgestellt, noch aktuell gehalten werden.

Mit den Arbeiten von Mikolov bei Google und später bei Facebook wurden die grundle-
genden VSM unter Anwendung künstlich neuronaler Netze auf eine neue Stufe gehoben.
Das unter Word2Vec [Mi13] 2013 bekannt gewordene Verfahren für Distributed Word
Embeddings verwendet neuronale Netze zum Lernen von Zusammenhängen zwischen
Wörtern. Ein Vektor repräsentiert dabei ein Wort in einem Vektorraum mit wenigen hundert
Dimensionen. Räumlich benachbarte Vektoren beschreiben Wörter mit einem ähnlichen
Kontext. Daraus ergeben sich vielfältige Anwendungsgebiete, wie die automatische Ermitt-
lung von sinnverwandten Suchbegriffen, die Suche in fremdsprachigen Dokumenten und
die Klassifikation von Dokumenten.
6 https://www.intergator.de
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Abb. 1: Verwandte Begriffe zu Regler

Die Grafik Abb. 1 visualisiert den semantischen Kontext zum Begriff Regler in Form
einer 2D-Projektion eines aus ca. 300.000 Patenten trainierten 300-dimensionalen Word-
Embedding-Vektorraums.

Die Besonderheit dieser Word-Embedding-Vektoren liegt darin, dass ein Wort über die
gelernten Kontexte, in denen es auftritt, beschrieben wird. Darüber hinaus sind Word-
Embedding-Verfahren robust gegenüber unbekannten Begriffen in Dokumenten, die nicht in
das Modell-Training einbezogen waren. Auf diese Weise können auch falsch geschriebene
Wörter durch ihren Kontext erkannt und richtig eingeordnet werden. Word Embeddings
liefern somit eine optimale Strategie für eine semantisch-assoziative (unscharfe) Suche.
Letztendlich bildet die Gesamtheit der gelernten Word-Embedding-Vektoren ein Sprach-
modell. Aus großen Korpora (z. B. Wikipedia, Zeitungs- und Nachrichtenarchiven u. ä.)
lassen sich allgemeine Modelle vortrainieren und im Zusammenhang mit völlig anderen
Textbeständen nutzen. Auch lassen sich Wort-Vektoren von einem sprachspezifischen Modell
in ein anderes transformieren, um Suchen in fremdsprachigen Dokumentenbeständen zu
ermöglichen.
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Interessanterweise werden beim Erstellen der Word-Embedding-Vektoren auch linguistische
Beziehungen zwischen Begriffen gelernt. Über Vektoroperationen lassen sich somit gezielt
semantische Relationen ermitteln und für Frage-Antwort-Systeme oder Empfehlungssysteme
einsetzen. Ein typisches Beispiel sind die schon in der ersten Veröffentlichung von Mikolov
zu Word2Vec beschriebenen Wort-Analogien. Beispielsweise führt die Operation <König> -
<Mann> + <Frau> zum Vektor <Königin>. Gleichermaßen lässt sich aus zwei Ländernamen
und einer der Hauptstädte die Hauptstadt des zweiten Landes bestimmen.

Das maschinelle Lernen von Word Embeddings ist grundsätzlich unüberwacht. Das heißt,
es müssen keine manuell kategorisierten Dokumente bereitgestellt werden. Über spezielle
Erweiterungen von Word2Vec (z. B. bei fastText [Jo16]) lassen sich auch klassenspezifische
Modelle trainieren, die im Anschluss von einem entsprechenden Klassifikator verwendet
werden.

1.2 Lernen von Word Embeddings

Die Grundidee von Word Embeddings besteht darin, dass sich die Bedeutung eines Wortes
aus den Wörtern erschließt, in deren syntaktischer Nähe es benutzt wird. Die Implemen-
tierung von Word-Embedding-Verfahren basiert hauptsächlich auf diesem linguistischen
Phänomen. Einen umfassenden Überblick über das Lernen von Word Embeddings mit Hilfe
neuronaler Netze wird in [Ko16] gegeben. Zum Erlernen solcher Kontext-Wort-Beziehungen
werden zunächst Wort-Paare gebildet. Als Beispiel-Korpus dient folgendes Pangramm:

Zwölf Boxkämpfer jagen Viktor quer über den großen Sylter Deich.

Dieses Pangramm besteht aus 10 Wörtern, die unser Vokabular bilden. Der Kontext eines
Wortes wird über ein Fenster aus Wörtern links und rechts um das Fokuswort gebildet. In
unserem Beispiel gehen wir der Einfachheit halber von einem Wortfenster von 1 aus, d. h.
der Kontext wird durch jeweils ein Wort links und eins rechts vom Fokuswort gebildet. So
erhalten wir folgende (Kontext, Wort)-Paare:

([Zwölf, jagen], Boxkämpfer), ([Boxkämpfer, Viktor], jagen), ([jagen, quer], Viktor), ...

Im Folgenden wird das Lernen von Word Embeddings am Beispiel von Word2Vec erläu-
tert. Word2Vec stellt zwei verschiedene Netzwerkarchitekturen bereit. Die erste Variante
Continuous Bag of Words (CBOW) sagt zu einem Kontext das Fokuswort voraus. Die zweite
Architekturvariante Skip-Gram funktioniert genau umgekehrt und sagt zu einem Wort den
wahrscheinlichen Kontext voraus. Der Vorteil der Skip-Gram-Architektur liegt in einer
höheren Robustheit bei der Erstellung von Wortvektoren für seltene Wörter. Dies wird
allerdings mit einer gegenüber CBOW wesentlich höheren Berechnungszeit erkauft. Da im
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Abb. 2: Neuronales Netz mit CBOW-Architektur

vorliegenden Anwendungsfall zwischen CBOW und Skip-Gram kein signifikanter Unterschied
in der Qualität der Ergebnisse festgestellt werden konnte, wurde aus Performance-Gründen
CBOW verwendet.

Bei Word2Vec CBOW besitzen die neuronalen Netze je einen Input-Vektor für die Kontext-
Wörter, einen Hidden-Layer mit N linearen Neuronen (Dimension des Modell-Vektorraums)
und einem Output-Layer, der durch einen Softmax-Klassifikator ergänzt wird und das
Fokuswort in einem Output-Vektor repräsentiert. Die Dimension der Input- und Output-
Vektoren wird durch die Größe des Vokabulars (V) des zu untersuchenden Korpus bestimmt.

In unserem einfachen Beispiel besteht der Korpus aus einem einzigen Dokument mit
einem Vokabular von lediglich 10 Wörtern. Normalerweise besteht ein Korpus aus vielen
Dokumenten, die insgesamt ein Vokabular von tausenden von Wörtern umfassen. Die
Input-Vektoren für die beiden Kontextwörter und der Output-Vektor für das Fokuswort
werden durch sogenannte One-Hot-Vectors gebildet, die bis auf die Position des jeweiligen
Kontext- bzw. Fokuswortes ausschließlich aus Nullen bestehen.

Für die abstrakte Repräsentation der aus den Kontextwörtern gelernten Bedeutung des
Fokuswortes wird ein Vektor in einem N-dimensionalen Vektorraum erzeugt, wobei N
typischerweise zwischen 300 und 500 liegt. Hierfür besitzt das neuronale Netzwerk einen
Hidden-Layer, dessen N Neuronen der Spalten einer Gewichtsmatrix W(VxN) entsprechen.
Die Matrix besteht aus V Reihen (für jedes Wort des Vokabulars).

Einsatz kognitiver Verfahren am Deutschen Patent- und Markenamt 341



6 Mark Reinke, André Kischkel, Volker Jahns, Uwe Crenze, Olga Beltcheva

Der Output-Layer besteht aus einer zweiten Gewichtsmatrix W(NxV) und einem Softmax-
Regressionsklassifikator für die Rekonstruktion des Output-(Fokuswort)-Vektors. Jedes
Output-Neuron besitzt einen Gewichtsvektor, der mit dem korrespondierenden Vektor im
Hidden-Layer multipliziert wird. Das Ergebnis ist die Wahrscheinlichkeit, mit der das dem
Output-Neuron zugeordnete Wort des Vokabulars ein Fokuswort zum gegebenen Kontext ist.
Da ähnliche Wörter in ähnlichen Kontexten stehen, werden dementsprechend auch ähnliche
Gewichtsvektoren erlernt.

1.3 Weiterentwicklung von Word Embeddings

Durch die Möglichkeit von Word Embeddings die Semantik und Syntaktik von Wörtern
als Vektoren zu repräsentieren, eignen sie sich hervorragend als Grundbausteine für
verschiedenste NLP-Anwendungen.

Durch Abwandlung und Erweiterung der ursprünglichen Architektur und Einbeziehung
weiterer Techniken des maschinellen Lernens inklusive geschickter Optimierungen können
Word Embeddings auch als Basis für Information-Retrieval-Tasks, wie Textklassifikation
oder Textähnlichkeitsaufgaben, dienen. Facebook AI Research stellt mit fastText eine
effiziente Erweiterung von Word2Vec zur Verfügung. Durch die Möglichkeit, Vektoren von
N-Grammen auf Zeichen- oder Wortebene zu bilden, können auch unbekannte Wörter (Out-
of-vocabulary) und Mehrwortbegriffe einbezogen werden. Weiterhin überträgt fastText,
durch eine leichte Abwandlung der CBOW-Architektur, das Konzept der Embeddings auf
Klassifikationsprobleme.

Im Folgenden wird die Anwendung und Evaluierung der hier dargestellten Verfahren
anhand der Patentrecherche und Patentklassifikation am Deutschen Patent- und Markenamt
vorgestellt.

2 Patentrecherche

Die Patentrecherche ist ein wesentlicher Bestandteil des Patenterteilungsverfahrens am
DPMA. Im Rahmen der Patentprüfung ermittelt der Prüfer zu einer Patentanmeldung den
relevanten Stand der Technik. Dies ist eine Liste relevanter Dokumente der Patent- und
Nichtpatentliteratur, die sogenannten Entgegenhaltungen. Der Prüfer entscheidet anhand des
Rechercheergebnisses, ob die Grundvoraussetzung für eine Patenterteilung, das Beruhen
der angemeldeten Erfindung auf Neuheit und erfinderische Tätigkeit, gegeben ist.

Die Patentrecherche mit dem hauseigenen Deutschen Patentinformationssystem (DEPATIS)
basiert bis dato auf der Suche nach Termen und bibliographischen Daten von Patentschrif-
ten. Die Suchtechnologie beruht auf einer Booleschen Suche. Die Suchbegriffe werden
exakt oder trunkiert eingegeben und verwandte Begriffe müssen aus manuell gepflegten
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Wortlisten übernommen werden. Die Suche nach bibliographischen Daten, wie zum Bei-
spiel diversen Klassifikationssymbolen (IPC, CPC oder FI), Namen von Erfindern oder
Anmeldern, Datumsbereichen wie Anmeldedatum, Publikationsdatum oder Prioritätsdaten,
Familienmitgliedern, Entgegenhaltungen und zitierenden bzw. zitierten Schriften, liefert
Dokumente, in denen exakt diese bibliographischen Daten vorkommen.

In der Praxis ist die Bildung von komplexen und langen Suchanfragen notwendig, weil
die Kombination von Begriffen und Synonymen explizit angegeben werden muss. Die
Suche soll eine Liste von Dokumenten liefern, die in einer angemessenen Zeit vom Prüfer
gesichtet und bewertet werden kann. Das schnelle Anwachsen der Anzahl publizierter
Patentschriften erschwert die Lage des Prüfers. Die Formulierung solcher Suchanfragen ist
sehr zeitaufwändig, fehlerträchtig und erfordert langjährige Erfahrung auf dem Prüfgebiet.
Da Anmeldungen oft allgemein formuliert werden, um den Wirkungsgrad des Patentes zu
erhöhen (Kleinfahrzeug anstatt Fahrrad) und der Anmeldegegenstand durch die Verwendung
abseits vom Stand der Technik liegender Begriffe, Umschreibungen (im Kreis bewegen
anstatt rotieren) oder Wortneuschöpfungen (Müllentsorgungsdrohne) meist verschleiert ist,
muss der Prüfer den Text inhaltlich erschließen und die Bedeutung des Textes intellektuell
erfassen.

2.1 Kognitive Suche

Abb. 3: Benutzeroberfläche der kognitiven Suche für die Patentrecherche

Die kognitive, auf semantischer Textähnlichkeit beruhende Suche reduziert den manuellen
Aufwand und ermöglicht eine einfache, effiziente und effektive Recherche. Es werden
folgende Funktionen bereitgestellt:
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1. Die kognitive Suche ist in der Lage, inhaltlich ähnliche Dokumente zu einer Pa-
tentanmeldung ohne manuelle Eingabe zu finden. Es wird eine Auswahlliste von
Dokumenten als nächstliegender Stand der Technik präsentiert. Eine automatisierte
Patent-Vorsuche wird damit möglich.

2. Es ist sowohl möglich, relevante Abschnitte einer Anmeldung für die Suche auszu-
wählen, als auch in Kombination mit anderen relevanten Druckschriften zu suchen. So
ist es beispielsweise möglich, ausgehend von einzelnen Ansprüchen der Anmeldung
oder in Kombination mit dem in der Anmeldung zitiertem Stand der Technik zu
suchen.

3. Bei der Suche werden Synonyme oder sinnverwandte Begriffe gefunden, die in
weiteren Recherchen verwendet werden können. Die intellektuelle Ermittlung von
Synonymen für die Formulierung der Suchanfrage bzw. Erstellung und Pflege von
Synonym-Listen ist nicht mehr erforderlich.

4. Die Bewertung der Suchergebnisse wird durch Hervorheben von Begriffen, die eine
semantische Nähe zur Eingabe aufweisen erleichtert.

Das Neuartige an dieser semantischen Suchtechnologie ist die Identifizierung von Pa-
tentliteratur mit ähnlicher Bedeutung. Ein ähnliches Dokument kann auch dann von der
Suchmaschine als relevant angesehen werden, wenn die Begriffe der Sucheingabe nicht
darin vorkommen. Diese Funktionalität ist für die Patentrecherche besonders wichtig, da für
die Neuartigkeit eines Patentes die darin beschriebenen Ideen entscheidend sind und nicht
die Begriffe, die verwendet werden.

Word Embeddings repräsentieren semantische und syntaktische Eigenschaften von Worten
und sind damit eine geeignete Basistechnologie für die kognitive Suche. Die Idee der Word
Embeddings ist auch auf größere Textabschnitte anwendbar. Diese sogenannten Sentence
Embeddings bilden die Bedeutung von Phrasen oder Sätzen auf Vektoren ab. Damit
lassen sich, wie bei Word Embeddings, Zusammenhänge als mathematische Operationen
ausdrücken. Einige solcher Verfahren werden im Folgenden untersucht und es wird gezeigt,
dass sich die Idee der Sentence Embeddings auch auf ganze Dokumente erweitern lässt
(Document Embeddings). Eine Suchoperation kann dann als Vektorähnlichkeit zwischen
Sucheingabe-Vektor und Dokumentvektoren im Suchraum ausgedrückt werden.

Die Sentence Embedding-Verfahren lassen sich in zwei Kategorien unterteilen: einfache,
flache neuronale Netzwerke (Word2Vec, SIF [ALM17], Sent2Vec [PGJ17]) und komplexere,
tiefe neuronale Netze (Skip-Thoughts Vectors [Ki15], InferSent [Co17]).

Wir beschränken uns hier auf flache neuronale Netze, da für das Training auf großen
Datenmengen ein effizienter, ressourcenschonender Algorithmus benötigt wird und einfache
Netzwerke bei ähnlichen Problemstellungen vergleichbar gute Ergebnisse erzielen konnten
wie komplexere Architekturen (Arora et al. [ALM17], Pagliardini et al. [PGJ17], Hill et
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al. [HCK16]). Die Entwicklung im Bereich Deep Learning ist jedoch rasant und eine
zukünftige Betrachtung solcher Verfahren sinnvoll.

Für die kognitive Suche werden Embeddings verwendet, die mit dem Sent2Vec-Algorithmus
erlernt wurden. Einzelne Wörter und ganze Dokumente werden in denselben Vektorraum
projiziert und können durch einfache räumliche Entfernungsmetriken in Verbindung gesetzt
werden. Mit diesem universellen Ansatz eröffnen sich neue Möglichkeiten. So realisieren wir
damit, als Teil der kognitiven Suchanwendung, eine Reihe unterschiedlichster Information-
Retrieval-Aufgaben:

Suche (Wörter⇒ Dokumente): Hierbei macht man sich die Tatsache zu Nutze, dass
der Zentroid der Wortvektoren der Sucheingabe räumlich nahe bei den semantisch
ähnlichen Dokumenten liegt.

Dokumentähnlichkeit (Dokument⇒ Dokumente): Semantisch ähnliche Dokumente
liegen im Vektorraum nahe beieinander.

Automatische Synonyme (Wort⇒Wörter): Semantisch ähnliche Worte liegen im Vek-
torraum nahe beieinander.

Automatische Verschlagwortung (Dokument⇒Wörter): Schlagwörter eines Doku-
ments befinden sich in räumlicher Nähe zu den Dokumentvektoren.

Durch Matrix-Rotation werden die Vektorräume verschiedener Sprachmodelle zueinander
ausgerichtet und lassen sich dadurch kombiniert verwenden [Co18]. Alle beschriebenen
Aufgabenstellungen sind somit auch sprachübergreifend möglich.

2.2 Evaluation

Es gibt einige Veröffentlichungen, in denen Sentence Embedding-Verfahren für Aufgaben
wie Sentimentanalyse, Textklassifikation oder Satzähnlichkeit evaluiert wurden. Soweit uns
bekannt ist, wurden Sentence Embeddings noch nicht auf ihre Eignung für Suchanwendungen
getestet. Es wurden in diesem Projekt zwei Tests entwickelt - der Titel-Test, um die Suche und
der Entgegenhaltungstest, um die Dokumentähnlichkeit zu evaluieren. Folgende Verfahren
werden miteinander verglichen:

T-VSM TF-IDF: Als Baseline dient das Term Vector Space Model (T-VSM) mit TF-IDF-Maß.
Es wird die More Like This Query von Elasticsearch7 verwendet, um die relevantesten
Begriffe eines Textes zu ermitteln und ODER-verknüpft nach diesen zu suchen.

7 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html#

_how_it_works
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Word2Vec: Die einfachste Methode Sentence Embeddings zu erhalten, ist die Mittelung aller
mit Word2Vec gelernten Word Embeddings eines Textes. Eine Suche nach ähnlichen
Dokumenten lässt sich als Suche nach den ähnlichsten Dokument-Vektoren zum
Durchschnittsvektor der Sucheingabe ausdrücken.

SIF: Bei Smooth Inverse Frequency (SIF) erfolgt die Durchschnittsbildung mit gewichte-
ten Wortvektoren, bei der relevante Wörter bevorzugt werden. Zudem werden die
ersten Prinzipalkomponenten der Dokument-Vektoren entfernt (Common Component
Removal), um semantisch unbedeutende Aspekte aus den Embeddings zu entfernen.

Sent2Vec: Sent2Vec ist eine Erweiterung von fastText. Ähnlich wie bei CBOW werden
Wortvektoren trainiert, indem Wörter auf Grund ihres Kontextes vorhergesagt wer-
den. Word2Vec verwendet ein Kontextfenster mit parametrisierbarer Maximallänge,
Sent2Vec den gesamten Satz unter Erhalt aller Wort-N-Gramme. Die trainierten Wort-
vektoren eignen sich besonders gut für die Durchschnittsbildung langer Eingabetexte.

2.2.1 Titel-Test

In Ermangelung eines Goldstandards wurde ein automatisiertes Testverfahren konzipiert,
mit dem eine „unscharfe“ Stichwortsuche simuliert wird. Beim Titel-Test werden die
Patentschriften in Titel und Volltext (Zusammenfassung, Ansprüche, Beschreibung) separiert.
Es wird nach dem Titel gesucht und evaluiert, ob das System das zugehörige Dokument
als relevantesten Suchtreffer zurückliefert. Um zu testen, ob ein Text aufgrund seiner
semantischen Ähnlichkeit zur Suchanfrage gefunden werden kann, werden in einem
Vorverarbeitungsschritt alle Begriffe der Titel aus dem Volltext entfernt. Für diesen Test
werden 10.000 deutsche Patentschriften als Datenbasis verwendet. Tab. 1 zeigt für jedes
Verfahren den erreichten Recall in Prozent. Bei Recall @1 wird getestet, ob das erste
gefundene Dokument das gesuchte ist. Bei Recall @10 muss das gesuchte Dokument unter
den ersten 10 Treffern sein.

Verfahren Recall @1 Recall @10
T-VSM TF-IDF - -
Word2Vec 10,8 29,6
SIF 28,9 61,0
Sent2Vec 44,1 76,6

Tab. 1: Die Ergebnisse des Titel-Tests

Sent2Vec ist den anderen Verfahren deutlich überlegen. Der Test (Tab. 1) zeigt, dass eine
kognitive Suche, die nicht vom Vorkommen der Suchwörter in den Dokumenten abhängt,
sondern auf inhaltlicher Ähnlichkeit basiert, möglich ist. Eine Suche mit Term-VSM kann
keine korrekten Ergebnisse liefern, da die Eingabewörter aus den Dokumenten entfernt
wurden.

346 Mark Reinke, André Kischkel, Volker Jahns, Uwe Crenze, Olga Beltcheva



Kognitive Verfahren am DPMA 11

2.2.2 Entgegenhaltungstest

In diesem Test wird evaluiert, wie gut ein System zu einer vorgegebenen Patentschrift
ähnliche Schriften finden kann. Dafür wird die Tatsache genutzt, dass zitierte Literatur in
den bibliografischen Daten der Patente hinterlegt wird. Dieser Test spiegelt den realen
Anwendungsfall der Patentrecherche wieder. Für die Evaluation werden ca. 1,5 Millionen
deutsche Patent- und Offenlegungsschriften der Jahrgänge 2000 - 2015 verwendet. Als
Eingabe werden 2.630 Schriften betrachtet, für die alle mindestens eine zitierte Schrift im
Datenbestand enthalten ist.

Verfahren Recall @10 Recall @100 Recall @1000 Trainingszeit Laufzeit
T-VSM TF-IDF 10,4 21,1 31,2 - 1h 52m
Word2Vec 0,6 12,3 20,6 18h 1m 39s
SIF 16,6 41,0 69,8 18h 3m 10s
Sent2Vec 17,6 43, 3 69,4 30h 4m 40s

Tab. 2: Ergebnisse des Entgegenhaltungstests

Die Eignung von Sent2Vec für die Patentrecherche wird durch diesen Test (siehe Tab. 2)
bestätigt. Wie beim Titel-Test bringt eine einfache Mittelung von Word2Vec-Vektoren keine
guten Ergebnisse und schneidet schlechter ab als die Baseline. Mit SIF und Sent2Vec können
hochwertige Dokumentvektoren erzeugt werden, die die semantischen Eigenschaften von
Dokumenten abbilden.

2.3 Fallbeispiel

Am Beispiel der Patentschrift „Elektronisch gesteuertes Federungssystem, Verfahren zur
Steuerung eines Federungssystems und Computerprogramm“ (DE102012214867) soll ver-
anschaulicht werden, wie mittels kognitiver Suche das entgegengehaltene Patentdokument
„Stoßdämpfer für Fahrrad“ (DE102011009405) trotz unterschiedlicher Terminologie gefun-
den werden konnte. Während mit einer klassischen Stichwortsuche die Entgegenhaltung
nicht ermittelt werden kann, ist die Ähnlichkeit der Dokument-Vektoren hoch (unter den
Top-3 Treffern im Entgegenhaltungstest). In der qualitativen Betrachtung wird ersichtlich,
dass sich, obwohl keine große textuelle Übereinstimmung der Patente besteht, die Texte
dennoch inhaltlich ähnlich sind, wie im Folgenden anhand der Textauszüge zu sehen ist.
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Auszug aus DE102012214867:

Die Erfindung betrifft ein elektronisch gesteuertes Federungssystem für
ein Fahrrad (1), enthaltend zumindest einem Federelement (3, 4), welches
zwischen einem ersten Teil (10) des Fahrrades und einem zweiten Teil (14,
15) des Fahrrades (1) angeordnet ist, welche beweglich miteinander verbun-
den sind, wobei zumindest eine Kenngröße des Federelementes veränderbar
ist, und zumindest einen Aktor (431), welcher auf das Federelement (3, 4)
einwirkt, um die zumindest eine Kenngröße zu verändern, und ein Elektro-
nikmodul (6), mit welchem ein Ansteuersignal für den zumindest einen Aktor
(431) erzeugbar ist, wobei weiterhin ein Steuerelement (2, 63, 66) vorhanden
ist, mit welchem das vom Elektronikmodul (6) erzeugte Ansteuersignal
beeinflussbar ist, wobei das Steuerelement (2, 63) mit dem Elektronikmodul
(6) über ein Funksignal (64) verbindbar ist und/oder der Aktor (431) mit
dem Elektronikmodul (6) über ein Funksignal (64) verbindbar ist. Weiterhin
betrifft die Erfindung ein entsprechendes Verfahren zur Steuerung eines
Federungssystems für ein Fahrrad und ein Computerprogramm zu dessen
Durchführung.

Auszug aus DE102011009405:

Stoßdämpfer für ein Fahrrad mit einer Dämpfereinrichtung mit einer ersten
und einer zweiten Dämpferkammer, die über ein steuerbares Drosselventil in
Verbindung stehen. Dabei ist eine wechselbare Elektronikeinheit vorgesehen,
welche eine Steuereinrichtung umfasst, um mittels der Steuereinrichtung
das elektrisch steuerbare Drosselventil zu steuern, um die Dämpfereigen-
schaften zu beeinflussen.

Dieses Beispiel ist typisch für die Vielfältigkeit der im Patentwesen verwendeten Fachspra-
che. Die folgende Tabelle zeigt die Verwendung unterschiedlicher, aber sinnverwandter
Begriffe in den zwei Patenten:

DE102012214867 DE102011009405
Elektronikmodul, elektronisch Elektronikeinheit, elektrisch
Steuerelement, Steuerung, gesteuert Steuereinrichtung, steuerbar
Federungssystem, Federelement Stoßdämpfer, Dämpfereinrichtung, Dämpferkammer

Tab. 3: Unterschiede im Vokabular zweier ähnlicher Patentschriften
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3 Patentklassifikation

Die Patentklassifikation dient dem einheitlichen Klassifizieren von Patentdokumenten nach
technischen Gebieten. Durch die ordnungsgemäße Einordnung von Patentdokumenten in
eine Klassifikationsstruktur wird dem Patentprüfer der Zugriff zu der darin enthaltenen
technischen Information erleichtert. Es existieren verschiedene Klassifikationsschemata,
wie zum Beispiel die internationale Patentklassifikation (IPC), die Cooperative Patent
Classification (CPC), die Klassifikation des Japanischen Patentamts (FI) und weitere. Alle
Klassifikationsschemata besitzen eine hierarchische Baumstruktur. Im Prüfungsverfahren
am DPMA werden Patentdokumente einheitlich nach der IPC klassifiziert, aber es werden
auch andere Schemata berücksichtigt.

Die Klassifikation dient dem DPMA vor allem zur Unterstützung der Recherche, um
Patentdokumente wieder aufzufinden, damit für die technischen Offenbarungen in Paten-
tanmeldungen die Patentfähigkeit festgestellt werden kann. Eine korrekte und möglichst
feingranulare Klassifizierung der Patentliteratur ist für die Arbeit des Patentprüfers somit ent-
scheidend. Mit dem ständig wachsenden Stand der Technik wird auch die Patentklassifikation
fortlaufend erweitert.

Die international harmonisierte Klassifikation IPC unterteilt sich von der obersten zur
untersten Hierarchiestufe in Sektionen, Hauptklassen, Unterklassen, Hauptgruppen und
Untergruppen. Ein Klassifikationseintrag besteht aus einem IPC-Symbol und einer textuellen
Beschreibung [DP18]. Die IPC mit dem Revisionsstand 2018.01 enthält über 74.000
vollständige IPC Symbole: 642 Symbole bis zur Unterklasse und über 8.000 Symbole bis
zur Hauptgruppe.

Sektion A: Täglicher Lebensbedarf
Sektion B: Arbeitsverfahren; Transportieren
Sektion C: Chemie; Hüttenwesen
Sektion D: Textilien; Papier
Sektion E: Bauwesen; Erdbohren; Bergbau
Sektion F: Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
Sektion G: Physik
Sektion H: Elektrotechnik

Abb. 4: Die acht Fachgebiete (Sektionen)

Die Klassifikation von Patentanmeldungen in die IPC kann durch ein automatisiertes Klassi-
fikationssystem erfolgen [BG11]. Der technische Gegenstand des Textes muss durch diesen
Klassifikator möglichst genau erfasst und dann zum richtigen Knoten in die hierarchische
Struktur der IPC klassifiziert werden.

Die möglichen Einsatzgebiete im DPMA werden im Wesentlichen durch folgende Anwen-
dungsfälle beschrieben:
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Elektronische Vorklassifikation: Die Verteilung der Patent- und Gebrauchsmusteran-
meldungen im DPMA erfolgt anhand der vergebenen IPC-Klassifikation. Diese
Vorklassifikation ist der Schritt im Patentverfahren, bei dem bereits möglichst genau
die IPC-Stelle und somit das genaue Themengebiet der Anmeldung ermittelt werden
soll. Zudem können weitere Nebenklassen der IPC falls notwendig vergeben werden.
Die manuelle Vorklassifikation ist intellektuell sehr aufwändig. Der Inhalt des An-
meldungstextes muss von der klassifizierenden Person erfasst und sehr gut verstanden
werden. Weiterhin muss eine große Vertrautheit mit der IPC-Klassifikation gegeben
sein, um einen möglichst genauen Klassifikationsvorschlag zu liefern.
Der Schritt der Vorklassifikation kann durch einen automatischen Klassifikator un-
terstützt werden. Dazu muss die Anmeldung in elektronisch verarbeitbarer Form
vorliegen. Im Jahre 2011 wurden die bisher an die Papierform gebundenen Patentakten
durch ein vollelektronisches Verfahren ersetzt. Damit werden sämtliche in Papier-
form eingehenden Patentanmeldungen vollständig digitalisiert. Weiterhin können
Patentanmeldungen über die webbasierte Plattform DPMAdirekt in elektronischer
Form eingereicht werden. Diese Grundlage ermöglicht es einem automatischen
Klassifikator, die in elektronischer Form vorliegenden Texte zu analysieren und
Klassifikationsvorschläge zu erstellen. Anhand des IPC-Vorschlags wird die neu
angelegte elektronische Patentakte automatisch an einen Patentprüfer weitergeleitet,
welcher den IPC-Vorschlag prüft.

Interaktive Klassifikation: Ein weiteres Einsatzgebiet eines elektronischen Klassifikators
ist die interaktive Klassifikation. Der Klassifikator übernimmt eine Assistenzfunktion
und unterstützt die Patentprüfer bei der Vergabe der IPC-Symbole. Hierbei muss der
Klassifikator verschiedene Dokumente interaktiv verarbeiten und Klassifikationsvor-
schläge erstellen. Durch die direkte Interaktion des Prüfers mit dem Klassifikator
sollte es auch möglich sein, die Vorschläge auf bestimmte Bereiche der IPC, bei-
spielsweise auf bestimmte Unterklassen, einzuschränken und Rückmeldungen zur
Qualität einzugeben.

Umklassifizierung: Die IPC befindet sich in ständiger Überarbeitung. Jährliche Revisionen
machen es erforderlich, die bestehende Klassifizierung von Patentdokumenten zu
korrigieren. Für diesen Zweck werden bei jeder IPC-Revision Konkordanzlisten
herausgegeben, welche ein Umschreiben der Klassifikation erleichtern. Häufig kommt
es jedoch vor, dass IPC-Klassen zu umfangreich geworden sind oder sich die bisherige
Einteilung als zu grob herausgestellt hat. In diesem Fall werden IPC-Symbole in
weitere Untergruppen untergliedert oder teilweise sogar auf unterschiedliche Klassen
aufgeteilt. Solche Fälle können nicht mehr regelbasiert umklassifiziert werden,
sondern erfordern eine manuelle Neuklassifizierung. Hierfür muss, ähnlich wie bei
der Vorklassifikation, der Inhalt des Dokuments von einem Prüfer beurteilt werden,
um anschließend eine geeignete neue Klasse vergeben zu können. Zudem kann bei
der Patentprüfung auffallen, dass die Anmeldung mehrere technische Aspekte hat,
die während der ersten Patentklassifikation übersehen wurden oder tatsächlich anders
zu gewichten sind.
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Prüfstoffpflege: Als Prüfstoff wird der Gesamtbestand des im DPMA archivierten Stan-
des der Technik bezeichnet. Dazu zählen sowohl sämtliche nationale Patent- und
Gebrauchsmusterschriften, als auch internationale Patentdokumente von anderen
Patentämtern. Gepflegt und verwaltet werden diese Dokumente in elektronischer
Form im Deutschen Patentinformationssystem (DEPATIS). Die Informationen werden
der Öffentlichkeit über den Onlinedienst DEPATISnet zur Verfügung gestellt. Die
Qualität des Prüfstoffs mit seinen Volltexten und bibliographischen Daten ist sowohl
für das DPMA selbst, als auch für seine Anmelderschaft und Informationskunden
von großer Bedeutung. Die Prüfer müssen im Rahmen ihrer Tätigkeit den Prüfstoff
aus deutschen, europäischen, aber auch asiatischen und amerikanischen Patent- und
Offenlegungsschriften sichten, eingruppieren und können gegebenenfalls eine Än-
derung der IPC-Hauptklasse vornehmen. Die beschriebene Prüfstoffpflege ist eine
kontinuierliche Aufgabe, die von jedem Prüfer Sorgfalt und einen gewissen Zeit-
aufwand fordert, da er jedes zu verifizierende Dokument intellektuell durchdringen
muss, um die korrekte Einordnung in die IPC vornehmen zu können. Hier kann ein
automatischer Klassifikator eine unterstützende Funktion zur Validierung, Ergänzung
oder Umklassifikation der bestehenden Klassifizierung bieten.

Weitere Anwendungsfälle: Einige ausländische Ämter klassifizieren nicht nach IPC. Hier
ist eine Neuklassifikation nach IPC notwendig, ähnlich dem Anwendungsfall der inter-
aktiven Klassifikation. Da die internationalen Schriften in unterschiedlichen Sprachen
abgefasst sind, ist es erforderlich, dass der Klassifikator auch nach Fremdsprachen, wie
Englisch oder Französisch, klassifizieren kann. Neben der Klassifikation nach dem
IPC-Schema kann der Prüfer die Dokumente auch in dem von der IPC abgeleiteten
erweiterten Klassifikationsschema des DPMA (DEKLA) einordnen, welches am
DPMA für die Suche im Prüfstoff verwendet wird. Zusätzlich zur Vergabe eines
IPC-Symbols für eine deutsche Patentanmeldung sollte deshalb als eine weitere
Funktionalität eines automatischen Klassifikators auch ein DEKLA-Symbol vergeben
werden können.

Die beschriebenen Anwendungsfälle erfordern einen Text-Klassifikator, der die IPC-Klasse
einer gegebenen Patentanmeldung oder -schrift vorhersagen kann. Verglichen mit anderen
Klassifkationsproblemen, gibt es hier besondere Herausforderungen:

1. Der Wortschatz der Patentliteratur ist auf Grund seiner technischen Natur sehr
umfangreich und mehrdeutig.

2. Potentiell sind sehr viele Kategorien zu unterscheiden. Diese sind hierarchisch
angeordnet, so dass sie thematisch überlappen und sich in tieferen Ebenen nur noch
durch spezifische Teilaspekte unterscheiden.

3. Die unterschiedliche Relevanz von Themengebieten im Stand der Technik spiegelt
sich in der IPC-Hierarchie wieder. Die Patentschriften sind daher ungleich über die
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Kategorien verteilt. So gibt es Kategorien, denen nur ein Patent zugeteilt ist, während
andere tausende Patente umfassen.

Der folgende Auszug aus der IPC-Hierarchie zeigt, wie die thematische Unterscheidung
beim Abstieg in den Baum zunehmend feiner wird und auf unterster Ebene meist nur noch
begriffliche Feinheiten eine Rolle spielen (z. B. Vorderrad, Hinterrad).

B: Sektion B Arbeitsverfahren; Transportieren
B62: Gleislose Landfahrzeuge
B62K: Fahrräder; Motorräder; Rahmen; Lenkvorrichtungen;

vom Fahrer betätigte Steuerungsvorrichtungen; Achsaufhängungen;
B62K 25/00: Achsaufhängungen
B62K 25/04: . zum Anbau von Achsen federnd am Fahrradrahmen oder an der -gabel
B62K 25/06: . . mit Teleskopgabel, z.B. einschließlich schwingender Hilfsarme
B62K 25/08: . . . für das Vorderrad
B62K 25/10: . . . für das Hinterrad

Abb. 5: Auszug aus der IPC-Hierarchie

Unser Klassifikationssystem beruht auf dem fastText Supervised-Verfahren [Jo16]. Es han-
delt sich dabei um eine Abwandlung des Word2Vec CBOW-Modells. Während Word2Vec ein un-
überwachtes Lernverfahren ist, das nur Text als Eingabe erhält, ist fastText Supervised ein
überwachtes Verfahren, das auf Sätzen und den zugehörigen Kategorien trainiert wird. Bei
CBOW besteht die Lernaufgabe in der Vorhersage eines Zielwortes unter Berücksichtigung der
umgebenden Wörter. Bei fastText Supervised hingegen wird nicht ein Zielwort, sondern
die Kategorie zu einem gegebenen Satz vorhergesagt.

Das Klassifikationssystem adressiert die gegebene Aufgabenstellung in folgender Weise:

1. Word Embeddings reduzieren die Dimension der für die Klassifikation benötigten
Features um Größenordnungen im Vergleich zum Term Vector Space Model, das
klassische Klassifikationsalgorithmen verwendet.

2. Mit dem Negative Sampling-Trick ([Mi13], [Jo16]) wird die Zeit-Komplexität reduziert
und bleibt mit zunehmender Anzahl an Klassen konstant. Negative Sampling ist eine
Annäherung der Softmax-Funktion. Bei jedem Trainingsschritt wird nur eine zufällige
Auswahl an Negativ-Beispielen (Kategorien) betrachtet.

3. Die Trainingsdokumente werden über die IPC-Hierarchie ausbalanciert. Dabei
werden die IPC-Symbole den Trainingsdokumenten dynamisch zugewiesen: Je mehr
Dokumente in einen Zweig des IPC-Baums fallen, desto tiefer wird in den Baum
abgestiegen. Der Klassifikator betrachtet die Hierarchie nicht. Die Dokumente werden
flach klassifiziert, da sich eine hierarchische Klassifikation für die IPC nicht bewährt
hat [Ba13].
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3.1 Evaluation

Für die Klassifikation werden ca. 300.000 deutsche Patent- und Offenlegungsschriften der
Jahrgänge 2010 - 2015 verwendet. Es werden nur der Titel und die Textfelder (Zusammen-
fassung, Ansprüche, Beschreibung) der Schriften herangezogen. Die Dokumente wurden in
ein Trainings- und Testset unterteilt (90/10). Kategorien mit wenigen Beispieldokumenten
wurden von der Klassifikation ausgeschlossen.

Wir vergleichen fastText Supervised mit einer klassischen, linearen Support Vector
Machine (SVM). Für den SVM-Algorithmus wird die Implementierung von liblinear [Fa08]
verwendet. Zusätzlich wird der für Anwendungsfälle dieser Größenordnung ausgelegte
lineare Lernalgorithmus von Vowpal Wabbit [La07] evaluiert. Bei der Evaluation wird auch
die Trainingszeit bewertet, da Performance für die Umsetzung der Patentklassifikation ein
maßgeblicher Faktor ist.

3.1.1 Klassifizierung auf Unterklassen-Ebene

Ziel der Klassifikation ist es, jeder Schrift die jeweils korrekte Unterklasse aus 584
Unterklassen zuzuweisen.

Verfahren Accuracy @1 Accuracy @3 Trainingszeit Laufzeit
SVM 70,0 89,5 1h 5m 18s
Vowpal Wabbit 69,0 86,8 25m 5m
fastText Supervised 68,5 87,1 17m 38s

Tab. 4: Ergebnisse der Klassifikation auf Unterklassen-Ebene

Der Vergleich zeigt, dass fastText Supervised und Vowpal Wabbit etwas schlechter
abschneiden als die SVM. Die Unterschiede im Ressourcenbedarf sind jedoch signifikant.
Im Gegensatz zu fastText Supervised sind Trainingszeit und Speicherauslastung bei der
SVM wesentlich höher.

3.1.2 Klassifizierung mit dynamischer Verteilung

Eine Klassifikation bis zur Unterklassen-Ebene der IPC reicht für die Vorklassifikation
beim DPMA nicht aus. Je tiefer in die IPC-Hierarchie abgestiegen wird, desto besser kann
eine Anmeldung dem richtigen Prüfer zugeordnet werden. Wünschenswert wäre daher eine
feinere Klassifizierung nach Haupt- oder Untergruppe. Es erfolgt eine Ausbalancierung
der Kategoriezuteilung im Trainingsset, dies führt zu einer Unterscheidung von 4.448
Kategorien (Unterklassen, Haupt- und Untergruppen).
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Verfahren Accuracy @1 Accuracy @3 Trainingszeit Laufzeit
SVM - - - -
Vowpal Wabbit 41,4 58,6 6h 31m 24m
fastText Supervised 68,2 83,8 17m 1m 10s

Tab. 5: Ergebnisse der Klassifikation mit dynamischer Verteilung

Mit steigender Anzahl von Kategorien kommen die Vorteile von fastText Supervised deut-
lich zum Tragen. Das Hinzunehmen von Klassen wirkt sich auf Grund von Negative Sampling
nicht nachteilig auf Speicher- und Zeitkomplexität aus. Die Genauigkeit fällt nur leicht ab.
Für die liblinear-Implementierung der SVM ist die Komplexität des Problems nicht mehr
beherrschbar. Vowpal Wabbit benötigt im Vergleich zur Klassifikation von Unterklassen
mehr Zeit, um zu konvergieren und fällt in der Genauigkeit deutlich ab.

Der fastText Supervised-Algorithmus skaliert hervorragend und eröffnet dadurch die
Möglichkeit, mit vielen Kategorien und auf großen Datenbeständen schnell zu trainieren.

4 Ausblick

Es wurde gezeigt, dass kognitive Verfahren mächtige Instrumente liefern, um die Patentre-
cherche und die Patentklassifikation effektiver und effizienter zu gestalten.

Naturgemäß geht bei unscharfen, assoziativen Verfahren die Exaktheit verloren. So findet
zum Beispiel eine Suche nach Fahrrad auch Dokumente zu Kleinfahrzeugen oder Mo-
torrädern. Je nach Anwendungsfall kann dieser Effekt gewollt oder ungewollt sein. Im
hochdimensionalen Raum sind viele verschiedene syntaktische und semantische Aspekte
kodiert, die Grenzen zwischen ähnlich und unähnlich fließend. In diesem Zusammenhang
muss über alternative Darstellungsformen und neue Ausdrucksmöglichkeiten für den Nutzer,
zum Beispiel durch interaktive graphische Benutzeroberflächen, nachgedacht werden. Durch
eine Interaktion mit dem Nutzer wird seine Rechercheintention deutlich und er kann mit
seiner Fachkompetenz die Vorschläge des Systems optimieren. Hierin liegt der Schwerpunkt
künftiger Weiterentwicklungen.
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IBM Cloud Databases: Turning Open Source Databases
Into Cloud Services

Tim Waizenegger1, Thomas Lumpp2

1 Abstract

Databases in all their forms are the backbone of most applications, running in the Cloud or
on-premise. This creates a large demand for hosted, as-a-service database systems that are
used either by Cloud applications, or even by on-premise applications. Through this demand,
two types of offerings were created: new Cloud-native multi-tenant database systems and
hosted instances of existing database systems. The first of those types, new cloud-native
systems, may even have relational and ACID properties. On our IBM Cloud platform, we
offer both types: “SQL Query” and “Cloudant” are our Cloud-native multi-tenant database
systems. To cover the second type from above, “IBM Cloud Databases” offers popular Open
Source databases like PostgreSQL, MongoDB or Redis as a Cloud service.

The IBM Cloud Databases offering includes database provisioning, maintenance and
operations, backup and restore, scaling, and other features. As a newly built service, it
has unique properties that make it stand out. IBM Cloud Databases is built as a native
Kubernetes application that runs containerized versions of Open Source databases. Databases
are provisioned as clusters or master/slave configurations, depending on the database, to
offer high availability. To further decrease downtime for customers, we implemented a
zero-downtime scaling feature for vertical memory scaling. This allows customers to save
cost on memory when demand is low, but quickly scale-up without restarting the database
when demand increases.

In this presentation, we give an overview of the system architecture and show how we
integrated the different database systems. We discuss the advantages and disadvantages of
running such a service on Kubernetes and provide insight into how we operate this service.
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Fighting Spam in Dating Apps

Uwe Jugel1, Juan De Dios Santos2, Evelyn Trautmann3, Diogo Behrens4

Abstract: Online dating allows for interactions between users with a high degree of connectivity. This
digital form of interaction attracts spammers and scammers, who try to trick users to visit low-class
competitors’ websites or steal the users’ money. Fortunately, each attacker leaves a footprint of its
actions in the network. It is the task of an Anti-Spam system to detect these and punish the culprit.

In this paper, we demonstrate how LOVOO fights such illegal activities using a system of modular,
scalable, and fault-tolerant Anti-Spam components. We describe our stream-processing architecture
and how it ensures flexibility and facilitates resource-efficient processing of the millions of events
produced by hundreds of thousands of users.

1 Introduction

Dating requires interaction and online dating allows interactions from one to many users
and vice versa. On a dating platform, the participants belong to a very specific focus group:
people looking for love. After a dating platform is established and has created a large user
base, it becomes the perfect target for spammers and scammers to trick innocent users.

Our mobile dating app LOVOO allows our users to send matches, likes, visits, smiles, and
chat messages from and to hundreds of thousands of users; 24 hours per day. Consequently,
the LOVOO backend is a data-intensive application with near real-time requirements and
so is our Anti-Spam system. It needs to oversee large volumes of various kinds of user
interactions and detect and punish spammers, scammers, fraudsters, and misbehaving users
in real-time.

For this task, the Anti-Spam system needs to be modular, scalable, and fault-tolerant. The
individual Anti-Spam components need to collect user state and user history of various
kinds to setup and improve machine learning models used to decide if an observed user
behavior is regarded as spam or not. When using trained models for spam prediction, the
components need live access to the acquired user state and history.

Moreover, training and adjustment of machine learning models must be quick and easy.
All training data should be stored and be instantly accessible in a central data warehouse
1 LOVOO GmbH, uwe.jugel@lovoo.com
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to facilitate automatic training in particular and data analysis and research experiments in
general.

Fig. 1: Architecture Overview: Backend services publish interaction data to Kafka. Independent Goka
processors and services asynchronously consume data in tables and emit state changes directly to
Kafka. Machine learning features and predictions results are stored in BigQuery.

Paper Overview For fulfilling the aforementioned requirements and implementing the
listed features, we combine a variety of cloud products and state-of-the-art technologies
as depicted in Figure 1. All our components run in the Google Cloud using a variety of
managed products such as Kubernetes Engine and BigQuery (cf. Section 2). We use Apache
Kafka as our stream-processing foundation. Since Go is our core programming language for
the backend systems, we have built Goka, an open-source library written in Go on top of
Kafka that radically simplified our application development (cf. Section 3). We use these
technologies to process text, images, user profiles, and user behavior to detect spam in our
various Anti-Spam components (cf. Section 4). Eventually, we also evaluate our machine
learning models and the quality of the spam-detection in general (cf. Section 5).

2 System Architecture

Our Anti-Spam components need to oversee any form of user interaction in near real-
time and without slowing down the core services of the LOVOO backend. Therefore, all
communication to and inside the Anti-Spam system is event-driven and thus asynchronous.
Similarly, to achieve modularity, the individual Anti-Spam components should not block
each other and work asynchronously. Figure 2 shows our system architecture.

Our Anti-Spam system consumes events from Apache Kafka topics. We refer to event topics
as streams. Kafka is also used to store any kind of spam-related state about the users and
devices connected to our platform. State is stored in log-compacted topics in Kafka, which
we refer to as tables.
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Fig. 2: LOVOO Anti-Spam Architecture.

The schema of events and state is defined with Protocol Buffers and shared in source code
repositories. Any kind of service supporting Protocol Buffers and Kafka drivers can be used
to publish or consume events and state updates from or to Kafka.

The majority of Anti-Spam components employ Goka to consume and update streams and
tables. Goka is a stream-processing library written in Go that helps us building highly
scalable applications with Kafka (cf. Section 3). Each component processes incoming
events using rule sets, manually trained models, automatically trained models, or additional
cloud services to learn about and detect spam in texts, images, user profiles, and user
behavior. Learned data and prediction results are exported to BigQuery, i.e., our data
warehouse in the Google Cloud. The warehouse data is used for data analysis and for
training our machine learning models. The new models are tested against the current models
in the individual spam-detection components to eventually replace the old models after a
successful evaluation.

The Anti-Spam components (cf. Sections 4) are completely independent of each other and
communicate exclusively via Kafka. For instance, our Image Processor extracts text from
images and emits the obtained text back to Kafka, from where our Text Analyzers consume
and analyze the text. If they detect spam in the text, they emit their findings back to Kafka,
from where our Punisher component picks them up and applies some final safety measures
before telling the LOVOO Backend to actually punish a user or device.

All time-critical components are written in Go using our Goka library that handles issues
of scalability, local persistence, fault-tolerance, monitoring, data parallelism, and data
consistency in Kafka.
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For training our machine learning systems, we use scikit-learn, Keras and TensorFlow. The
trained models are transferred to the time-critical components by dumping the learned
coefficients and intercept value from scikit-learn and recreating the model in a Go data
structure. The models trained on Keras and TensorFlow are hosted on Cloud ML Engine.

3 Goka: Go Stream Processing with Kafka

Our first version of Anti-Spam was built using a combination of event queues, off-the-shelf
databases, and a caching layer. The system was hard to scale, caches needed to be carefully
invalidated, and a lot of different technologies needed to be known and touched during each
development cycle.

In the search for a cleaner and more scalable architecture, we redesigned the Anti-Spam
system as a set of stateful stream processors, following the rationale of „I heart logs“ [Kr14]
by Jay Kreps and „Making sense of stream processing“ [Kl16] by Martin Kleppmann.

To support this redesign, we developed and open-sourced Goka, a stream processing library
written in Go that exploits several features of Apache Kafka, radically simplifying the
implementation of applications. In fact, the new architecture turned out to be so flexible and
performant that a number of our systems have been re-implemented with Goka. From user
search to machine learning, Goka now powers several applications that handle large volume
of data and have near real-time requirements.

The main features of Goka are the following.

Stream Processing Model. Goka allows us to easily define Kafka stream processors in
our Go code, providing abstractions for setting up Kafka consumer groups, processor
inputs, outputs, and state. Goka internally automates any handling of Kafka partitions.

Local Persistence. Goka provides a local storage model for caching compacted topics
locally in LevelDB, for near real-time lookups.

Monitoring. Goka provides built-in metrics to monitor the processing state of various
kinds of data consumers.

We now briefly describe the Goka concepts required to unserstand the remainder of this
paper. For more details, please see our article on the LOVOO engineering tech blog [Be17].

Tables and Processors. Most of our applications employ one or more key-value tables to
store the application state. The goal of Goka is to allow for manipulation of such tables in a
composable, scalable, and fault-tolerant manner.
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Each table is owned by one single component, we call it processor. The processor consumes
input streams and produces state changes. State changes can only be applied to a table by
the processor that owns the table. A single table owner is essential to achieve key-wise
sequential updates, eliminating the need for complex and error-prone synchronization of
multiple writers.

Each table is stored in a log-compacted Kafka topic as well as in a local LevelDB storage.
The combination allows for fast reads and writes. Reads access the local storage, not
requiring any network hop. Writes are applied locally and remotely, but remote writes occur
asynchronously to the computation.

Keeping the table stored in Kafka provides not only fault tolerance by default, but also
allows for easy processor migration by recovering the local storage from the Kafka table.

Views. A table stored in Kafka has a single owner processor that writes to it, but other
processors may also read the table using views. A view is a local storage that continuously
consumes state updates from a table in Kafka. Views are eventually consistent and allow
processors to join input streams with tables to perform updates to their own tables or to
emit new events into output streams.

Messages and Partitions. Messages are key-valued. Every topic in Kafka is partitioned,
and messages are routed to partitions by hashing the message key. If input streams and
tables are co-partitioned, i.e., they have the same number of partitions and the keys have the
same domain, then the processors can be split into multiple instances, each owning one or
more partitions of the table.

The Kafka consumer-group protocol assigns partitions to consumers. Goka exploits the
same mechanism to assign related stream and table partitions to processor instances. For
instance, consider a processor owning a table T and consuming two input streams A and
B. The streams and the table each have, e.g., two partitions. When starting two processor
instances, partition 0 of A, B, and T is assigned to one processor instance, whereas partition
1 is assigned to the other. Since keys are routed to partitions using a global hash function,
partition 0 of A, B, and T contain the same key subdomain, which is disjunct from the other
key subdomain of partition 1.

Scaling a Goka processor consists in simply starting multiple instances. When a new
instance connects to Kafka, Kafka reassigns the partitions and distributes the plan to the
instances. Once the reassigned table partitions are fetched from Kafka and stored locally in
LevelDB, the instance starts processing the input streams from where they stopped before
the reassignment.
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4 Anti-Spam Processors

In Sections 2 and 3 we described how to set up a modular and scalable Anti-Spam architecture
using Kafka as its backbone (also cf. Figure 2).

However, independent of our use of Kafka and Goka for stream processing, we designed our
Anti-Spam system as a lambda architecture that supports batch and streaming processing
alike. The individual Anti-Spam components can make use of any kind of external service
required to effectively perform their job. In particular, we combine Goka-based stream
processing with batch processing using, e.g., Google BigQuery and Cloud Vision.

This design has proven to be highly beneficial for all the different problems that Anti-Spam
seeks to solve when detecting and stopping the proliferation of fake or disrupting profiles.

Each Anti-Spam component employs an algorithm that is particular to its domain and that
detects spammers in a way distinct from the others. In the following, we describe our core
spam-detection components and how they leverage Kafka and Goka, and make efficient use
of external service in the Google Cloud. These components are the following.

Spotter detects text in images.
Photographer extracts text from images.
Terminator classifies text based on rules.
Rosetta classifies text using a machine learning model.
Sheriff oversees user behavior.
Tracer detects sequential interaction patterns.
Entity Reputation detects spam based on the reputation of specific entities.

4.1 Spotter and Photographer

One of the means spammers use for distributing spam on our platform are images. The
spammer writes a message, e.g., an advertisement for a pornographic or low-class competitor
website on top of the image and uploads the image to LOVOO. Detecting this text requires
a combination of computer vision and machine learning to detect and extract the text and
subsequently analyze it to determine the adequacy of the content.

The text detection component is called Spotter and is written in Python. It consumes
picture_uploaded messages from Kafka that are sent every time a picture is uploaded
on LOVOO. The message contains the location of the user image in Cloud Storage and
metadata about the image and the upload event. For every incoming message, Spotter
retrieves the image from Cloud Storage, and, using OpenCV, it will apply a technique
known as Class-specific Extremal Region [NM12] to detect the regions of the image that
contain text. If Spotter detects a text region, a message is emitted to another Kafka topic
that is read by the Photographer.
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The text extraction component is called Photographer and is a Goka processor. It consumes
messages from the aforementioned text detection topic populated by Spotter. Each message
again contains the storage location of a now suspicious image. The image is retrieved a
second time from Cloud Storage and sent to the Google Cloud Vision API to extract the text.
The extracted text is emitted as another message to Kafka and picked up by the Terminator
that verifies if the text violates any rules and thresholds.

Splitting up the task of image processing into a low-cost but less versatile text detection
(OpenCV) and a more versatile but also more expensive text extraction step (Cloud Vision)
saved us a lot of costs. Google charges for every image uploaded and less than 1% of our
images actually contain text.

4.2 Sheriff

In comparison to most spammers, our regular users behave in particular ways. For example,
a female user who is 32 years old, usually interacts with the app in a different way than a 21
years old male user. Moreover, spammers usually try to reach a broad audience very quickly
and thus use the app in very uncommon ways. We track and oversee this user behavior in
our Sheriff, where we employ machine learning to distinguish regular user behavior from
the malign behavior of spammers.

The Sheriff is a Goka processor that keeps track of the frequency of the actions executed by
our users, as well as individual user characteristics, such as gender, age, and their search
settings, i.e., the gender and age of the users they are looking for at LOVOO.

The Sheriff uses a machine learning model trained using logistic regression, an algorithm
that uses a logistic function for modeling the relationship between a dependent variable and
a set of independent or predictors variables.

The model training is done in Python using scikit-learn. The training dataset contains over 1
million observations of over 30 features. These features comprise the user characteristics
mentioned above and the relative execution ratios of particular user actions. For instance,
given the three types of user actions message_sent, like_created, and message_received,
and absolute executions of 3 sent messages, 7 likes, 2 received messages, the features values
for the user actions are 0.25, 0.58, and 0.17 respectively. To train the model, we use k-fold
cross-validation with k = 5, and to find an optimal set of hyperparameters, we fit the model
using grid search [BB12] in the following search space:

alpha: 0.0, 10−2, 10−3, 10−4, 10−5, 10−6

penalty: L1, L2, elastic net [ZH05]
max_iter: 500, 1000
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4.3 Tracer

The Tracer is similar to the Sheriff, as it also consumes user actions to analyze user behavior.
But instead of tracking execution ratios, it collects and evaluates the order in which the user
executed the actions.

The Tracer processor consumes the most important user action topics from Kafka and
encodes the topic name and the time span between subsequent events using a sequence of
characters, e.g., as follows.

0: Marks the start of the sequence.
S: User has started the app and is logged in.
4: User is idle for 4 seconds.
L: User created a like on a another users’ profile.

The sequence not only includes the user’s active actions, but also passive events, i.e., other
users’ actions that affect the current user. For instance, for every created like there is a user
who received the like.

In Goka, processing passive events may require reading and writing data in other partitions.
This is done using Goka’s loopback API. A loopback is an operation that emits a message
back to the current processor, but with a different key. The message is then picked up by the
correct processor instance to update the correct partition of the corresponding table.

In the Tracer, the loopback is used to update another user’s action sequence. When consuming
a like_created message it has as key the current user and one of its values is the liked
user’s key. This key is used for the loopback to send a message to the correct processor
instance and update the correct sequence.

The Tracer model is an recurrent neural network (RNN) [Ho82] based on long short-term
memory cells (LSTM) [HS97] trained on Keras and TensorFlow. Our Tracer network
consists of three layers. The first one is an embedding layer, with an input dimension of
10, output dimension of 32 and maximum length of 1000. The second layer is an LSTM
layer of 100 units. In the last layer, we classify spammers vs. non-spammers, using a dense
layer with a single unit and a sigmoid activation function. The model also uses binary cross
entropy loss and an Adam optimizer [KB14].

4.4 Rosetta

Rosetta is the component of Anti-Spam that deals with text-related features. In the LOVOO
app, there are two text fields that the user can fill with freetext, the username and the "about
me" section. Spammers use these parts of the app as another medium to advertise and
spread their content. Thus, we trained various logistic regression models in scikit-learn
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using usernames and "about me" data to classify them into spam content and non-spam
content.

For the username model, we used around 13000 usernames, of which 60% were labeled
as non-spammer and the remainder 40% as spam. For the training, we process all text as
lowercase bigrams on character level. Then we produced our feature vectors by using a bag
of words approach. Like the Sheriff model, we found the best set of hyperparameters using
grid search and trained using k-fold cross-validation with k = 5. The scoring metric was
the F1 score.

Because LOVOO supports a diverse number of languages, for the "about me" problem,
we fit several models, each for a particular language. The size of the training datasets and
pipelines are similar across all languages. As training data we used around 40000 records
with a spam to non-spam message ratio of 1 : 1.5. The training pipeline is similar to the one
used for the usernames, except that in this case, we remove stop words from the text, before
creating the bag of words. Afterwards, we fit a logistic regression model using grid search
and 5-fold cross-validation; the scoring metric used is the accuracy.

4.5 Entity Reputation

The Entity Reputation component determines scores for the reputation of various users
characteristics. These so-called entities are, e.g., the user’s IP address, email domain, and
uploaded images. If many users share an entity, e.g., the same image, and some of the users
have been already flagged as spammers, the reputation score of that entity is decreased.

The component is a Goka processor that maintains the scores for such entities in a table. It
consumes all topics from Kafka that contain updates for these entities.

The spam detection itself is a threshold-based geometrical separation between spammers
and non-spammers in terms of user counts and share of received reports and other detected
spammers associated with this entity. The scorer exploits that spammers in contrast to
individual users share more entities just by being not an individual person. The ensemble of
entities describes a spam probability.

To achieve a clear separation between scores of spammers and non-spammers, we model
the spam-related features, such as the number of user-received spam reports and number of
flagged spammers for that entity, as a sigmoid function per entity.

1
1 + exp(−β(x − λ))

∈ [0, 1]

The sigmoid functions range between 0 and 1 with a scaling factor β and a separation
threshold λ. The separation threshold is obtained from our historical data. The ensemble of
single entity scores contributes to a total reputation score given to every user. If a predefined
score is reached, the user has been identified as a spammer.
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Scoring entities with sigmoid scores resemble a logistic regression model. However, since
the various entities have very different significance and reliability, we cannot score them
with the same model. Instead, we fit the sigmoid function to every single scalar x per entity.

5 Evaluation and Results

We publish the progress and results of our spam-fighting activities at tech.lovoo.com in the
form of regular transparency reports. In the following, we summarize the results published
in our June 2018 edition of the report.

Fig. 3: Spam activity at LOVOO

Fig. 4: Automatically detected vs. user-reported spam at LOVOO.

As shown in Figure 3, we currently (as of June 2018) have about 0.3% registered LOVOO
profiles that are spammers and these spammers are responsible for 5% of the likes and
dislikes, i.e., the votes on our platform, which is one of the main forms of digital interaction
provided by the app. Figure 4 shows that of those spammers and scammers, over 87% are
automatically detected and blocked by our Anti-Spam system. The other 13% are reported
by other LOVOO users.

We are aware that these numbers alone are not the perfect measure of the quality of our
spam detection. However, they show that our Anti-Spam system was able to maintain its
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Fig. 5: Average hours before a spammer is blocked.

good spam-detection ratios over the last years, even though spammers and scammers are
always coming up with new ways to work around our system and to trick our users.

Another indicator of the quality of a spam detection system is the duration before a spammer
is blocked, as shown in Figure 5. Currently, we are able to block spammers in less than
42 minutes after they become active on the platform, with a significant improvement over
previous quarters.

While the above numbers provide us with a very general metric how our Anti-Spam system
performs, we also need to look at the details to see if our specific machine learning models
are working as expected.

This validation of new detection models is one of our biggest challenges. Simple cross
validation with historical data will always struggle with newly detected spam patterns, since
the positive findings of the new models are not recognized by the former models and thus
cannot contribute to the datasets used for validation.

We actually want to know two key metrics about the new models.

1. Does the new model detect spammers earlier?

2. Does the new model detect new spam patterns?

While the first question can be answered by cross validation with historical data, the second
requires different, i.e., external metrics. Some of these external metrics are, e.g., the number
of user-reported spam profiles, the number of requested user verifications, or the number and
type of unblocks, i.e., when automatically or manually marking a blocked user as regular
users again and no longer as spammer. Figure 6 depicts the trend for these unblocks on our
platform, showing the number of unblocks over time for five different (undisclosed) block
categories. An increase or decrease in a specific category tells us how well specific parts of
the Anti-Spam system, and thus the new detection models, are performing.

In total, the number of unblocks of falsely detected users is decreasing, which suggests that
our models and rules are actually blocking the correct profiles and less of our regular users.
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Fig. 6: Number of unblocks of falsely reported or detected user profiles in different (undisclosed)
spam categories.

6 Conclusion

In this paper, we described LOVOO’s Anti-Spam architecture and how we use stream-
processing, batch-processing, and machine learning in production and in the cloud to fight
spammers and scammers on our platform. In particular, we described how our open-source
Goka framework helped us setting up a stream-processing solution on top of Kafka to create
a scalable, fault-tolerant, and modular architecture.

For our main Anti-Spam components, we described how they interact asynchronously via
Kafka, which kind of rules and machine learning they apply in which domain, and also how
they interact with external services. In this regard, we also provided a real-world example of
combining simple and sophisticated machine learning systems to save costs in the cloud.

Spammers are good at adapting their techniques to our systems and are constantly finding
new approaches to circumvent our filters. In this regard, malicious content on user images
is one of our biggest challenges, which we are trying to win using new self-developed
detection models, but also pretrained models provided by machine learning services in the
cloud.
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Abstract: Analytics of large graph data set has become an important means of understanding
and influencing the world. The use of graph database technology in the International Consortium
of Investigative Journalists’ (ICIJ) investigation of the Panama Papers and Paradise Papers or in
cancer research illustrates how analysing graph-structured data helps to uncover important but hidden
relationships. A very current example in that regards shows how graph analytics can help shed light
on the operations of social media troll-networks, e.g. on Twitter. In similar fashion, graph analytics
can help enterprises to unearth hidden patterns and structures within connected data, to make more
accurate predictions and faster decisions. All this requires efficient graph analytics well-integrated
with management of graph data.

The Neo4j Graph Platform provides such an environment. It provides transactional processing and
analytical processing of graph data including data management and analytics tooling. A central
element for graph analytics in the Graph Platform are the Neo4j graph algorithms. Neo4j graph
algorithms provide efficiently implemented, parallel versions of common graph algorithms, integrated
and optimized for the Neo4j transactional database. In this paper, we will describe the design and
integration Neo4j Graph Algorithms, demonstrate its utility of our approach with a Twitter Troll
analysis, and show case its performance with a few experiments on large graphs.

Keywords: Graph databases, graph analytics, graph algorithms, property graphs

1 Introduction

While we perceive ourselves as individuals, it is undeniable, that we are also highly-
connected to everything around us. This contrast of individuals and connections give rise to
two approaches of perceiving and understanding the world. The entity-centered approach
focuses on the individual, it describes the world by primarily characterizing and specifying
individual entities. A classical example of entity-centered is Aristotle’s descriptions of
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species by their parts such as live birth, number of legs, etc. during his stay on the Island
of Lesbos. The relationship-centered approach, in contrast, focuses on relationships, it
describes the world by primarily characterizing and specifying the relationships between
individual entities. For instance, the world of the living can be further understood by looking
at relationships among living such as prey–predator and evolutionary relationships.

We are connected to many other individuals, events and things that populate the world around
us, near and far. Connectedness manifests in many different ways, facets, values, scopes,
and scales. To understand reality or parts of it, we have to understand the connectedness that
pervades it, the connectedness that forms its fabric. Because of the multifacet, multiscale
nature of connectedness, the precise connections that help our understanding are not
necessarily apparent, though. Often the interesting connections are intricately hidden in
between many other, different layers of connectedness, or only apparent in transitive paths
spanning many intermediate steps. A classical example of this is a conflict-of-interest
connection of a person with a process the person has a decision power over. A conflict-of-
interest can easily behind an intricate path of affiliation, proximity, relationship, ownership,
coercion, bribery, etc. connections. Other examples are understanding drug-target efficacy
in drug design and environmental impact of genetically modified organisms.

Today’s ubiquity of information technology makes increasing amounts of connected data
from many different sources accessible within an organization and outside of it. Such
data becomes available in various data models. Conceptually the simplest data model of
expressing and describing connected information is the property graph model [RN10]. A
property graph is relationship-centered, it has relationships a first-class citizens. Entities
carry, per instance, arbitrary properties and optional labels to describe their roles. Next to
all the entities of consideration, a property graph explicitly supports the connections these
entities have and – what sets it apart from other common graph data models – describes
connections as rich relationships, with a type and arbitrary properties. A single property
graph can capture whole variety of the connectedness existing in the world and makes it
easy for humans to reason about very big complicated phenomena and their combined
interactions.

Pulling multiple different data source of connections together in a property graph and
analysing patterns of connection by means of graph theory and network analysis often reveals
hidden relationships and structures, characterizes and quantifies them, and provides new
understanding. Two main ingredients to make such an analysis happening are capabilities
for managing graph data and run graph analysis algorithms efficiently even on very large
graphs. Neo4j’s graph platform provides these capabilities, among others. In particular, (1)
the graph platform offers ETL and data integration functionality to extract data connections
from various data formats and moving them into a single graph database. (2) The graph
platform provides high-performance graph algorithms for analysis, that are well integrated
with management capabilities of graph database.

In this paper we provide an overview of the graph platform (Sect. 2) and give a detailed
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presentation of the capabilities, design, and architecture of the graph algorithms (Sect. 3).
We demonstrate its utility of our approach with a Twitter Troll analysis (Sect. 4), and show
case its performance with a few experiments on large graphs (Sect. 5). Finally, we discuss
related approaches (Sect. 6) and conclude the paper (Sect. 7).

2 Graph Platform
The graph platform is a well integrated set of tools, surfaces and infrastructure for storing,
managing and querying connected data. At the frontend, the graph platform offers a variety
of skill-specific, user-facing tools and APIs for solution developers, data scientists, and
business users. Each user group has different needs to extract data from various sources,
execute statements, explore query results, update information, perform analytical steps, and
visualize connections. The comprehensive set of well-integrated tools on top of a common
protocol, API, and query language provides efficient means for data scientists and solutions
teams to move through the stages of discovery and design.

To make graph data equally accessible to tabular information, a query language that is able
to express the richness of graph patterns in an comprehensive way is a powerful tool for
developer and end-users alike. With Neo4j’s declarative query language Cypher [Fr18],
which uses graph pattern represented in ascii-art-symbols for pattern matching, creation,
predicates and more, even complex conceptual connections can be expressed. With additional
full support for list and map data structures and means processing those, many round trips
of traditional query languages can be avoided. Built in data-flow paradigms allow users to
clearly express more involved processing pipelines.

The graph platform is extensible with user defined procedures and functions, which are
able to access the full scope of the underlying API and machine infrastructure, while being
exposed as Cypher clauses or expressions. This extension mechanism was also used in our
subsequently described work.

At the backend, the graph platform provides for both analytic and transactional operations.
All operations leverage the efficient traversal of connections provided by the graph store
and embedded in a scalable architecture. The graph platform can scale up to 32 TB of
memory space enabling in-memory and near-memory graph processing on an ultra-large
scale in a single machine. The graph platform can also scale out to multiple machines with
Raft protocol-based [OO14] causal clustering architecture [HA90, Ah95] that supports
ultra-large clusters and a wider range of cluster topologies for distributed data centers and
cloud.

3 Graph Algorithms
Neo4j graph algorithms is a library of user-defined procedures that can be executed on
a Neo4j database. The analysis procedures provide efficient parallel implementation of
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common graph analysis algorithms. The library covers algorithms for path finding (e.g. all
pair shortest path and minimum weight spanning tree), centrality analysis (e.g. parge rank
and betweenness centrality), and community detection (e.g. label propagation and louvain
modularity), as of now. The procedures can be called directly using Cypher in the Neo4j
Browser, from the cypher shell, from Jupyter notebooks or any other client code. For running
these algorithms a (projected) (sub-)graph of data is concurrently extracted from Neo4j
into a separate, in-memory graph-storage to provide isolation and high read-only operations
performance. Then the appropriate algorithm is executed concurrently on that graph storage,
taking graph structure and additional information such as node- or relationship-weights into
account. After the computation finished, the results can either be streamed to the client
or optionally written back efficiently in a concurrent manner, e.g. to node-properties or
relationships.

The general call syntax to call a analysis procedure is:
CALL algo.<name>(<nodeSelector>, <relSelector>, {<config>})
YIELD <columnList>

Here, <name> specifies the procedure to call, <nodeSelector> and <relSelector> specify
the graph of interest, <config> provide additional parameters of the procedure, and
<columnList> specifies, which column of output of the procedures should be returned. Most
algorithms provide graph processing statistics and time measurements as well as statistical
summaries of the computed graph metrics (e.g. min, max, avg, stdev, and percentiles of a
centrality). An alternative variant of each algorithm is available as algo.<name>.stream
which instead streams back the algorithm results in multiple columns of data. That volume
would be equivalent to the size of the graph of interest, potentially billions of rows.

Process: All analysis procedure follow the same three-step process. (1) Load the graph of
interest in parallel from the database into a succinct in-memory data structures. (2) Run
graph algorithm in parallel. (3) Consume results. If multiple procedures should be executed,
the graph of interest can be pre-loaded once and then referred to by name.

3.1 Graph Loading

Typically, the property graph managed in the database contains much more information than
relevant for a certain analysis step. In such case, the (sub)graph of interest is a projection of
the managed property graph. The projected graph is either a directed graph or undirected
graph with the possibility of node and relationship weights. The projected graph is not
multigraph (like a property graph) and allows only a single edge between a pair of nodes in
each direction.

Projection: The graph algorithms library provides two kinds of projection: (1) label-based
projection and (2) Cypher-based projection. Label-based projection extracts all nodes with
a label given as <nodeSelector> and all relationships of a type given as <relSelector>.
For instance,
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CALL algo.pageRank('Page', 'LINKS')

calls the procedure pageRank on nodes with label Page and relationships of type LINKS.
If either or both are left off then the algorithm will run on all entities of the respective,
connected type.

In contrast, Cypher-based projection extracts a subgraph based on two Cypher queries. The
first query given as <nodeSelector> specifies the nodes of interest as a node-id-list and
the second query given as <relSelector> specifies the relationship of interest as a list of
start-end-node-ids. For instance,
CALL algo.pageRank(
"MATCH (u:User) WHERE exists( (u)-[:FRIENDS]-() ) RETURN id(u) AS id",

"MATCH (u1:User)-[:FRIENDS]-(u2:User)

RETURN id(u1) AS source, id(u2) AS target",

{graph:"cypher"}
)

calls the procedure pageRank on a graph containing (1) nodes that match the pattern
(u:User) and have at least one FRIENDS relationship and (2) relationships of type FRIENDS

between two nodes with label User. Note that relationships that do not have both source and
target nodes described by the <nodeSelector> will be ignored. This projection is presenting
a graph view over the existing data and can be used to contract or aggregate the graph or
collapse intermediate paths. For instance, it can be used to render a user-to-user graph from a
social network via intermediate mentions, jointly used tags or replies on messages. Or it can
provide category or product similarity graphs based on joint reviews or purchases by users.
With the Cypher-based projection, any n-partite graph can be projected to a mono-partite
graph for the means of running graph analysis.

Efficient Loading: To quickly load the relevant sub-graphs from Neo4j into the dedicated
data structures, the library uses low level APIs of the graph database to avoid memory
churn and preferably only use primitive numeric types. During the loading the id-space of
the original graph is remapped to a consecutive id-space in the algorithm space to allow
for gap free operations and iteration. The load operations are executed in parallel with
the given concurrency, each thread operating on a batch of graph records at a time. For
graph projections via Cypher we utilize the compiled runtime that turns Cypher queries
into efficient Java bytecode. There we use Cypher’s pagination capabilities to distribute the
loading across concurrent threads.

Graph representation: The graph algorithm library uses a dedicated in-memory represen-
tation of the projected graph data. This allows for isolation from the transactional graph, for
holding arbitrary graph projections and for high-performance random access. These data
structures are presented with a thin, numeric-id based API to each algorithm, which allows
for different implementations. Different aspects of the graph API are separated and can
be passed individually to an algorithm according to its needs. The projected, potentially
huge graph is stored in-memory in a succinct way. Particularly, all nodes are mapped to a
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compressed, dense integer domain. The mapping is stored (1) in a dense array used to map
the dense integer domain back to the original node ids and (2) in a sparse array to map the
original node ids forward to the dense integer domain.

Relationships without weights are stored in a CSR-like structure [Bu09]. A source node
id-indexed, paged array holds the position of each node’s adjacency in a second array.
Target node ids are delta and variable length encoded per adjacency. For relationships with
weights the adjacency of a node is represented with two arrays, one for the target nodes
and one for the weights. Depending on the algorithm’s needs, the only incoming edge are
presented or the adjacency is additionally replicated as outgoing edges. The representation
is designed to scale to very large graphs of billions of edges. The loader allocates only the
structures needed, e.g. weight entries are not created for default values or not at all if node
or relationship weights are not needed.

After an algorithm is finished using the graph structure it is able to release that memory to
make it available for further processing.

3.2 Algorithm Execution

Tab. 1 lists all algorithms currently available as procedure in Neo4j graph algorithms. There
are algorithms for centrality measuring, path finding, and community detection. For each
algorithm, we reference work on which its implementation is based on.

Path Finding

All-Pair Shortest Path [Di59, KS91]
K Shortest Path [Ye70, Ye71]
Single-Source Shortest Path [MS03, Ma07]
K Spanning Tree [Pr57]
Minimum Spanning Tree [NMN01]
A* Shortest Path [HNR68]

Centrality Measuring

Betweenness Centrality [Fr77, Br01, BP07, Ko13]
Closeness Centrality [Ba50]
Dangalchev Centrality [Da06]
Harmonic Centrality [ML00]
PageRank [MR05, GZB04]

Community Detection

Label Propagation [RAK07, FI14]
Louvain Modularity [Bl08, Wi14]
Triangle Counting and Clustering Coefficient [Ts08, CC11]
Strongly Connected Components [Ta72, MNS17, SRM14]
Balanced Triads [He58, Fl63]

Tab. 1: Graph analytical algorithms implemented in Neo4j graph algorithms.

Each algorithm utilizes the provided graph representation to optimally batch and execute
partial operations concurrently. The partial operations are orchestrated by a concurrency
infrastructure that handles utilization and work redistribution. This allows threads that finish
earlier to pick up work from threads computing metrics for nodes with a higher degree. For
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the implementation of the algorithms we evaluated and implemented the latest state of the
art research with dedicated focus on parallelization and scaling.

Each stage of loading, algorithm execution and result production tracks and reports memory
consumption to allow configuration adjustments for future invocations.

3.3 Result Consumptions

The library offers three kinds of result consumptions: (1) write back results, (2) tabular
aggregated results, and (3) tabular streamed results.

Write back results: The non-streaming procedures, write back results to the property graph
in the database as node properties or relationships. This write back uses again low level
transactional APIs and batches updates of larger chunks of the graph (e.g. 100 000 updates
per transaction). By utilizing Neo4j’s transaction-co-commit and joint-flush mechanics, it
can achieve write performance of at least 1 M record updates per second, depending on
available compute resources and I/O bandwidth.

The non-streaming procedures are indicated by the procedure name not having the suffix
.stream. The parameter write indicates if only statistics should be computed or actual write
back executed. For instance,
CALL algo.pageRank('Page', 'LINKS',

{ iterations: 20, dampingFactor: 0.85,
write: true, writeProperty: "pagerank" })

calls the procedure pageRank with four config parameters. Two, iterations: 20 and
dampingFactor: 0.85 are PageRank algorithm-specific, while write: true triggers a
write back result and writeProperty: "pagerank" specifies the name of the node property
to which the result shall be written back. In this case, the PageRank scores calculated
for each node is written to the property pagerank of that node. Those written back graph
metrics are used to enrich the original graph data and can be used afterwards by regular,
OLTP query processing, e.g. for recommendations, ranking, or other decision making.

Tabular aggregated results: Procedures report the various statistics for the computed
metrics and for operations (projected graph size, timings, memory usage), which the user
can utilize for further processing and monitoring.

Tabular streamed results: Most algorithms can return tabular results also as a tuples
stream. The procedure implementing the stream variant of an algorithm is suffixed with the
name .stream, e.g. algo.pageRank.stream(...). Tabular results are return as a driving
table for further processing to the query that contains the CALL statement and potentially to
the client. In this mode for each node entry in the projected graph one or more computed
metrics are returned. For instance centrality measures, shortest paths, triangle counts,
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and specific triangle triples. This computed information is proportional to the size of the
projected graph, i.e. it can reach billions of result rows produced.

All columns that should be returned must be explicitly selected in the YIELD clause after
the CALL. Which columns are provided is documented for every procedure and can also
be inspected interactively. The driving table can be further processed within Cypher or
returned to the user with a RETURN clause. For instance, the query
CALL algo.pageRank.stream('Page', 'LINKS',

{ iterations: 20, dampingFactor: 0.85 })
YIELD nodeId, score

RETURN nodeId, score ORDER BY score DESC LIMIT 5

calls the procedure algo.pageRank.stream and postfilters its result to return only the ids
and scores of the top five page-ranked nodes.

Summary: The Neo4j graph algorithms procedure library provides a comprehensive set
of graph analysis algorithms. The algorithms are implemented for parallel execution and
operate on succinct optimized in-memory data structures that scale to very large graphs of
interest. The procedures take care of data extraction and result routing. They blend in very
well with Cypher. Cypher queries can call the procedures, specify the graph of interest, and
consume the result for further processing in a seamless, composable fashion.

4 Analyzing Troll Behavior

To demonstrate usefulness and practicality we show how Twitter troll behavior can be
analyzed and better understood with the help of Neo4j graph algorithms. As part of the
House Intelligence Committee investigation into how Russia may have influenced the 2016
US Election, Twitter published the screen names of almost 3000 Twitter accounts believed
to be connected to Russia’s Internet Research Agency, a company known for operating
social media troll accounts. Twitter immediately suspended these accounts, deleting their
data from Twitter.com and the Twitter API. A team at NBC News including Ben Popken
and EJ Fox was able to reconstruct a dataset consisting of a subset of the deleted data for
their investigation and using Neo4j, were able to show how these troll accounts went on
attack during key election moments. NBC News open-sourced the reconstructed dataset and
released it as a Neo4j database. In this section we show how this analysis was conducted
using Neo4j graph algorithms.

4.1 Preparation

Graph data schema: The Neo4j database was constructed from several anonymous sources
who had been collecting election related tweets leading up to the 2016 US Election. These
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Fig. 1: The property graph schema used to represent the Russian Twitter Trolls dataset in Neo4j.

datasets were combined and imported into Neo4j so that the data is structured as shown
in Fig. 1. The nodes are Tweets, Users (which can also be Trolls), Hashtags, Sources (the
application used to post a Tweet), and URLs mentioned in Tweets. Relationships connect
these nodes, showing for example, users mentioned in tweets and hashtags used. User nodes
representing known troll accounts are additionally labeled Troll.

Exploratory data analysis with Cypher: Once the data was modeled and imported into
Neo4j, Cypher queries permit exploration. Find tweets with the hashtag #thanksobama:
MATCH (u:User)-[:POSTED]->(t:Tweet)

-[:HAS_TAG]->(ht:Hashtag {tag: "thanksobama"})
RETURN * LIMIT 50

Hashtags were used by the trolls to insert themselves into conversations and gain visibility.
We can query the most common hashtags used by the trolls:
MATCH (ht:Hashtag)<-[:HAS_TAG]-(tw:Tweet)<-[:POSTED]-(:Troll)
WITH ht, count(tw) AS num ORDER BY num DESC
RETURN ht.tag AS hashtag, num LIMIT 10

One of the findings reported by the NBC team was that troll tweet volume spiked during
key election related events. We can see that much of the tweet volume occurs leading up to
and immediately following the 2016 US Election. Here we query for tweet volume by day:
MATCH (:Troll)-[:POSTED]->(t:Tweet)
WHERE t.created_str > "2016-10-01"

RETURN substring(t.created_str,0,10) AS day, count(t) AS num

ORDER BY day LIMIT 60

Projected graph of interest: Much of the analysis (including the application of graph
algorithms) was done on a projected monopartite User-to-User graph from the broader
domain graph. For example, we consider a Troll account to amplify another Troll account
when it posts a Tweet that is a retweet of a Tweet posted by another Troll account as

Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j 385



10 David Allen et al.

Fig. 2: Illustration of the projected graph used to run graph algorithms on the Russian Twitter Trolls
dataset.

illustrated in Fig. 2. We construct an projected graph of this retweet network for analysis.
This particular analysis is based on the insight that retweets on Twitter generally indicate
agreement of a message, or at least desire for broader visibility of that message, and that
they also permit a network of authors to limit the amount of original content that needs to
be written in order to push key themes and messages. This projected graph can be expressed
using Cypher:
MATCH p=(r1:Troll)-[:POSTED]->(:Tweet)

<-[:RETWEETED]-(:Tweet)<-[:POSTED]-(r2:Troll)
RETURN p LIMIT 1

This is however only one of the possible projections, others could be based on mentions,
replies, or jointly used hashtags for topic analysis.

4.2 Analysis

For the analysis, we apply two graph algorithms. Centralities measures helps us detect who
are the most influential troll accounts. Subsequently community detection helps to answer
which Troll accounts are strongly connected through Retweets.

Centrality: Centrality algorithms determine the most important nodes in the network. In
the context of our retweet graph, centralities will allow us to determine the most influential
accounts.

We can run PageRank on the projected graph:
CALL algo.pageRank(
"MATCH (t:Troll) RETURN id(t) AS id",

"MATCH (r1:Troll)-[:POSTED]->(:Tweet)

<-[:RETWEETED]-(:Tweet)<-[:POSTED]-(r2:Troll)

RETURN id(r2) as source, id(r1) as target",
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{graph:"cypher", write: true, writeProperty: "pagerank"}
)

The above Cypher statement will write a pagerank property to the Troll nodes. We can use
Cypher to find the trolls with the highest pagerank score, and are thus the most influential in
the network by this measure:
MATCH (t:Troll) WHERE exists(t.pagerank)
RETURN t.screen_name AS troll, t.pagerank AS pagerank

ORDER BY pagerank DESC LIMIT 25

With a slight modification of this query, we can assign (SET) each of the most influential
trolls a random seeding community number:
MATCH (t:Troll) WHERE exists(t.pagerank)
WITH t ORDER BY t.pagerank DESC LIMIT 25

SET t.community = toInteger(round(rand()*1000))
RETURN t

Community detection: Community detection algorithms are applied to this projected
network to partition the graph. In the context of the retweet graph community detection
will illustrate which accounts are frequently amplifying others. We want to see if there
are clusters of troll accounts that are promoting certain types of content. For example, are
certain accounts focused on pro-Trump content while others are focused on anti-Clinton
content?

Here we partition the graph into communities using the Label Propagation algorithm. Label
propagation is a particularly fast algorithm for finding communities in a graph. As we are
particularly interested in communities around the most influential trolls, we use the algorithm
in a semi-supervised way and seed it with the community property we have assigned to
these trolls. Then run, the algorithm adds to a community property to all remaining nodes
and updates the property values so that they eventually specify the communities the nodes
have been assigned to by the algorithm. The value of the community property does not have
inherent meaning apart from categorical separation of the detected communities.
CALL algo.labelPropagation(

"MATCH (t:Troll) RETURN id(t) AS id",

"MATCH (r1:Troll)-[:POSTED]->(t:Tweet)

<-[:RETWEETED]-(:Tweet)<-[:POSTED]-(r2:Troll)

RETURN id(r2) AS source,

id(r1) AS target, count(t) AS weight",

"OUTGOING",

{graph:"cypher", write: true,

partitionProperty: "community", iterations: 200}
)

We can then see which Trolls were assigned to each community:
MATCH (t:Troll) WHERE exists(t.community)
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RETURN collect(t.screen_name) AS members, t.community
ORDER BY size(members) DESC LIMIT 10

Finally, we can see if there are certain themes that each community was focused on, by
inspecting the top-10 common hashtags used by the top-10 largest communities:
MATCH (t:Troll) WHERE exists(t.partition)
WITH collect(t) AS members, t.community

ORDER BY size(members) DESC LIMIT 10

UNWIND members AS t

MATCH (t)-[:POSTED]->(tw:Tweet)-[:HAS_TAG]->(ht:Hashtag)
WITH community, ht.tag AS tag, count(tw) AS num

ORDER BY community, num DESC
RETURN community, collect(tag)[..10] AS toptags

Upon aggregating the hashtags that each community was using, we can see that the group
around top influential troll @TEN_GOP was tweeting mainly about right-wing politics
(#VoterFraud, #TrumpTrain); the group around @DanaGeezus was more left leaning, but not
necessarily positively (#ObamasWishlist, #RejectedDebateTopics); and the group around
@gloed_up covered topics in the Black Lives Matter community (#BlackLivesMatter,
#Racism, #BLM). Each of these three clusters tended to have a small number of original
content generators, with the bulk of the community amplifying the message. For example,
one account @TheFoundingSon sent more than 3200 original tweets, averaging about 7
tweets per day. On the other hand, accounts like @AmelieBaldwin authored only 21 original
tweets out of more than 9000 sent.

4.3 Visualization

Including the results of graph algorithms in visualization allows us to interpret the results
of graph algorithms that otherwise might be difficult to make sense of. Fig. 3 visualizes
the three distinct communities identified by our community detection algorithm and the
most influential troll accounts within each community, as determined by PageRank. The
communities are shown in different colors, node sizes are styled proportionally to their
PageRank score, and relationship thickness is styled proportionally to relationship weights,
in this case the number of times a troll retweeted another.

5 Evaluation

To demonstrate the performance of Neo4j graph algorithm procedure library we conducted
a series of experiments. We ran PageRank, Union Find (connected components), Label
Propagation, and Strongly-Connected Components on a number of standard graph datasets
available on SNAP [LK14].
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Fig. 3: Visualization of the three distinct communities and the most influential troll accounts within
each community.

Setup: We used a machine with four Intel Xeon E7-8870 v3 CPUs, each featuring eighteen
cores at 2.1 GHz clock speed, hyper threading, and 45 MB of cache. Additionally, the
machine was equipped with 1 TB of DDR4 memory and 1.8 TB of PCIE-SSD storage, in
which the Neo4j database files resided. The software stack consisted of Ubuntu Server 16.04
with kernel version 4.4.0, Java(TM) SE 1.8.0_121-b13 for compiling, Java HotSpot(TM)
64-Bit Server VM 25.121-b13 for running, Neo4j Enterprise 3.1.4. Neo4j was configured to
a page cache size of 5 GB and the Java VM was allowed to allocate 32 GB of heap while
executing Neo4j.

Graph dataset: We have not used the Twitter troll dataset for our experiments, since it is
not very large in size. Instead, we used in total eight datasets of various sizes as shown in
Tab. 2. Note that the disk size shows the size of the graphs in the Neo4j database, which
resides on SSD and gets page cached in-memory. When loaded as graph of interest into
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the in-memory representation, each graph fitted into the memory the JVM was allowed to
allocate.

Graph #Nodes [M] #Relationships [M] Avg. out degree Disk size [GB]
Pokec (PK) 1.63 30.62 18.75 0.99
cit-patents (CP) 3.77 16.52 4.38 0.58
Graphs500-23 (G5) 4.61 129.33 28.05 4.17
soc-LifeJournal1 (LJ) 4.85 68.99 14.23 2.27
DBPedia (DP) 11.47 116.60 10.16 3.87
Twitter-2010 (TW) 41.65 1468.37 35.25 47.60
Friendster (FR) 65.61 1806.07 27.53 58.94

Tab. 2: Graph datasets used in measurements.

Algorithms: We ran four algorithms, precisely: PageRank, Union Find, Label Propagation,
and Strongly-Connected Components (SCC) on each of the eight graph datasets. The
corresponding procedure calls are listed in Tab. 3. As can be seen, we did not set parameters
for graph projection, so that the algorithms ran on the complete graph dataset. All procedures
were set to write back their results into the graph dataset (write:true).

Algorithm Execution
Pagerank CALL algo.pageRank(null, null, {write:true, iterations:20});
Union Find CALL algo.unionFind(null, null, {write:true});

Label Propagation CALL algo.labelPropagation(null, null, 'OUTGOING', {write:true});

SCC CALL algo.scc.iterative(null, null, {write:true});

Tab. 3: Procedure calls used in measurements.

Results: We measured the total runtime of the complete procedure call, which included
loading the graph, computing the analysis, and writing back the result. Fig. 4 shows the
runtime for each procedure call on each graph dataset. All four algorithms completed within
a few seconds for graphs upto 30 M relationships (PK, and CP) and within half a minute
for graph upto 120 M relationships (G5, LJ, DP). On the very large graphs with more than
1 G relationships (TW and FR), all procedures finished within a few minutes.

To take a closer look, we also measured the individual runtimes of loading the graph (load),
computing the analysis (compute), and writing back the result (write). Fig. 5 reports for
each procedure call on each graph dataset the proportion of runtime spent on load, compute,
and write. As can be seen most procedure call spent the majority of their runtime in loading
the graph into to the representation used by the algorithms. This is as expected, since the
whole graph of interest has to be read during load. Although it takes most of the runtime, the
loading is still very efficient. Looking at the very large graphs TW and FR, the procedure
accomplished to load the graph of interest at a rate of put to 20 000 relationships/s.

The benefit of loading is revealed during the compute phase. The succinct in-memory
representation of the graph of interest facilitates very efficient graph algorithm computation.
For instance, PageRank requires to read over all relationships ones per iteration. In
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our experiments PageRank was computed with an average over all graph datasets of
275 000 relationships/s and on the Twitter graph with upto 519 000 relationships/s.

6 Related Work

Any system for graph analytics provides an abstract construct for a user to execute analytical
graph algorithms without caring about the technical details of an efficient parallel execution.
So far, one of the most prominent and common abstractions for graph analytics has been
the vertex-centric programming model [Lo10, Ma10, SBC10]. A vertex-centric program
requires users to provide a compute function that defines the actual analytical computation.
A declarative variant worth mentioning is the GSQL [De18].

Since many graph algorithms are based on traversals, the traversal itself provides another
common abstraction for graph analytics. Traversal-based languages provide native support
for graph traversals as part of a domain-specific language, examples are Gremlin [Ro15],
GreenMarl [Ho14], GEM [Ru13], and GraphScript [Pa17].

Instead of an dedicated abstraction, declarative graph query language [ARV18, Fr18, Re16,
PPvR18] can be extended for analytical purposes by means of composition, grouping and
aggregation [An18, Vo17]. Under certain constraints aggregation can be even allowed
within recursion [SGL15].

All these approaches provide a means to implement or express algorithms as opposed to the
specific graph algorithms themselves. While this is very useful for users developing their
own custom algorithms, it unnecessarily complicates matters for users that simply want
to deploy well established and understood algorithms. Such users are better served with
algorithm libraries.

A very prominent graph algorithms library are the Boost Graph Library8 [SLL02] and
Parallel Boost Graph Library9. Both libraries still require code from users in order to
extract and feed their graph into the chosen algorithm or input results of one algorithm into
another. While Neo4j graph algorithms provide a similar set of algorithms, they are, in
addition, well-integration with the graph platform. Users can directly call graph algorithms
on a graph database and have their result written back to the graph database, without any
additional imperative programming needed. User can also directly leverage the Cypher
query capabilities to declaratively select the graph of interest. This is a relevant feature,
since the graph database contains in practice significantly more data or data in different
shape than the graph of interest, as illustrated in Section 4.2.

For a more comprehensive overview on systems for big graph analytics we refer the reader
to [PV17].

8 https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/

9 https://www.boost.org/doc/libs/1_66_0/libs/graph_parallel/doc/html/
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7 Conclusion

With a relationship-centered approach one does not look at individuals in isolation, builds
understanding of the world by looking at how person, events, and things are connected.
For many aspects, the relationships of interest are hidden behind layers of many other
connections. For uncovering such hidden relationship, graph data and graph analytics
becomes increasingly instrumental. The Neo4j graph platform provides a comprehensive
software stack to perform graph analytics, from ingesting the data all the way to visualizing
the results. A central piece provided by the graph platform and used in such a graph analytics
are the graph algorithms, which we presented in this paper. The graph algorithms provide a
comprehensive library of user-defined procedures offering graph analytical algorithm well-
integrated with the other components of the graph platform. The library covers algorithms
for centrality measuring, path finding, and community detection. All procedures can be
called within a Cypher query. Cypher can be also used to project out the graph of interest
for called procedure. The procedures can write back the result to the base data or stream
it to the calling Cypher query for post processing. The graph algorithms are designed to
be executed on large to very large graphs and were tested with several billion nodes and
tens of billions of relationships, exhibiting linear performance gain and scalability on large
multi-core machines.

In the future, we will continue to apply new research from graph analytics and machine
learning. For instance, we are already in the processes of adding performant means for
similarity computations including a number of different common similarity measure, such
as Jaccard distance. We also look into the generation of k-nearest-neighbour networks.
Another considered extension of the library will provide an infrastructure for user-defined
algorithms that allows for efficient execution. We also intend to explore new execution
models like distributed processing or GPU based approaches.
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Konzept und Implementierung eines echtzeitfähigen Model
Management Systems

am Beispiel zur Überwachung von Lastprognosen für den Intraday Stromhandel

Yvonne Hegenbarth1, Gerald H. Ristow2

Abstract: Zur Gewährleistung der Stromnetzstabilität in Deutschland müssen Verteilernetzbetreiber
darauf achten, dass zu jedem Zeitpunkt Energie-Erzeugung und -Verbrauch in ihrem Zuständig-
keitsbereich in Einklang stehen. Dafür werden Vorhersagemodelle benötigt, um den zu erwartenden
Überschuß oder zusätzlichen Bedarf an Energie für den Folgetag der Strombörse für den sogenannten
Day-Ahead Handel zu melden. Neben dem Stromhandel für den Folgetag können Marktteilnehmer
beim kontinuierlichen Intraday Strommengen bis zu fünf Minuten vor der tatsächlichen Auslieferung
kaufen oder verkaufen. Bei Fehlprognosen und demnach Fehleinkäufen könnte mit einer Früherken-
nung und Modellanpassung diese im Intraday ausgeglichen werden. Dazu wird in dieser Arbeit ein
System beschrieben, das automatisiert Fehlprognosen frühzeitig erkennt und eine Modelländerung
durchführt. Das Modell wird dabei an den aktuellen Sachverhalt der Verbrauchszeitreihe angepasst.
Durch diese Modellanpassung wird die Vorhersage verbessert, sodass der Intraday Handel besser
betrieben werden kann und Fehleinkäufe ausgeglichen werden.

Keywords: data stream • model management • data mining • time series • forecast • concept drift •
concept evolution

1 Motivation

Damit die Sicherheit des Stromnetzes in Deutschland gewährleistet wird, muss jeder
Stromproduzent und Stromabnehmer seine Strommenge prognostizieren, die er ins Strom-
netz einspeist oder entnimmt. Zur Prognose werden sogenannte vorhersagende Modelle
entworfen.

In der Regel wird bei dem Prozess zur Berechnung von vorhersagenden Modellen mehrere
zehn bis hundert Modelle erstellt, bis eines den Anforderungen (z.B. Vorhersagegenauigkeit)
der Data Scientists genügt und eingesetzt wird. Zur Verwaltung und zum Reproduzieren
von vorhersagenden Modellen muss ein Model Management System aufgesetzt werden. Die
erzeugten Modelle werden persistiert und stehen für die Wiederverwendung zur Verfügung
[Va16]. Durch sogenannte „Human-in-the-Loop Workflows“ werden die Benutzer mit
Hilfe von Visualisierungstools in den Prozess zur Erstellung von vorhersagenden Modellen
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integriert [LWG14]. Dadurch wird ermöglicht, dass der Mensch als Überwacher agiert und
aktiv die Parameter des Modells anpasst, falls die Vorhersagen zu stark von der Realität
abweichen [Se16].

Im Hinblick auf den Wandel des Day-Ahead Energiemarktes und dem kontinuierlichen
Intraday Handel, werden schnelle, detaillierte und flexible Planungsmöglichkeiten gefordert
[Da15]. Eine Modellanpassung der Stromverbrauchsprognose des Folgetages ist bei einer
zu hohen Abweichung sinnvoll. Basierend auf den Berechnungen des neuen Modells kann
entsprechend im Intraday überflüssiger Strom verkauft oder auf Grund mangelnder Reserven
Strom gekauft werden.

Im weiteren Verlauf wird ein echtzeitfähiges Model Management System (eMMS) vorgestellt,
dass nicht den Persistenz-Ansatz von Liu u. a. verfolgt und den Menschen als Überwacher
entlastet. Hier soll von der Hypothese ausgegangen werden, dass mit Hilfe von Data Mining
Techniken und einer anwendungsspezifischen Concept Drift Änderungserkennung zur
Laufzeit automatisiert eine Modellanpassung erfolgt.

Der Bericht fokussiert sich nicht auf die Erstellung eines vorhersagenden Modells mit
minimalem Vorhersagefehler. In diesem Bericht soll vielmehr aufgezeigt werden, wie ein
auf Complex Event Processing (CEP) basiertes Model Management aufgesetzt und betrieben
werden kann.

2 Stand der Technik

Die Erstellung eines Vorhersagemodells ist ad hoc, das heißt für einen bestimmten Augenblick
gemacht. Daher besteht das Bedürfnis bei Data Scientists die im Laufe der Zeit erstellten
Modelle zu persistieren. In [Va16] sind diverse Problemen beschrieben, die beim iterativen
Modellierungsprozess auftreten. Zusammenfassend beschreibt der Autor, dass unter anderem
das Reproduzieren von Modellen und Ergebnissen übermäßig zeitaufwendig oder auf
Grund mangelnder Dokumentation nicht durchführbar ist. Die Data Scientists müssen
sich an Ergebnisse und Parameter früherer Versionen eines Modells „erinnern“ und
haben keine Möglichkeit verschiedene Ausführungen zu kennzeichnen. Die genannte
Herausforderung hebt ein wichtiges Problem für Machine Learning Tools hervor: das Model
Management. Model Management bezeichnet die Angelegenheit des Verfolgens, Speicherns
und Indexierens einer großen Anzahl von vorhersagenden Modellen, die anschließend
reproduziert, geteilt, abgefragt und analysiert werden können.

Viele Model Management Systeme (MMS) sind Lösungen basierend auf einem Datenbank-
managementsystem (DBMS), das eine strukturierte Umgebung zum Speichern, Manipulieren
und Abrufen von vorhersagenden Modellen bereitstellt [Be03; DK84; Va16].
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3 Vorgehensweise

Zur Erläuterung der Vorgehensweise zeigt Abb. 1 den Datenfluss des von uns vorgeschlagenen
echtzeitfähigen Model Management Systems (eMMS). Das Konzept baut auf einer Offline-
und Online-Analyse auf und wird in Abschnitt 5 detailliert vorgestellt.

Abb. 1: Architektur eines echtzeitfähigen Model Management Systems

Das in diesem Bericht beschriebene eMMS nutzt ein DBMS lediglich zur Verwaltung von
Messdaten in Form von Zeitreihen. Eine Complex Event Processing (CEP)-Engine ist für die
Berechnung und Wartung von vorhersagenden Modellen zur Laufzeit verantwortlich (Abb. 1,
Online-Analyse). CEP ist eine Technologie, die basierend auf Anfrageformulierungen Muster
im Datenstrom in Form von Ereignissen (Events) erkennt [BK09]. Durch Aggregation
und Zusammensetzung von auftretenden Ereignissen können neue komplexe Ereignisse
(Complex Events) generiert und für weitere Analysen genutzt werden. Unter anderem senden
verschiedene Sensoren (z.B. Smart Meters) ihre Messwerte in Form von Events an die
CEP-Engine.

Als statistisches Modell zur Analyse und Prognose von Zeitreihen, wird ein Auto Regressive
Integrated Moving Average (ARIMA)-Modell erstellt [BJ70]. Zu der Berechnung eines
ARIMA-Modells wird die in [Da15] definierte heuristische Strategie verwendet, um
automatisch eine Reihe vielversprechender Vorhersagemodelle für die vorliegenden Daten
zu identifizieren und um den Menschen als Akteur zu entlasten. In [HK08] wird ein in R
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implementierter, heuristischer Algorithmus zur ARIMA-Modellauswahl vorgestellt und
in dem Bericht eingesetzt. Informationskriterien wie Akaike Information Criterion (AIC)
[Ak74] und Bayesian Information Criterion (BIC) [Sc78] werten mehrere Modelle aus,
indem schrittweise die Modellparameter erhöht werden.

Zur Wartung der Modelle in CEP wird eine Kombination der Strategien periodisch und
schwellwertbasiert aus [Da15] angewendet, die bereits erfolgreich untersucht wurde [Da11].
Zum einen findet periodisch (z.B. täglich) eine Modellberechnung statt. Weiterhin wird
ebenfalls erkannt, wenn eine Vorhersage sich von den tatsächlichen Messwerten entfernt.
Dafür wird in [Tr13] zum einen eine fensterbasierte (manuell) und eine clusterbasierte
(automatisiert) Änderungserkennung vorgestellt. Die fensterbasierte Methode basiert auf
der Untersuchung eines gleitenden Fensters (Sliding Window), wodurch der Datenstrom
segmentweise untersucht wird. Die clusterbasierte Methode hingegen nutzt ein Clustering-
Modell und versucht jedes neu eingetroffene Ereigniss einem Cluster zuzuweisen. Unter
Berücksichtigung des berechneten Vorhersagefehlers in CEP und der in dem Bericht
eingesetzen fensterbasierten Änderungserkennung, wird segmentweise überprüft, ob ein
vordefinierter Schwellwert überschritten wurde und ob ein neues Modell berechnet werden
muss. Ein Ausblick zur Anwendung einer clusterbasierten Änderungserkennung wird in
Abschnitt 7 vorgestellt.

Unterstützend zur Berechnung neuer vorhersagender Modelle werden vorab die historischen
Daten mit Hilfe von Data Mining Techniken untersucht (Abb. 1, Offline-Analyse). Als
Ergebnis wird ein Clustering-Modell generiert, das im Folgenden als Referenzmodell be-
zeichnet wird. Ein Referenzmodell ist die Zusammenfassung einer Menge von formähnlichen
Zeitreihen. Das Referenzmodell stellt die repräsentativsten Zeitverläufe (Referenzzeitreihe)
einer endlichen Menge von Zeitreihendaten dar. Während das Referenzmodell basierend auf
den Messwerten erstellt wird, soll zusätzlich ein Klassifikator die Referenzzeitreihen mit
Hilfe von z.B. kalendarischen Merkmalen beschreiben. Als Klassifikator wird ein Entschei-
dungsbaum gewählt, zur Erstellung von bedingten Anweisungen (Entscheidungsregeln).
Für das eMMS soll zu Beginn eine Entscheidungsregel dabei helfen, die Referenzzeitreihe
(basierenden auf der zuvor berechneten Clusteranalyse) für den folgenden Tag zu prognosti-
zieren. Basierend auf der Entscheidungsregel werden die entsprechenden formähnlichen
Trainingsdaten zur Zeitreihenvorhersage ausgewählt und ein initiales ARIMA-Modell
erstellt.

Sobald eine Zeitreihe abschließt, wird das Referenzmodell auf dieser angewendet und mit
einem entsprechenden Cluster-Label in der Datenbank persistiert. Dadurch wird sicherge-
stellt, dass stets aktuelle Zeitreihen zur Berechnung von ARIMA-Modellen herangezogen
werden. Außerdem können die historischen Daten für nachfolgende Datenanalyseprozesse
verwendet werden.
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4 Auswertung der historischen Daten mit Data Mining Techniken

Zur Auswertung des entwickelten eMMS wurden drei anonymisierte Stromverbrauchsdaten
von der EWE AG3 zur Verfügung gestellt. Tabelle Tab. 1 beschreibt die Menge an
aufgezeichneten Messwerten pro Datensatz und die Partitionierung der Daten in historische
(Analyse mithilfe von Data Mining Techniken) und Simulationsdaten (zur Simulation neuer
Messwerte und Auswertung des eMMS).

Datensatz Partitionierung Menge an Daten

Verbraucher I
Historisch: 01.01.2014 - 31.12.2014 365 Tage
Simulation: 01.01.2015 - 02.09.2015 245 Tage

Verbraucher II
Historisch: 01.05.2015 - 30.04.2016 365 Tage
Simulation: 01.05.2016 - 31.12.2016 245 Tage

Verbraucher III
Historisch: 01.01.2015 - 31.12.2015 365 Tage
Simulation: 01.01.2016 - 01.09.2016 245 Tage

Tab. 1: Übersicht der zur Verfügung stehenden Datensätze

Für die bevorstehende Datenanalyse wird für jeden Verbraucher ein historischer Datensatz
im Zeitraum von einem Jahr gewählt (365 Tage). Zur Simulation und Auswertung des
entwickelten eMMS steht ein zeitlich aktuellerer Datensatz von 245 Tagen zur Verfügung.
Die Messwerte wurden in einem Intervall von fünfzehn Minuten aufgezeichnet. Daraus
folgt, dass pro Tag 96 Messwerte für jeden Verbraucher aufgezeichnet wurden.

Im Folgenden werden die Analyseschritte zur Erstellung von Referenzmodellen und Ent-
scheidungsregeln beschrieben. Die Ergebnisse der Datenanalyse werden im Anschluss in
das eMMS übertragen.

4.1 Clusteranalyse

Im Dezenniumbericht [ASW15] beschreiben die Autoren eine spezielle Art von Clustering –
das Zeitreihen-Clustering. Das Clustering von Zeitreihen wird hauptsächlich zur Entdeckung
interessanter Muster in den Zeitreihendatensätzen verwendet. Zum einen dient das Zeitreihen-
Clustering zum Auffinden von Mustern, die häufig im Datensatz vorkommen. Zum anderen
können ebenfalls Muster erkannt werden, die in den Datensätzen „überraschend“ auftreten.
Das Auffinden von Mustern, die „ungewöhnlich“ sind und/oder „überraschend“ auftreten,
wird als Anomalie-Erkennung bezeichnet.

3 Die EWE AG (ehemals Energieversorgung Weser-Ems) ist ein Versorgungsunternehmen im Bereich Strom,
Erdgas, Telekommunikation, Informationstechnologie und Umwelt. Die Software AG und EWE AG sind
Forschungspartner des Projektes enera, zur Erstellung einer neuen Modellregion für die Energiewende.
Siehe http://energie-vernetzen.de/
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Das Zeitreihen-Clustering dient zur Erstellung von sogenannten Referenzmodellen, die für
das eMMS benötigt werden.

Definition 4.1 (Referenzmodell)
Ein Referenzmodell ist die Zusammenfassung einer Menge von formähnlichen Zeitreihen (als
Resultat eines Clusterings). Das Referenzmodell stellt die repräsentativsten Zeitverläufe einer
endlichen Menge von Zeitreihendaten dar. Jede der Zeitreihen aus der Grundgesamtheit
der Daten wird einem der Cluster des Referenzmodells zugeordnet.

Definition 4.2 (Referenzzeitreihe)
Eine Referenzzeitreihe repräsentiert den Zeitverlauf einer Menge von formähnlichen Zeitrei-
hen. Eine Referenzzeitreihe beschreibt das Zentrum eines Clusters, resultierend aus einem
Clustering.

Zum Clustern von Zeitreihen und der Generierung von Referenzmodellen wird ein Trai-
ningsdatensatz von einem Jahr gewählt (Tab. 1, historischer Datensatz). Zum Clustern der
Messwerte (in Form von Zeitreihen) können sowohl partitionierende (zum Beispiel k-Means)
als auch hierarchische Verfahren angewendet werden [ASW15, S. 26]. Für die vorliegende
Arbeit wird der k-Means Algorithmus angewendet, der bereits in anderen Publikationen
großen Zuspruch für Zeitreihen-Clustering genießt [FRB98; Ma67] und sehr leistungsstark
ist [BFR98].

Aus dem k-Means Clustering resultiert ein Referenzmodell mit k Referenzzeitreihen. Um
die geeignete Anzahl von k Clustern im Datensatz zu ermitteln, wird zur Orientierung die
Ellbogen-Methode angewendet [HKP11, S. 486].

Nach der Untersuchung einer geeigneten Clustergröße k zeigt Abb. 2 folgende Referenzmo-
delle für Verbraucher I (links), II (mitte) und III (rechts).

Abb. 2: Referenzmodelle basierend auf historischen Daten

Aus dem Referenzmodell von Verbraucher I und III ist anhand der durchgängigen Linie nahe
Null zu erkennen, dass an manchen Tagen kein Strom bezogen wird. Lediglich Verbraucher
II bezieht regelmäßig Strom.

Abb. 3 zeigt ebenfalls die Mengenverteilung der jeweiligen Cluster als Kuchendiagramm.
Anhand der Clustergröße lässt sich herleiten, dass die größeren Cluster vermutlich einen
normalen Zustand beschreiben und die kleineren Cluster auf eine mögliche Anomalie
hinweisen. Demnach können für Verbraucher I die Referenzzeitreihen cluster_1 und cluster_3
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auf eine Anomalie des Verbrauchverhaltens hinweisen, bei Verbraucher II eventuell cluster_2
und bei Verbraucher III schließlich die Referenzzeitreihe cluster_3.

Abb. 3: Kuchendiagramme zur Darstellung der Clustergröße im Referenzmodell

Weiterhin wird mithilfe eines Klassifikators untersucht, welche Merkmale zur Beschreibung
und Vorhersage einer Referenzzeitreihe geeignet sind. Die zuvor aufgestellte Hypothese der
Anomalie-Cluster wird hierbei unter anderem bestätigt.

4.2 Klassifikation

Für das eMMS soll zu Beginn eine Entscheidungsregel (Klassifikator) dabei helfen, die
Referenzzeitreihe (basierenden auf der zuvor berechneten Clusteranalyse) für den folgenden
Tag zu prognostizieren. Basierend auf der Entscheidungsregel werden die entsprechenden
formähnlichen Trainingsdaten zur Zeitreihenvorhersage ausgewählt.

Zur Erstellung eines Klassifikators werden zunächst Merkmale (Features) generiert. Im
vorliegenden Bericht werden folgende kalendarische Merkmale herangezogen:

Monat, Quartal, Jahreszeit, Wochentag, Arbeitstag und Feiertag.

Mit einer Filterauswahlmethode (z.B. Forward Selection oder Backward Selection) werden
für jeden Verbraucher die bedeutsamsten Merkmale zur Beschreibung und Vorhersage der
Referenzzeitreihe ausgewählt [JBB15].

Schließlich wird ein Entscheidungsbaum-Algorithmus, wie z.B. C4.5 [Qu93] oder SPRINT
[SAM96], zur Generierung von Entscheidungsregeln eingesetzt. Zur Erstellung und Aus-
wertung der Regeln wird mit der sogenannten Holdout-Methode der historische Datensatz
in Trainings- und Testdaten partitioniert (75:25) [HKP11, S. 370].

Bei der Klassifikation von Verbraucher I und III konnten für manche Referenzzeitreihen keine
Regeln definiert werden und sind in Tab. 2 als „/“ gekennzeichnet. Die Referenzzeitreihen
ohne Entscheidungsregeln wurden in Abb. 3 unter Berücksichtigung ihrer Mengenverteilung
im Referenzmodell bereits zuvor als mögliche Anomalien in der Zeitreihe erkannnt. Zellen
mit „-“ wiederum kennzeichnen, dass die entsprechende Cluster-ID für den Datensatz nicht
existiert.
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Nachdem basierend auf einer Trainingsdatenmenge ein Klassifikator berechnet wurde, wird
zur Auswertung der Vorhersagegenauigkeit (Accuracy) das Modell auf einer Testmenge
ausgeführt. Im Anschluss erfolgt die Ausführung des Modells auf der Gesamtmenge
(Training und Test), um die Robustheit4 eines Modells zu bewerten. In Tab. 2 ist ebenfalls
die Vorhersagegenauigkeit auf dem Testdatensatz sowie auf der Gesamtmenge aufgelistet5.

Die Gesamtgenauigkeit in allen drei Verbrauchsdatensätze entspricht nahezu die der
Testdatenmenge. Daher könnnen alle drei Klassifikatoren als relativ robust angesehen
werden.

Klassifikatoren – Entscheidungsregeln

Cluster-ID Verbraucher I Verbraucher II Verbraucher III

cluster_0 Freitag (Q2 OR Q3) AND NOT
Arbeitstag

Mittwoch OR Donners-
tag

cluster_1 / (Q2 OR Q3) AND Ar-
beitstag

Dienstag

cluster_2 Montag OR Dienstag
OR Mittwoch OR Don-
nerstag

(Q1 OR Q4) AND NOT
Arbeitstag

Freitag OR Samstag OR
Sonntag OR Montag

cluster_3 / (Q1 OR Q4) AND Ar-
beitstag

/

cluster_4 Samstag OR Sonntag – –

Accuracy Testdaten 89,13% 88,04% 77,17%
Accuracy Gesamt 84,93% 86,3% 78,63%

Tab. 2: Entscheidungsregeln basierend auf der Ausgabe der Clusteranalyse und ihre Genauigkeit

5 Echtzeitfähiges Model Management System

Das eMMS ist in zwei voneinander losgelöste Prozesse unterteilt: Offline- und Online-
Analyse. Die Offline-Analyse beschreibt den bereits in Abschnitt 4 vorgestellten Prozess zur
Datenanalyse historischer Daten mit Data Mining Techniken. Die Online-Analyse wiederum
umfasst sowohl die Berechnung von Modellen zur Zeitreihenvorhersage als auch deren
Auswertung und Austausch in Echtzeit.

Im Folgenden wird zunächst die Architektur des eMMS vorgestellt und im Anschluss der
Prozess zur Online-Analyse erläutert.

4 Die Robustheit eines Modells beschreibt, dass auch bei verrauschten Daten oder Daten mit fehlenden Werten
korrekte Vorhersagen getroffen werden [HKP11, S. 369].

5 Bezeichnung ’Q’ in Tab. 2 steht für ’Quartal’
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5.1 Architektur

Die einzelnen Komponenten der Architektur werden in Online und Offline unterteilt und
sind in Abb. 4 dargestellt.

Abb. 4: Architektur eines echtzeitfähigen Model Management Systems

Zu den Online-Komponenten gehört eine CEP-Engine (hier Apama6) und Rserve7. Rserve
ist ein TCP/IP-Server, mit dessen Hilfe andere Programme (hier CEP-Engine) statistische
Berechnungen in der Programmiersprache R ausführen können [Ur03].

Die CEP-Engine hat die Aufgabe, die Flut an Datenströmen in Echtzeit zu überwachen
und Berechnungen auf Basis von Events durchzuführen. Als wesentlichen Bestandteil
des eMMS ist die CEP-Engine verantwortlich zur Auswertung von Zeitreihenprognosen
und involviert im Prozess zur Berechnung neuer ARIMA-Modelle. Die Berechnungen
eines ARIMA-Modelles laufen auf dem Rserve. Die Aufrufe des R-Skripts werden von
der CEP-Engine via TCP realisiert. Das hinterlegte R-Skript umfasst die zuvor vorgestellte
heuristische Methode nach [HK08]. Zur Modellgenerierung wird von der CEP die erwartete
Referenzzeitreihe (Cluster-ID) übergeben. Basierend auf dieser Information werden zur
Modellberechnung nur Trainingsdaten hinzugezogen, die der gleichen Referenzzeitreihe
zugehören. Das Modell mit dem besten Informationskriterium wird daraufhin automatisiert
ausgewählt und der CEP-Engine in Form einer prognostizierten Zeitreihe übergeben.

Das DBMS (hier Event Store) und eine Analytik-Plattform (hier KNIME8) gehören zu

6 Informationen und eine kostenfreie Version zum Download zur Streaming Analytic Platform Apama der Software
AG, siehe http://www.apamacommunity.com/.

7 Information und Download, siehe https://www.rforge.net/Rserve/.
8 Konstanz Information Miner (KNIME) ist eine freie Software für die interaktive Datenanalyse. Weitere

Informationen und Download, siehe http://knime.org/.
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den Offline-Komponenten. Der Event Store beinhaltet sowohl die historischen Messwerte,
die analysiert werden sollen, als auch Messwerte für die Simulation und Auswertung
des eMMS. Sowohl der Rserve als auch die Analytik-Plattform beziehen ihre Daten aus
dem Event Store. Die historisch hinterlegten Zeitreihen werden visuell aufbereitet und
mit Hilfe von statistischen Verfahren aus Abschnitt 4 analysiert. Die Erkenntnisse aus
der Datenanalyse werden zur Erstellung der R-Skripte und CEP-Anfragen übertragen und
zur Laufzeit ausgeführt. Weiterhin können von der CEP-Engine aggregierte, verarbeitete
Ereignisse (z.B. die Beschriftung einer neuen Zeitreihe) im Event-Store gespeichert werden.

5.2 Online-Analyse

Die Online-Analyse beschreibt den Wartungsprozess des ausführenden vorhersagenden Mo-
dells. Zur Wartung wird eine Kombination der Strategien periodisch und schwellwertbasiert
angewendet (vgl. Abschnitt 3). Neben der täglichen Modellberechnung wird ebenfalls unter
Berücksichtigung des Vorhersagefehler ein neues Modell angefordert und gegebenenfalls
neu berechnet. Der Vorhersagefehler (engl.: Forecast Error (FE)) ei beschreibt allgemein
die Differenz zwischen dem beobachteten und vorhergesagten Messwert. Entspricht yi dem
beobachteten und ŷi dem vorhergesagten Wert, dann gilt:

ei = yi − ŷi (1)

In der Echtzeit-Modellvalidierung wird der FE von der CEP-Engine stets beobachtet. Um
eine Modellabweichung zu detektieren, wird eine Concept Drift Anfrage formuliert.

Definition 5.1 (Concept Drift) Im Bereich des maschinellen Lernens bezeichnet der Aus-
druck Concept Drift das Phänomen, dass die Trainingsdaten nicht mit dem aktuellen
Anwendungsfall übereinstimmen [Ts04; Zl10]. Das zugrundeliegende Konzept zur Vorher-
sage der Daten weicht von der Realität ab, wodurch falsche Vorhersagen von ausführenden
Modellen getroffen werden. Daher muss das vorhersagende Modell regelmäßig an das
neueste Konzept angepasst werden [Ha16].

Durch die Berechnung des Vorhersagefehlers FE wird von der CEP-Engine ein neuer
Datenstrom erzeugt. Dieser wird nach einer fensterbasierten Änderungserkennung untersucht
(vgl. Abschnitt 3). Ein gleitendes Fenster mit einer vordefinierten Fenstergröße und einem
Grenzwert für FE beschreiben eine Concept Drift Erkennung, wann die Vorhersage nicht
mehr den Anforderungen genügen und eine Modelländerung womöglich erforderlich ist.

Nachdem ein Concept Drift erkannt wurde, wird daraufhin validiert, ob eine Modell-
änderung angebracht ist. Hierfür wird die Vorhersagegenauigkeit Mean Absolute Error
(MAE) der gesamten, bisherigen Zeitreihe mit den Referenzzeitreihen des entsprechenden
Referenzmodells berechnet. Der MAE beschreibt den durchschnittlichen, absoluten Fehler
und wird wie folgt definiert:
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M AE =
1
n

n∑

i=0
|ei | (2)

Die Referenzzeitreihe mit dem kleinsten Fehler wird als geeignetes Modell ausgewählt.
Entspricht die Beschreibung des ausführenden Modells nicht der Referenzzeitreihe mit dem
kleinsten Fehler, dann wird ein neues ARIMA-Modell berechnet. Andernfalls würde ein
unnötiger Rechenaufwand entstehen, der damit vermieden wird. Zur Neuberechnung eines
ARIMA-Modells wird nun ein Trainingsdatensatz der vier aktuellsten Zeitreihen9 aus der
Gruppe der Referenzzeitreihe mit dem kleinsten Fehler gewählt. Das neue Modell wird in
das CEP-System geladen und weiterhin nach einem möglichen Concept Drift untersucht.

Folgend veranschaulicht Abb. 5 das Konzept der Modelländerung nach einem Concept Drift
Alarm und das Heranziehen einer Referenzzeitreihe zur Unterstützung der Neuberechnung
eines ARIMA-Modells.

Abb. 5: Illustration einer Modelländerung nach einem Concept Drift

Die Illustration zeigt das initiale Modell mit der Zeitreihenvorhersage des gesamten Tages
(rote, obere Kurve). Im Verlauf des Tages trifft der tatsächlich beobachtete Verbrauch
ein (blaue, stark schwankende Kurve) und berechnet die Differenz von der Vorhersage
und der Beobachtung. Der Concept Drift Alarm wird ausgelöst, wenn die Differenz zu
hoch ist und eine vorgegebene Zeitspanne überdauert. Aus dem Referenzmodell wird eine
Referenzzeitreihe ausgewählt, die zum Zeitpunkt des Alarms (hier 11 Uhr) den momentanen
Verbrauch am besten beschreibt (grüne Kurve). Basierend auf der vorzeitigen Clustering-
Anwendung um 11 Uhr, wird ein neuer Trainingsdatensatz zur Neuberechnung eines
Modells herangezogen, das den zu erwartenden Verbrauch ab sofort besser beschreiben soll
(orangene Kurve). Während die Illustration zeigt, dass das initiale Modell sich im Laufe
des Tages immer mehr vom tatsächlichen Verbrauch entfernt (engl.: drift), weist das neu
generierte Modell ab 11 Uhr tatsächlich eine höhere Übereinstimmung mit dem aktuellen
Anwendungsfall auf.

9 Das Auswahlkriterium „vier aktuellste Zeitreihen“ basiert auf den Erfahrungswerten von Experten der EWE AG.
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Damit die neue abgeschlossene Zeitreihe ebenfalls im DBMS eine Clusterbezeichnung
erhält, wird das Referenzmodell angewendet. Dafür wird die Vorhersagegenauigkeit MAE
der Referenzzeitreihen auf die abgeschlossene Zeitreihe berechnet. Die Referenzzeitreihe
mit dem kleinsten Fehler wird für das Clustering ausgewählt und die entsprechende
Cluster-ID im DBMS eingetragen. Dadurch wird gewährleistet, dass für die nächste ARIMA-
Modellberechnung stets die aktuellsten Zeitreihen als Trainingsdatensatz ausgewählt werden.

6 Auswertung

Zur Auswertung des eMMS wird im vorliegenden Bericht die Genauigkeit der Zeitreihen-
vorhersage des Folgetages über den gesamten Simulationsdatensatz berechnet. In [He18]
sind die Ergebnisse zusätzlich gruppiert nach der Cluster-ID aufgelistet. Weiterhin wird
die Vorhersage der auf historischen Daten basierenden Entscheidungsregeln auf dem
Simulationsdatensatz validiert.

Das eMMS, das zur Laufzeit auf Änderungserkennungen mit einer Modelländerung (im
Folgenden „Change-Modell“ genannt) reagieren kann, wird neben dem initialen ARIMA-
Modell (im Folgenden „Day-Ahead-Modell“ genannt) und dem erzeugten „Referenzmodell“
mit zwei weiteren Modellen verglichen: „Mean-“ und „Naiv-Modell“.

Im Buch [HA18] werden diese Verfahren als Benchmark zum Vergleich von Vorhersagemo-
delle verwendet. Die untersuchten Modelle werden wie folgt zusammengefasst:

Referenzmodell Ergebnis des Zeitreihen-Clustering aus Abschnitt 4.1.

Day-Ahead Initiales ARIMA-Modell zur Vorhersage des Stromverbrauchs für den Folgetag,
berechnet nach dem Verfahren aus [HK08].

Change Modellanpassung durch Beobachtung des Vorhersagefehlers und Concept Drift
Erkennung.

Mean Die Vorhersage aller zu prognostizierenden Werte gleicht dem Durchschnitt der
historischen (Trainings-) Daten. Wenn {y1+· · ·+yT } die historischen Daten bezeichnet,
dann wird die Vorhersage wie folgt definiert:

yT+h = y = (y1 + · · · + yT )/T (3)

Die Prognose wird als yT+h bezeichnet und basiert auf den Daten {y1 + · · · + yT }.
Naiv Die gesamte Vorhersage gleicht der letzten Beobachtung. Demnach gilt:

ŷT+h = yT . (4)
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Tab. 3 zeigt die Auswertung des eMMS mit Modelländerung (Change) im Vergleich mit dem
initialen Modell (Day-Ahead). Die zwei einfachen Modelle (Mean und Naiv) und das Re-
ferenzmodell dienen als Vergleichsgröße zur Orientierung der Auswertung. In Abschnitt 4.2
wurden bereits die Entscheidungsregeln auf ihre Robustheit geprüft. Zur Bestätigung und
finalen Untersuchung des Klassifikators wird ein dritter, eigenständiger Datensatz zur
Validierung empfohlen10 [Bi95; RH96]. Zu diesem Zweck wird die Vorhersagegenauigkeit
des Klassifikators aus Abschnitt 4.2 auf dem Simulationsdatensatz validiert und ebenfalls in
Tab. 3 präsentiert.

Durchschnitt MAE in kWh & Accuracy der Entscheidungsregeln

Datensatz Day-Ahead Change Referenzmodell Mean Naiv Accuracy

Verbraucher I 2,41 1,91 1,76 7,82 6,27 85,71%
Verbraucher II 1,81 1,71 1,29 2,9 3,17 54,69%
Verbraucher III 6,34 2,95 4,14 7,62 5,66 11,43%

Tab. 3: Vorhersagegenauigkeit der Modelle und Entscheidungsregeln auf Simulationsdatensatz

Während die Validierung des Klassifikators von Verbraucher I positiv ausfällt (> 80%,
ähnlich zu dem Ergebnis aus Abschnitt 4.2), fallen hingegen die Klassifikatoren von
Verbraucher II und III deutlich schlechter aus. Wie in Abschnitt 3 beschrieben, haben die
Vorhersagen des Klassifikators einen Einfluss auf die Berechnung der Zeitreihenvorhersagen
des initialen ARIMA-Modells durch die Auswahl des Trainingsdatensatzes. Eine ARIMA-
Modelländerung wird hierbei vermutlich dringend benötigt.

Bei allen drei Datensätzen konnte eine bessere Vorhersagegenauigkeit mit der Modellände-
rung erzielt werden. Die Auswertungen bei zwei der Verbrauchsdaten ergaben eine geringe
Verbesserung, wohingegen beim dritten Datensatz eine erhebliche Besserung nachgewiesen
wurde (Vorhersagefehler halbiert).

Aufgrund des Nachweises einer Verschlechterung der Genauigkeit der Entscheidungsregeln
für Verbraucher II und III, zeigen weiterführende Untersuchungen in [He18] Erkenntnisse
einer Entwicklung des Datenstroms (Concept Evolution).

Definition 6.1 (Concept Evolution) Concept Evolution tritt als Resultat vollkommen neuer
Klassenobjekte auf, die sich im Lauf der Zeit im Datenstrom entwickelt haben [Mo10].
Durch die Entwicklung des Konzepts im Datenstrom sind die Anzahl der vorhandenen
Klassenobjekte dynamisch. Bei einer unentdeckten Concept Evolution werden bei einer
Klassifikation die Instanzen der neuen Klasse fälschlicherweise bestehenden Klassen
zugewiesen, wodurch der Klassifikationsfehler zunimmt [Ha16].

10 In der Literatur zu maschinellem Lernen wird die Terminologie zu „Validierung“ und „Test“ gegebenenfalls
umgekehrt beschrieben.
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Bei einer Concept Drift Erkennung müssen vorhersagende Modelle (prädiktiv), wie zum
Beispiel ARIMA, an das neue Konzepte im Datenstrom angepasst werden. Davon abweichend
wird bei einer Concept Evolution Erkennung eine Anpassung von beschreibenden Modellen
(deskriptiv), wie zum Beispiel dem Referenzmodell oder die Entscheidungsregeln11, benötigt.
Sowohl bei der Erkennung eines Concept Drift als auch Concept Evolution muss das
ausführende Modell neu trainiert werden.

Zur Untersuchung einer Concept Evolution wird in [He18] auf dem Simulationsdatensatz
erneut eine Clusteranalyse und Klassifikation durchgeführt und mit den Ergebnissen
basierend auf den historischen Datensatz verglichen. Die Idee liegt hierbei, dass im Zuge
einer Concept Evolution Beobachtung geprüft wird, inwiefern sich die Daten im Zeitraum
von knapp zwei Jahren (610 Tagen) verändert haben.

Durch den Vergleich stellte sich heraus, dass bei allen drei Datensätzen eine Verschiebung der
Clusterzentren festgestellt wurde und dass neu entstandene Klassenobjekte fälschlicherweise
den bestehenden Klassen zugeteilt wurden. Weiterhin zeigte sich bei der Untersuchung in
[He18], dass nicht die Vorhersagegenauigkeit des Klassifikators entscheidend ist, sondern
ob und wie stark der Klassifikator im Zuge einer Concept Evolution sich verändert. Trotz
einer Verschiebung der Clusterzentren hat sich der Klassifikator von Verbraucher I und
II kaum verändert. Daher sind die Ergebnisse der Zeitreihenvorhersage für Verbraucher
II weiterhin positiv, trotz schlechter Accuracy des Klassifikators (54, 69% und nur 1, 81
kWh MAE). Die neuen Klassenobjekte werden zwar einer falschen Klasse zugeordnet,
jedoch mit der richtigen Regel zur Modellberechnung abgefragt. Anders waren die Ergenisse
bei Verbraucher III. Hier haben sich auch die Entscheidungsregeln im Zuge der Concept
Evolution grundliegend verändert. Dies hatte Auswirkungen auf die Findung des initialen
Day-Ahead Modells, das zu einem mittleren absoluten Fehler von 6,43 kWh führte. Mit
dem im Bericht vorgestellten Verfahren konnte hier der Vorhersagefehler halbiert werden.

7 Zusammenfassung und Ausblick

Zusammenfassend ist das in der Arbeit implementierte eMMS im Stande drei wesentliche
Aspekte zu behandeln:

1. Zum einen werden unvorhergesehene Zeitreihen, für die keine Regeln bei der
Klassifikation gefunden wurden (Anomalien), frühzeitig mit der Concept Drift
Erkennung erfasst. Ein neues vorhersagendes Modell zur Zeitreihenprognosen wird
mit Hilfe eines Referenzmodells berechnet.

2. Zum anderen ist das System in dem untersuchten Beispiel bei der Verschiebung
von Clusterzentren im Referenzmodell robust, solange die Entscheidungsregeln

11 Der Klassifikator wird im Rahmen des Berichts als beschreibendes Modell bezeichnet, weil das Modell Merkmale
extrahiert, die signifikant das Konzept in den Daten beschreiben. Diese Erkenntnisse werden zur anschließenden
Zeitreihenvorhersage genutzt.
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zur initialen ARIMA-Modellberechnung sich nicht verändert haben. Durch die zur
Laufzeit durchgeführte Anwendung des Referenzmodells werden neue Zeitreihen
einer bestehenden Referenzzeitreihe zugeordnet und im DBMS vermerkt. Die Auswahl
der vier aktuellsten Zeitreihen einer Referenzzeitreihe bei gleichbleibender Regel
führt daher zu einer Relativierung des Vorhersagefehlers spätestens nach der vierten
Prognose.

3. Schließlich zeigte sich in [He18], dass das System auch im Zuge einer Concept
Evolution mit sich ändernden Entscheidungsregeln angemessene Vorhersagen treffen
kann.

Der Bericht zeigt, dass die Verwendung des eMMS die Vorhersagequalität des Stromver-
brauchs für den Folgetag von allen drei untersuchten Verbrauchern verbessert. Insbesondere
wenn die Verbrauchswerte von Tag zu Tag stark schwanken oder eine Concept Evolution in
den Daten vorliegt, ist dieses Konzept von Vorteil.

Zum Abschluss soll auf die clusterbasierte Änderungserkennung im Datenstrom aufmerksam
gemacht werden. Die in dem Bericht verwendete fensterbasierte Änderungserkennung
benötigt Expertenwissen zur Definition der Fenstergröße und des Schwellwertes. Um auch
hier den Menschen im eMMS Prozess zu entlasten, empfiehlt sich eine automatisierte
Änderungserkennung durchzuführen (vgl. Abschnitt 3). Zum einen muss kein Schwellwert
des Vorhersagefehlers vordefiniert werden, sondern ein Concept Drift wird automatisiert
erkannt. Zum anderen ließe sich das allgemeine Datenstromverhalten untersuchen und eine
Concept Evolution Erkennung implementieren. Des Weiteren könnte eine Änderungsrate für
einen Modellwechsel mit hinzugezogen werden, zur Abschätzung der Parametereinstellungen
der Concept Drift Erkennung (Fenstergröße und ggf. Schwellwert bei fensterbasierter
Strategie). Diese Aspekte werden in dem hier vorgestellten eMMS nicht berücksichtigt und
könnten für die Weiterentwicklung aufgenommen werden.
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Abstract: Clerical tasks are created if a duplicate detection algorithm detects some similarity of
records but not enough to allow an auto-merge operation. Data stewards review clerical tasks and
make a final non-match or match decision. In this paper we evaluate different machine learning
algorithms regarding their accuracy to predict the correct action for a clerical task and execute that
action automatically if the prediction has sufficient confidence. This approach reduces the amount of
work for data stewards by factors of magnitude.
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1 Introduction

Enterprises across all industries have a need to manage master data such as customer,
supplier, employee, patient, product or contract information. Master Data Management
(MDM) is a discipline comprised of people, processes and technology to manage that
master data. Data stewards use automated processes to manage data quality for master
data to achieve repeatable, consistent data quality outcomes. One of the key data quality
requirements for any MDM solution is the ability to detect and resolve duplicate master
data records using matching (matching is also known as duplicate detection). Duplicated
master data records exist for at least three reasons. The first one is that before companies
introduce an MDM system, master data has been created and managed redundantly and
inconsistently in many different application systems. When an MDM system is introduced,
master data records from these different sources need to be harmonised and deduplicated to
create the 360° view (also referred to as golden record) for a master data entity. The second
reason is that in certain industries the sources are outside of the company’s control. For
example, a healthcare insurance company gets patient data from doctors and hospitals where
the sourcing IT systems are outside of the company. Consequently, each time new patient
information is received, the matching needs to detect duplicates again. The third reason
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is that at the time a new master data record is added to the MDM system, the information
might not be complete enough to detect at time of creation that this master data record is a
duplicate of some other record and should not be created. Only when a subsequent update
adds additional attributes matching might be able to detect that the more complete master
data record is now indeed a duplicate to at least one other record and should be merged
(also referred in literature as data fusion [BN09]). A typical use case for this is the customer
lifecycle. A customer record for a lead is sparsely populated, often times not much more
than a name and contact method. As the lead becomes a customer prospect and eventually
an active customer additional information like an address, identifiers,etc. are added. Based
on this more complete information a match might be found.

For matching, there are two fundamentally different techniques known as deterministic
matching and probabilistic matching. Figure 1 shows the basic problem. A base record is
compared with pairwise comparison to two other records.

Fig. 1: Matching Example

Deterministic matching uses a set of static rules to decide whether or not two or more
records are similar enough and should be merged into a single record. Probabilistic matching
typically uses fuzzy techniques comparing the attributes (or set of attributes together, e.g.
like the attributes of an address as shown in Figure 1) of two or more records. Fuzzy
techniques include for example edit distance, phonetic similarity, nickname resolution,
etc. For each attribute (or set of attributes) a weight is assigned how much it contributes
for the total similarity score of a record compared to other records to make a non-match
or match decision. For example, a gender attribute which has only two values typically
contributes with less weight to the overall decision of the matching in comparison to maybe
an identifier field as shown in Figure 1. Weights can be positive or negative depending on
the similarity found as shown in the Figure 1 with the values in the identifier column. In
addition, probabilistic matching considers frequency distribution. For example, in a typical
data set of last names in Germany, the last name Cheng is substantially less frequent then
Müller. That means if probabilistic matching finds a similarity in the last name field, the base
weight for the last name increases in case Cheng is found whereas in the case of Müller it
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decreases to reflect the significance of the value frequency. In a given data set with n records,
comparing each record with every other record is not efficient for real-time decision making.
Techniques like Sorted Neighbourhood Method (SNM) were introduced in [HS95] and
various optimisations have been studied in [HS98] and [BN09]. An evaluation of different
techniques like traditional blocking, SNM, adaptive SNM, Q-gram, threshold-based canopy
clustering, suffix-array based indexing and more has been done in [Ch12] showing variations
in performance, completeness and quality. The basic idea is to create a structure acting as a
means to quickly find records which share some similarity so that the matching only needs to
compare a small subset of records in a small bucket regarding similarity. A well-configured
matching algorithm in an MDM system in production aims for buckets of 200 to 500 records
at a maximum to enable match decisions with a response time in milliseconds range.

Once the matching algorithm has compared two records the computed weights in probabilistic
matching are summarized to a total score which is compared against two thresholds as
shown in Figure 1. If the total score is below the lower threshold, the result is considered a
non-match and the records are kept separate. If the total score is above the upper threshold,
the records are deemed similar enough that based on a set of predefined survivorship rules
the records are automatically merged to create a new golden record. If the total score is
between the lower and upper threshold a clerical task is created for a human data steward.
For the two records shown in Figure 1 which are compared to the base record, the total
scores are within the clerical range. A data steward claiming a clerical task is reviewing the
records to make a final decision if they should be merged or kept separate.

In two scenarios this approach with clerical processing to manage data quality does not work
well. The first scenario is the initial load of the MDM system and and the second scenario is
the onboarding of additional sources in sub-sequent deployment phases. In an initial load
scenario of medium size with 20,000,000 records with just 1% duplicates in the clerical
range 200,000 tasks are created for the data stewards. If a data steward processes 50-200
per day a single data steward would need to work between 1000 to 4000 days until all of
them are processed. During that time new clerical tasks are created while the MDM system
is used in ongoing mode and other sources are onboarded in a batch load in subsequent
deployment phases keeping the task list growing further.

Even if a company hires a data stewardship team to process all these clericals at least several
months will pass. This comes at a certain labor cost and not all companies want to invest
that much in data quality. We have seen cases where the clerical task list in an MDM system
has more than one million pending tasks which is factors of magnitude too large for the data
stewardship team to ever catch up and process. In addition to the labor cost consideration,
there is also the motivation of the data stewards to be considered. Practice has shown that
over time the clerical task processing becomes somewhat repetitive and boring for the data
stewards causing frustration with negative impact on performance and hence data quality. If
a data steward or a data stewardship team works for a while, a resolution history of clerical
tasks is created which contains the matching details and the decision of the data stewards
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showing which records have been merged and which ones have been kept separate based on
the pairwise comparisons by matching.

The obvious question is why the matching configuration and particularly the thresholds are
not adjusted from the beginning so that there are not that many tasks in the clerical range.
Companies in certain industries like banking, insurance and healthcare are very reluctant
when MDM is introduced to allow a lot of auto-collapse results in fear that there are too
many false positives which could cause problems. In banking for example, a false positive
caused by an auto-collapse could mean that the related financial accounts are linked to the
golden record and someone sees someones else banking details which should not happen.
So the upper threshold is set high enough so that not a lot of auto-collapse cases occur.
On the other end of the spectrum, enterprises want to avoid issues with too many false
negatives which could become problematic in case compliance with anti-money laundering
regulations (e.g. like the 4th Anti-Money Laundering Directive [EUAML15]) are required
and hence set the lower threshold often times too low. As a result, many match results end
up in the clerical range causing the previously outlined issues.

In this paper we want to study how machine learning can be used to reduce the clerical task
processing problem.

2 Approach
In this section we describe the approach we have taken to explore how machine learning
can be applied to the matching and clerical task processing problem. We applied machine
learning to the resolution history of clerical tasks. The basic idea is to train a machine
learning model on the resolution history, so that if a new clerical task comes in, the trained
model is used to predict the appropriate data steward action. If the trained machine learning
model is above a configurable confidence threshold, the predicted action (non-match or
auto-collapse) is taken automatically which means the clerical task is not routed to a data
steward anymore reducing the workload for a data steward (or the data stewardship team).

Since this was a new area for us, we decided to do an empirical study of different machine
learning algorithms to compare them in terms of quality of results as well as runtime
characteristics such as performance, memory and CPU consumption. We tested with machine
learning algorithms such as Random Forest [Xu17] and [SBP17], XGBoosting, KNeighbors
[SBP17], Gradient Boosting, AdaBoost [FS95], Multi-layer Perceptron, Decision Tree,
Logistic Regression, Quadrant Discrete Analysis, Gaussian Naive Bayes, Logistic Regression
and Support Vector Machines [SBP17].

3 Architecture
The evaluation of machine learning for the use case was not only about finding out if
machine learning yields good results - the evaluation also needed to show if a machine
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learning component could be added to an MDM system for production use. Figure 2 shows a
simplified view of the architecture for an MDM system limited to the areas relevant for this
discussion (for a full discussion of all aspects of an MDM system see [Dr08] and [Ob14]).
Consumption of an MDM system is through the services layer. The batch and delta-batch
processing for initial and delta-loads is typically just a multi-threaded wrapper around
the services layer to ensure that for real-time and batch consumption for data consistency
reasons the same code is used. The services providing create, update, delete, read and search
functionality are used to read and write data to the persistency layer. As part of the create
and update services, probabilistic matching is triggered (in the create case that happens all
the time, in update cases only if matching relevant attributes are changed). As outcome of
matching clerical tasks might be created which data stewards can process through a data
stewardship user interface (UI). Every time a clerical task is finished, a new entry to the
resolution history is written.

Fig. 2: Target Solution Architecture

Our goal was thus not only to find out if a particular machine learning method is useful for
one or both use cases. We wanted to analyze if a trained model can score fast enough to
be useful for the first use case of predicting the right action for a new clerical task. MDM
systems in production typically have service level agreements against the services layer
where the entire service call needs to finish in double-digit milliseconds at most including
matching. As a result, the objective for us was if the trained model used for scoring clerical
tasks can perform that action in a single to very low double-digit millisecond range at most.
Only if that performance target is accomplished the scoring for the prediction can be part of
an end-to-end synchronous processing model, otherwise the scoring for the prediction with
the auto-resolution need to be asynchronously to the service call. In addition to performance,
the scoring needs to scale. In the most demanding operational environments for an MDM
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system, the services layer needs to deal with thousands of concurrent calls per second while
not compromising on performance. Deploying a trained model for scoring can be done
on different technology stacks and we explored some of them to find an answer for the
scalability question as well.

4 Implementation

This section describes the implementation and development environment we used to
implement different data pre-processing steps as well as to evaluate different machine
learning techniques.

We used the Jupyter notebooks in IBM Watson5 Studio for data pre-processing, training,
and evaluation. This allowed a collaborative approach to work on machine learning with
multiple developers. As runtime we used Python with the scikit-learn within Watson Studio.

4.1 Training Data

The data we used for training is structured as shown in Table 1. Each line contains one
clerical task which is the result of a comparison of two person records by the matching
engine using a probabilistic matching algorithm. Each of these clerical tasks contains the
numerical results of different attribute comparisons. The training data contains n of these
comparison results. The actual number depends on the configuration used by a customer.
Each of these values is one feature f i we are using for machine learning. The higher the
value, the higher the likelihood of the compared attributes being the same of the two person
records. The label l is the decision (’same’ or ’different’) the steward took to resolve the
clerical task.

l f0 f1 ... fn

S 2.3 12.9 ... 1.2
D 3.1 0.0 ... 1.1

Tab. 1: Original Training Data

4.2 Data Pre-Processing

Our training data is retrieved from a clerical task resolution history which contains a
very high data quality. There is no need to clean the data before training can be started.
However, the clerical task resolution history we are using as training data is skewed. Of all

5 IBM Watson is a trademark of IBM in USA and/or other countries. IBM Watson Studio documentation can be
found here: https://dataplatform.cloud.ibm.com/docs/content/getting-started/overview-ws.html.
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decisions around 75% of the tasks where resolved by data stewards with the decision that
the two compared user records are the same. Only in the remaining 25% they are considered
different.

We evaluated different sampling methods to balance the data. Among these methods were a
simple random oversampler as well as four Synthetic Minority Oversampling (SMOTE)
methods as described in [Ch02] and [HWM05]. We used different classifiers for the
evaluation. The average F1 score and the area under the ROC curve for the sampling
methods is shown in Figure 3.
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Area under ROC F1 Score (Same) F1 Score (Different)

No Oversampling
Random Oversampler

SMOTE-SVM
SMOTE-borderline1
SMOTE-borderline2

SMOTE-regular

Fig. 3: Sampling Comparison

All sampling methods showed very similar results. They all reduced the F1 score for the
minority class. The major reason for this is a reduction of about 10% on average of the
precision of the minority class when using oversampling. However, we identified the area
under the ROC curve as well as the precision for the majority class (same) increased. This
is important for our use case as it is expensive to split user records that were previously
merged into one. For that reason, we decided to use random oversampling in the remainder
of the evaluations in this paper.

4.3 Performance

For real-time use cases we require high scalability as well as fast response times for
predictions. Therefore, we evaluated Spark, Python with Scikit-learn, and MLeap6 for
prediction performance on Random Forest. MLeap allows to serialize Spark, Tensorflow,
and Scikit-learn pipelines. The serialized pipelines can then be used for predictions. MLeap

6 http://mleap-docs.combust.ml/
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removes the need for a heavy engine like Spark. The performance of MLeap for predictions
and memory consumption reflected this in our tests.

In contrast, Spark showed much higher response times and memory consumption. We
reduced this by moving away from running predictions on a Spark cluster but instead in a
Spark local instance that is running in the same Java Virtual Machine as our product code.
This reduced the response times significantly down to a minimum response time of less
than 20ms and a mean of about 40ms. These responses don’t change much if executing just
one prediction or passing in 1,000 predictions in one batch.

Predictions with Python using Scikit-learn libraries were even faster. A single prediction
was returned in about 2ms in our environment. When batching predictions, however, the
response time increased using Python to about 15ms for 1000 predictions which is close to
the performance we experienced with Spark.

With Python we were able to reach a throughput of 1,500 requests per second each returning
a single prediction. These performance evaluations were executed on a single virtual machine
with eight 2.4GHz cores and 16GB of memory.

5 Evaluation

This section summarizes the outcome of our comparisons of different machine learning
classifiers with pre-processed data as described in Section 4.2. Our comparison includes 10
different classifiers. We compared these classifiers with regards to the area under the ROC
curve, accuracy, precision, recall and F1 score.

We started our evaluations with a comparison of ten different classifiers for machine learning
to get an overview of their prediction quality. The results of this comparison are depicted
in Figure 4. The figure shows the comparison of all ten classifiers with regards to the area
under the ROC curve and the F1 score for both labels. In all of these metrics, XGBoosting
showed the best results, followed only by a small margin by Random Forest. The difference
between XGBoosting and Random Forest is 0.4% for the area under ROC curve and 0.06%
and 0.3% for the F1 for the two classes ’same’ and ’different’ respectively. Other classifiers
clearly fall short in comparison.

For a more detailed analysis we moved forward focussing on XGBoosting, Random Forest,
and Logistic Regression. We decided on XGBoosting and Random Forest as the best
performers in our initial tests. We included Logistic Regression as a reference point as being
one of the most widely used classification algorithms.

The probabilistic score we are using for training the models reaches from a negative rational
number to a positive. Zero, however, describes the situation when one of the compared
entities does not contain the specific attribute that is compared. For example, compare the
social security number of two persons. If at least one of the two person records is missing
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Fig. 4: Classifier Comparison

this number, the comparison value is zero. This means a value of zero does not describe
it is more likely than a negative score to be a match or less likely than a positive. Instead,
zero values describe that there is insufficient data to define a score for this comparison. To
allow different classifiers to compensate for this we introduced a new column f ′n for each
feature fn. This column contains two classes: ’0’ for when the corresponding matching
value equals zero and ’1’ for non-zero matching values as illustrated in Tables 2 and 3.

f0 f1

2.3 1.2

3.1 0.0

Tab. 2: Original Training Data

f0 f ′0 f1 f ′1

2.3 1 1.2 1

3.1 1 0.0 0

Tab. 3: Training Data with Artificial Features

Some classifiers trained with these artificial features improved the quality of predictions
significantly whereas others showed only very minor improvements as illustrated in Figure 5.
The figure compares the F1 score for XGBoosting, Random Forest and Logistic Regression.
The quality of predictions of the tree-based classifiers Random Forest and XGBoosting
did not change. However, logistic regression improved about 6% for the the majority class
’same’ and 11% for the minority class ’different’.

The tree-based classifiers split the branches in a way that they identify the zero values as
being different already. This is not possible with logistic regression. For that reason, Logistic
Regression benefits from the additional columns. In the remainder of this document all
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Fig. 5: Evaluation of Artificial Feature Column

results are from classifiers trained with the artificial features. However, for Random Forest
and XGBoosting our findings indicate that this is an optional step.

While the quality of predictions is an important metric to compare machine learning
classifiers another important aspect is runtime performance.
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Fig. 6: Training Duration

In the matching use case with classifiers tuned for best prediction quality we observed very
different training speeds as shown in Figure 6. Random Forest and Logistic Regression
trained a model with about 1 million data records within about 10 seconds using Scikit-Learn
libraries. XGBoosting performed much slower. Training the same amount of data takes
more than 150 seconds on a single virtual machine with eight 2.4GHz cores and 16GB of
memory.

The full comparison of XGBoosting, Random Forest, and Logistic Regression can be found
in Figure 7. This shows how similar XGBoosting and Random Forest are for the use case
described in this paper.

6 Conclusion

We have shown how historic matching data can be used to make predictions on a steward’s
matching decisions. We found that with the right machine learning classifier and good input
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data it is possible to predict the steward’s decision with an accuracy of over 94%. The
precision for identifying two records as being the same can reach up to over 98%. This is
particularly important as these predictions lead to a merge of two records. In case of an error
it is very costly to divide these records again. Almost all used metrics show results above
90% with the exception precision in the minority class. The precision in this case is only a
bit above 80%. Interestingly, this is the only metric in which Random Forest outperforms
XGBoosting.

These results were possible after evaluating ten different classifiers and understanding the
input data. We realized that artificial columns for zero valued features can be helpful as well
as decided to use random oversampling to improve the quality of the predictions.

Finally, we identified Random Forest and XGBoosting as best fitted for the given use
case. The prediction results of both classifiers are very similar. However, Random Forest
outperformed XGBoosting related to training speed and appears to be the best option for
the given scenario.

7 Outlook

One field of further investigations is understanding how the tree-based algorithms prioritize
features with regards to their complexity. The score for a name comparison for instance can
contain many different individual values because names can be different on many levels
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(e.g., spelling, phonetic distance). A birth date, however, can only be different by a certain
number of days. We will investigate further how these different distributions of values
impact the machine learning classifiers.

A second field for further investigations is to understand how a neural network compares to
the classifiers used in this work.

A third field which requires further research is if a probabilistic matching algorithm
configuration related to its weigths and thresholds can be optimized through machine
learning approach such as logistic regression.
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Ganzheitliches Metadatenmanagement im Data Lake:
Anforderungen, IT-Werkzeuge und Herausforderungen in
der Praxis

Christoph Gröger1, Eva Hoos2

Abstract: Data Lakes haben sich in der industriellen Praxis als Plattformen für die Speicherung und
Analyse aller Arten von (Roh-)daten etabliert. Erweiterte Anforderungen hinsichtlich Governance
und Self-Service machen das Metadatenmanagement im Data Lake zum kritischen Erfolgsfaktor.
Bisher gibt es dazu jedoch nur wenige wissenschaftliche Arbeiten, es mangelt insbesondere an
einer ganzheitlichen Betrachtung zur Konzeption und Realisierung des Metadatenmanagements
im Data Lake. Diese Arbeit adressiert das Thema und basiert auf praktischen Erfahrungen aus
einem Industriekonzern beim Aufbau eines unternehmensweiten Data Lake. Es werden praktische
Anforderungen und Anwendungsbeispiele für das Metadatenmanagement im Data Lake diskutiert
und die unterschiedlichen Arten von Metadaten anhand des Praxisbeispiels analysiert. Zur Umsetzung
des Metadatenmanagements werden anschießend unterschiedliche IT-Werkzeuge anhand definierter
Kriterien analysiert. Das Analyseergebnis zeigt, dass Datenkataloge grundsätzlich die geeignete
Werkzeugart darstellen, wobei noch technische Unzulänglichkeiten existieren. Abschließend werden
die in der Praxis bestehenden Herausforderungen für ein ganzheitliches Metadatenmanagement im
Data Lake zusammengefasst und zukünftige Forschungsbedarfe aufgezeigt.

Keywords: Metadaten, Meta Data, Data Lake, Datenkatalog, Data Catalog, Governance, Self-Service

1 Einleitung

Die digitale Transformation, Big Data und Advanced Analytics verändern die Datenland-
schaft in Unternehmen erheblich [Lv17]. Die großen Mengen heterogener Daten sowie
die Vielzahl unterschiedlicher analytischer Anwendungsfälle erfordern neue Konzepte und
Plattformen für das Datenmanagement [OL13]. In diesem Zuge hat sich der Data Lake in
den letzten Jahren als ein neuer Typ von Datenplattform für die Speicherung, Integration
und Analyse aller Arten von (Roh-)daten etabliert [Ma17]. Data Lakes erfreuen sich in der
industriellen Praxis zunehmender Beliebtheit und werden in unterschiedlichen Branchen
eingesetzt. Ein prominentes Anwendungsfeld für Data Lakes stellt die Fertigungsindus-
trie dar, da im Zuge der Industrie 4.0 [Ba14], also der Digitalisierung der industriellen
Wertschöpfungskette, enorme Datenmengen generiert und ausgewertet werden [GCA15].
Es geht beispielsweise um die Mustererkennung in Maschinendaten zur Optimierung von
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Fertigungsprozessen oder die Ad-hoc-Exploration von Produktentwicklungs- und Felddaten
zur Verbesserung des Produktdesigns [Gr18].

Mit dem zunehmenden Einsatz von Data Lakes ergeben sich in der industriellen Praxis
erweiterte Anforderungen, insbesondere hinsichtlich der Sicherstellung von Transparenz,
Qualität und Compliance der Daten im Data Lake sowie der Unterstützung von Self-Service-
Szenarien für Fachanwender. Diese Anforderungen machen Metadatenmanagement3 im
Data Lake zum kritischen Erfolgsfaktor [QHV16, HGQ16]. Es soll damit verhindert werden,
dass aus dem Data Lake ein Datensumpf (engl. data swamp) [HGQ16] entsteht, also eine
Datenplattform mit nicht mehr sinnvoll nutzbaren Daten.

Bisher gibt es jedoch nur wenige wissenschaftliche Arbeiten zum Metadatenmanagement
im Data Lake. Existierende Arbeiten fokussieren auf einzelne Teilaspekte, insbesondere
die allgemeine Bedeutung von Metadaten im Data Lake [Te15, MT16, Sh18] sowie die
Erfassung und Anreicherung von Metadaten im Data Lake mittels semantischer Technologien
[HGQ16, QHV16, Al16]. Es mangelt an einer ganzheitlichen Betrachtung zur Konzeption
und Realisierung des Metadatenmanagements im Data Lake, insbesondere hinsichtlich
in der Praxis relevanter Anforderungen, zu adressierender Arten von Metadaten sowie
passender IT-Werkzeuge zur Umsetzung.

Die vorliegende Arbeit adressiert diese Aspekte und basiert auf praktischen Erfahrungen
aus einem weltweit operierenden Industriekonzern beim Aufbau eines unternehmensweiten
Data Lake mit ganzheitlichem Metadatenmanagement. Zuerst werden in Kapitel 2 das
Unternehmen sowie die Data-Lake-Architektur vorgestellt, die technisch auf einem Cross-
Plattform-Ansatz basiert. Zusätzlich wird das ganzheitliche Metadatenmanagement im Data
Lake als Ziel dargestellt. Auf dieser Grundlage werden in Kapitel 3 Kernanforderungen
und praktische Anwendungsbeispiele für das Metadatenmanagement im Data Lake abge-
leitet und analysiert. Davon ausgehend werden in Kapitel 4 die unterschiedlichen Arten
relevanter Metadaten im Kontext von Data Lakes anhand des Praxisbeispiels identifiziert
und diskutiert. Anschließend geht es in Kapitel 5 um die praktische Umsetzung des Meta-
datenmanagements mittels unterschiedlicher IT-Werkzeuge. Für die Auswahl geeigneter
IT-Werkzeuge werden zuerst produktunabhängige Werkzeugarten definiert und anhand
von aus den Anforderungen abgeleiteten Bewertungskriterien analysiert. Das Ergebnis
zeigt, dass Datenkataloge grundsätzlich die geeignete Werkzeugart für das ganzheitliche
Metadatenmanagement im Data Lake darstellen, wobei noch technische Unzulänglichkeiten
existieren. Abschließend werden in Kapitel 6 die in der Praxis bestehenden technischen
und organisatorischen Herausforderungen für ein ganzheitliches Metadatenmanagement
im Data Lake zusammengefasst und zukünftige Forschungsbedarfe aufgezeigt. Die Arbeit
schließt mit einem Fazit in Kapitel 7.

3 Unter dem Begriff Metadaten werden im Kontext des Datenmanagements allgemein Daten zur Verwaltung und
Nutzung von Daten verstanden [VVS00]. Metadatenmanagement bezieht sich auf die systematische Verwaltung
und Bereitstellung von Metadaten [He17].

436 Christoph Gröger, Eva Hoos



Ganzheitliches Metadatenmanagement im Data Lake 3

2 Praxisbeispiel: Unternehmensweiter Data Lake und ganzheitliches
Metadatenmanagement

Die vorliegende Arbeit basiert auf Erfahrungen aus einem realen Praxisbeispiel aus der Fer-
tigungsindustrie, das die Grundlage für die Ableitung der Anforderungen sowie die Analyse
relevanter Arten von Metadaten im weiteren Verlauf der Arbeit darstellt. Im Folgenden wird
zuerst das zugrundeliegende Unternehmen kurz vorgestellt, um anschließend auf den Ansatz
des unternehmensweiten Data Lake mit ganzheitlichem Metadatenmanagement einzugehen.

Das Praxisbeispiel bezieht sich auf einen global tätigen Industriekonzern mit mehreren
hunderttausend Mitarbeitern und einer weltweit verteilten Fabriklandschaft. Der Industrie-
konzern gliedert sich in mehrere Geschäftsbereiche, die ein breites Spektrum an Produkten
entwickeln und fertigen, speziell in den Domänen Industrie- und Gebäudetechnik, Mobilität
und Konsumgüter. Dementsprechend vielfältig gestaltet sich die Prozesslandschaft des
Konzerns, von der Massenfertigung hoch standardisierter Produkte bis zur Einzelfertigung
von Spezialprodukten nach Kundenanforderung.

Ein wesentliches strategisches Ziel des Konzerns ist die digitale Transformation zum
datengetriebenen Unternehmen als Teil der Industrie 4.0. Unterschiedliche Digitalisierungsi-
nitiativen des Industriekonzerns haben in den letzten Jahren zu enormen Mengen heterogener
Daten entlang der Wertschöpfungskette geführt. Diese Daten sollen insbesondere genutzt
werden, um Produkte und Prozesse ganzheitlich zu optimieren. Es geht beispielsweise
um Produktlebenszyklus-Analysen [Ka15], um Produktentwicklungs-, Fertigungs-, Feld-
und Kundendaten umfassend zu analysieren. Ein weiteres Anwendungsfeld stellt die Ende-
zu-Ende-Analyse von Geschäftsprozessen im Rahmen von Process Mining [Aa16] dar,
um Engpässe und Wartezeiten zu eliminieren und die Prozessqualität zu erhöhen. Diese
Anwendungsfelder erfordern die unternehmensweite Integration von klassischen transaktio-
nalen Unternehmensdaten, speziell aus Enterprise Ressource Planning (ERP) Systemen, mit
Maschinen-, Sensor- und Kundendaten, z.B. aus Manufacturing Execution Systemen (MES)
und dem Web (siehe [GSMb14, GSMa14] zur Datenintegration in Industrieunternehmen
sowie [GP14] für eine Beschreibung der IT-Systeme in Industrieunternehmen).

Zu diesem Zweck wird ein unternehmensweiter Data Lake aufgebaut, der die unterneh-
mensweite Speicherung, Integration und Analyse aller Arten von (Roh-)daten unterstützt.
Eine vereinfachte Darstellung der konzeptionellen Architektur des Data Lake zeigt Abb.
1. Die Architektur basiert auf dem Lambda-Architektur-Paradigma [MW15] und umfasst
Komponenten zur Batch- und Streaming-Datenverarbeitung zur Umsetzung unterschied-
licher Analyseanwendungen, von Reporting über Exploration bis zu Data Mining (siehe
[HKP12, KBM10] für eine Beschreibung der Analyseanwendungen). Die Quelldaten um-
fassen sämtliche betrieblich relevanten strukturierten und unstrukturierten Daten, die in
vier Kategorien unterteilt werden: klassische transaktionale Unternehmensdaten, benutzer-
generierte Daten, Maschinen- und Sensordaten sowie Webdaten.
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Abb. 1: Konzeptionelle Data-Lake-Architektur des Industriekonzerns (vereinfacht)

Eine wesentliche Besonderheit des Data Lake besteht darin, dass ein umfassender Cross-
Plattform-Ansatz verfolgt wird. Dies bezieht sich auf folgende Merkmale:

• Kombination von Batch- und Streaming-Komponenten, um sowohl Stapelverarbeitung
als auch echtzeitnahe Datenverarbeitung zu unterstützen

• Kombination unterschiedlicher Datenhaltungstechnologien, insbesondere von rela-
tionalen Datenbanken, spalten- und dokumentenorientierten NoSQL-Datenbanken
sowie verteilten Dateisystemen, um eine polyglotte Persistenz [GR15] umzusetzen
und die für den jeweiligen Anwendungsfall passende Datenhaltungstechnologie zu
nutzen

• Kombination unterschiedlicher Bereitstellungsvarianten der Komponenten, um sowohl
On-Premise- als auch Cloud-Bereitstellungen zu nutzen

Eine zentrale Komponente des Data Lake, die sich über sämtliche Schichten und Kompo-
nenten erstreckt, ist das Metadatenmanagement. Das Ziel ist, ein ganzheitliches Metada-
tenmanagement für den Data Lake zu realisieren, das sämtliche Kernanforderungen (siehe
Kapitel 3), sämtliche relevanten Arten von Metadaten (siehe Kapitel 4) über sämtliche
Datenhaltungssysteme des Data Lake mit geeigneten IT-Werkzeugen (siehe Kapitel 5)
unterstützt. Diese Aspekte stehen in den folgenden Kapiteln der Arbeit im Vordergrund.
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3 Kernanforderungen und Anwendungsbeispiele für Metadaten-
management im Data Lake

Auf der Basis der praktischen Erfahrungen im Industriekonzern lassen sich die Unterstützung
von Self-Service (siehe Kapitel 3.1) sowie die Unterstützung von Governance (siehe
Kapitel 3.2) im Data Lake als Kernanforderungen für das Metadatenmanagement im
Data Lake identifizieren. Diese werden im Folgenden beschrieben und anhand praktischer
Anwendungsbeispiele aus dem Industriekonzern konkretisiert (siehe Abb. 2).

Self-Service Governance

Metadaten für
• Datenentdeckung
• Beurteilung der 

Datenherkunft und -qualität
• Daten- und 

Ergebnisinterpretation 

Metadaten für
• Regel- und 

gesetzeskonforme Nutzung 
des Data Lake 

• Effizienten technischen
Betrieb des Data Lake

Ganzheitliches Metadatenmanagement im Data Lake

Kernanforderungen

Abb. 2: Kernanforderungen für das Metadatenmanagement im Data Lake

3.1 Unterstützung von Self-Service

Ein wesentliches Ziel des unternehmensweiten Data Lake des Industriekonzerns besteht
darin, eine zentrale Datenplattform für sämtliche Arten von Endbenutzern zu realisieren,
um eine Demokratisierung, d.h. eine möglichst umfassende Durchdringung sämtlicher
Prozesse und Entscheidungsebenen des Konzerns mit datengetriebenen Methoden und
Anwendungsfällen, zu erreichen. Es geht folglich darum, nicht nur Data Scientists und
IT-Experten als kleinere Gruppen spezialisierter Data-Lake-Nutzer zu adressieren, sondern
auch Fachanwendern, z.B. Prozessingenieuren und Marketing-Spezialisten, die Nutzung
des Data Lake zu ermöglichen. In diesem Rahmen strebt der Industriekonzern auch an,
die Rolle des Citizen Data Scientist [Gr18] im Sinne von Fachanwendern mit vertieften
Kenntnissen in Data Science zu etablieren. Ein typisches Anwendungsbeispiel umfasst
einen Prozessingenieur, der als Citizen Data Scientist unterschiedliche Analysen der
Fertigungsqualität durchführt.

Für diese Demokratisierung der Data-Lake-Nutzung sind insbesondere Konzepte und
IT-Werkzeuge für Self-Service-Szenarien relevant, die unter den Schlagwörtern Self-
Service-Business-Intelligence [AS16] und Self-Service-Analytics [Di16] diskutiert werden.
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Das Ziel besteht allgemein darin, Fachanwendern die Datenaufbereitung und die Daten-
analyse mit einfach nutzbaren IT-Werkzeugen zu ermöglichen, ohne dass eine umfassende
Unterstützung durch IT-Experten erforderlich ist. Metadaten spielen eine zentrale Rolle
bei der Umsetzung von Self-Service-Szenarien [Te15]. Ausgehend von den praktischen
Erfahrungen im Industriekonzern geht es hierbei insbesondere um die Unterstützung der
Datenentdeckung, der Beurteilung der Datenherkunft und Datenqualität sowie der Daten-
und Ergebnisinterpretation durch Fachanwender.

Bei der Datenentdeckung (engl. data discovery) steht die Identifikation relevanter Datenberei-
che im Data Lake im Vordergrund, um sämtliche für eine spezifische Fragestellung relevanten
Daten zu selektieren. Der Prozessingenieur sucht beispielsweise sämtliche Qualitätsdaten
zu einem bestimmten Produkt. Es geht einerseits um MES-Daten zu Qualitätsprüfungen,
die in einer relationalen Datenbank des Data Lake gespeichert sind. Andererseits geht es um
Sensordaten aus Fertigungsmaschinen, die in einem verteilten Dateisystem des Data Lake ab-
gelegt sind. Metadaten ermöglichen nun eine einfache Identifikation und Wiederauffindung
dieser Daten im Data Lake, indem z.B. sämtliche Qualitätsdaten im Data Lake einheitlich
gekennzeichnet sind. Der Prozessingenieur erhält anhand einer metadatenbasierten Suche
beispielsweise eine Liste von Tabellen sowie Dateien im Data Lake, die Qualitätsdaten
enthalten, und kann diese nun explorieren.

Zur Beurteilung der Datenherkunft (engl. data provenance) und der Datenqualität sind
diverse Metadaten erforderlich. Es geht beispielsweise um Details zu den Quellsystemen
der Daten, zu erfolgten Transformationsprozessen sowie um Datenprofile, z.B. Wertevertei-
lungen und Statistiken. Metadaten zur Herkunft und Qualität der Daten sind ein kritischer
Erfolgsfaktor, um eine zuverlässige und vertrauenswürdige Nutzung der Daten im Data Lake
zu ermöglichen. Der Prozessingenieur untersucht beispielsweise anhand von Metadaten,
ob ein Teil der MES-Daten aus einem produktiven MES oder einem Testsystem stammt.
Zudem prüft er, welche Transformationen der Daten im Data Lake vorgenommen werden,
da die MES-Daten bereits als vorverarbeitete aggregierte Tabellen zur Verfügung gestellt
werden. Darüber hinaus beurteilt der Prozessingenieur die Sensordaten hinsichtlich ihrer
Datenqualität anhand des Anteils fehlender Sensorwerte.

Zur Daten- und Ergebnisinterpretation sind insbesondere Details zur fachlichen Bedeutung
der Daten relevant. Es geht beispielsweise um die Bedeutung betriebswirtschaftlicher
Kennzahlen, die Abgrenzung von Fachbegriffen im Rahmen von Glossaren und die Struktur
von Aggregationshierarchien. All diese Details stellen zentrale Metadaten zur Dateninterpre-
tation dar und können sich auch auf Analyseergebnisse, wie z.B. Dashboards und Berichte
beziehen. Zur Auswertung der MES-Daten benötigt der Prozessingenieur beispielsweise
Angaben zur fachlichen Bedeutung einzelner Attribute der Tabellen, da diese keine sprechen-
den Namen, sondern nur technische Kürzel enthalten. Außerdem fügt der Prozessingenieur
neue Tabellen in der relationalen Datenbank des Data Lake hinzu, um die Sensordaten mit
den MES-Daten zu integrieren und zu bereinigen. Diese Tabellen enthalten auch berechnete
Kennzahlen auf der Basis von MES- und Sensordaten, die in einem Dashboard grafisch
veranschaulicht werden. Die fachliche Bedeutung dieser Kennzahlen dokumentiert der
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Prozessingenieur anhand von Metadaten und kennzeichnet die neu erstellten Tabellen und
das Dashboard mittels Metadaten, um die Ergebnisse wiederauffindbar zu machen und
zukünftige Qualitätsanalyen damit zu unterstützen.

Alles in allem geht es beim Metadatenmanagement zur Unterstützung von Self-Service-
Szenarien sowohl um eine ganzheitliche Verwaltung und Bereitstellung der Metadaten für
Fachanwender entlang des gesamten Datenaufbereitungs- und Analyseprozesses als auch
darum, zusätzliche Metadaten durch Fachanwender zu erfassen und wiederverwendbar zu
machen.

3.2 Unterstützung von Governance

Mit zunehmender Nutzung des Data Lake gewinnen organisatorische und technische Rege-
lungsanforderungen, d.h. Governance-Anforderungen, im Industriekonzern an Bedeutung.
Diese werden allgemein auch unter dem Stichwort Data Governance [KB10] diskutiert.

Zum einen geht es darum, die regel- und gesetzeskonforme Nutzung des Data Lake
(engl. compliance) sicherzustellen. Ein wesentlicher Faktor sind Anforderungen aus der EU-
Datenschutz-Grundverordnung (DSGVO) [Eu16], die eine transparente und zweckgebundene
Verarbeitung personenbezogener Daten vorschreibt und nachweispflichtig macht. Dies
erfordert eine umfassende und ständig aktuell gehaltene Metadatendokumentation über
sämtliche Batch- und Streaming-Komponenten im Data Lake. Es geht insbesondere darum,
sämtliche Datenbereiche mit personenbezogene Daten im Data Lake zu inventarisieren,
also beispielsweise alle relevanten Schemata und Tabellen, Verzeichnisstrukturen und
Message Queues. Ein praktisches Anwendungsbeispiel sind Anforderungen von Kunden zur
Löschung ihrer personenbezogenen Daten, z.B. Adressdaten oder Produktnutzungsdaten,
die mittels entsprechender Metadaten im Data Lake effektiv umgesetzt werden können.

Ein weiterer Faktor sind Regelungsanforderungen, die sich aus der digitalen Transformation
des Industriekonzerns ergeben. Daten sind ein zentraler Wertgegenstand (engl. asset) im
datengetriebenen Unternehmen und erfordern ein systematisches Datenqualitätsmanage-
ment sowie organisatorische Verantwortlichkeiten und Prozesse. Es geht insbesondere um
unternehmensinterne Regelungen für Dateneigentum und -nutzung, um beispielsweise zu
dokumentieren, welche Geschäftsdivisionen des Industriekonzerns welche Daten im unter-
nehmensweiten Data Lake bereitstellen und verantworten. Hierbei sind auch umfassende
Details zur Datenherkunft relevant. Sämtliche Informationen rund um die Herkunft, Qualität
und um die organisatorischen Verantwortlichkeiten der Daten sind Metadaten im Data Lake,
die systematisch verwaltet werden müssen.

Zum anderen geht es bei Governance-Anforderungen darum, einen effizienten technischen
Betrieb des Data Lake zu gewährleisten. Der im Industriekonzern verfolgte Cross-Plattform-
Ansatz mit seiner Vielzahl an Datenhaltungssystemen bedingt Datenredundanzen im Data
Lake, die systematisch verwaltet und transparent gemacht werden müssen, um Inkonsistenzen
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zu vermeiden und die Speicherkosten im Data Lake zu optimieren. Datenredundanzen
entstehen beispielsweise bei der kombinierten Analyse von Stammdaten zu Maschinen und
Produkten mit Sensordaten. Die Stammdaten werden im Data Lake des Industriekonzerns
meist in relationalen Datenbaken gehalten, wohingegen die Sensordaten in dokumenten- oder
spaltenorientierten Datenbanken abgelegt sind. Zur kombinierten Analyse werden die Daten
in einer Datenbank zusammengeführt, um darauf z.B. Data-Mining-Verfahren anzuwenden.
Die daraus resultierenden Redundanzen sind zu dokumentieren. Darüber hinaus sind für
einen effizienten Betrieb des Data Lake effiziente Änderungsprozesse bei Änderungen
der Quellsysteme wesentlich. Änderungen bei den Quellsystemen des Data Lake ergeben
sich beispielsweise durch Systemkonsolidierungen oder Softwareaktualisierungen. Diese
Änderungen müssen im Data Lake nachvollzogen werden, um z.B. Transformationsprozesse
anzupassen und die Datenbereitstellung im Data Lake aufrecht zu erhalten. Die aufgeführte
Transparenz über Datenredundanzen sowie über Auswirkungen von Quellsystemänderungen
basiert auf entsprechenden Metadaten zu Datenbereichen sowie Quellsystemen des Data
Lake, die es zu verwalten gilt.

Summa summarum stellt ein ganzheitliches Metadatenmanagement im Data Lake ein
zentrales Instrument zur Umsetzung verschiedenster Governance-Anforderungen dar und ist
deswegen in der industriellen Praxis meist Teil umfangreicher Data-Governance-Projekte.

4 Heterogene Metadaten im Kontext von Data Lakes

In der Literatur werden unterschiedliche allgemeine Klassifikationen für Metadaten in
analytischen IT-Systemen beschrieben, insbesondere aktive und passive Metadaten sowie
technische und betriebswirtschaftliche Metadaten [KBM10]. Diese Klassifikationen erfassen
allerdings nur einen Teil der im Praxisbeispiel relevanten Metadaten. Auf der Basis der im
Industriekonzern durchgeführten Workshops zum Metadatenmanagement lassen sich die in
Abb. 3 dargestellten Arten von Metadaten im Data-Lake-Kontext ableiten, die nachfolgend
beschrieben und diskutiert werden.
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Abb. 3: Metadaten im Kontext von Data Lakes
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• Originäre Data-Lake-Metadaten sind Metadaten über die im Data Lake gespeicherten
Daten, z.B. Daten in relationalen Datenbanken und Message-Queues des Data
Lake. Für originäre Data-Lake-Metadaten hat sich in der industriellen Praxis die
Unterscheidung in technische, fachliche und operative Metadaten etabliert [He17]:
– Technische Metadaten beziehen sich auf sämtliche technisch-strukturellen

Aspekte der Daten sowie der zugrundeliegenden Datenhaltungssysteme im
Data Lake, wie z.B. Tabellenstrukturen, Attributnamen, Wertelisten und Zu-
griffsrechte.

– Fachliche Metadaten beschreiben inhaltliche Bedeutungen und Zusammen-
hänge der Daten. Dazu gehören beispielsweise Begriffsabgrenzungen, Kenn-
zahlendefinitionen, organisatorische Verantwortlichkeiten und konzeptionelle
Datenmodelle.

– Operative Metadaten umfassen technische Details zu Datentransformationen
und Datenzugriffen, z.B. Informationen über ETL-Jobs, Quellsysteme und
Zugriffsmuster.

• Ergebnis-Metadaten stellen Metadaten zu erzeugten Analyseergebnissen, wie z.B.
Kennzahlenberichte, Dashboards und Data-Mining-Modelle, dar. Es geht sowohl um
Angaben zum Erstellungsprozess der Analyseergebnisse, z.B. verwendete Parameter-
werte von Data-Mining-Algorithmen, als auch um Interpretationen der Analyseergeb-
nisse, z.B. die Kennzeichnung bestimmter Knoten in einem Entscheidungsbaum.

• IoT-Geräte-Metadaten sind Metadaten über Geräte im Internet der Dinge, wie z.B.
Smart-Home-Geräte oder intelligente Fertigungsmaschinen, die Datenquellen für
den Data Lake darstellen. IoT-Geräte-Metadaten umfassen Daten zur Einbindung,
Verwaltung und Steuerung von IoT-Geräten, beispielsweise ID, Typ, Status und
Hersteller eines IoT-Geräts. IoT-Geräte-Metadaten sind folglich von Metadaten über
die von IoT-Geräten bereitgestellten Sensordaten, z.B. Datentypen von Sensorwerten,
zu unterscheiden. Metadaten über Sensordaten von IoT-Geräten, die im Data Lake
verarbeitet werden, werden als originäre Data-Lake-Metadaten betrachtet.

• Data-Lake-API-Metadaten sind Metadaten zu den vom Data Lake bereitgestellten
Programmierschnittstellen (engl. application programming interface (API)). Diese
ermöglichen einen programmatischen Zugriff auf Daten im Data Lake, typischerweise
mittels Representational State Transfer (REST). Data-Lake-API-Metadaten umfassen
beispielsweise Angaben zu Methoden und Parametern einer API.

Den Kern für das Metadatenmanagement im Data Lake bilden originäre Data-Lake-
Metadaten sowie Ergebnis-Metadaten. Ergebnis-Metadaten werden häufig in separaten
Analysewerkzeugen, z.B. Data-Mining-Werkzeugen oder Business-Intelligence-Werkzeugen,
erzeugt und verwaltet. Wenn Analyseergebnisse wiederum als Daten im Data Lake gespei-
chert werden, indem beispielsweise Data-Mining-Modelle als Dateien im Predictive-Model-
Markup-Language-Format (PMML-Format) im Data Lake abgelegt werden, verschwimmen
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die Grenzen zwischen originären Data-Lake-Metadaten und Ergebnis-Metadaten. Eine
integrierte Betrachtung dieser Metadaten ist folglich sinnvoll.

Da Data-Lake-APIs den Zugriff auf Daten im Data Lake ermöglichen, ist eine Verknüp-
fung von Data-Lake-API-Metadaten mit originären Data-Lake-Metadaten sowie Ergebnis-
Metadaten vielversprechend. Die Rückgabewerte einer API-Methode können beispielsweise
direkt auf fachliche Metadaten der zurückgelieferten Daten verweisen, um die gezielte
Verwendung der Daten zu unterstützen.

IoT-Geräte stellen zwar nur eine von mehreren Arten von Quellsystemen des Data Lake
dar. Der Unterschied zu traditionellen Quellsystemen wie relationalen Datenbanksystemen
besteht aus Data-Lake-Sicht jedoch darin, dass zur effektiven Analyse von Sensordaten von
IoT-Geräten häufig IoT-Geräte-Metadaten erforderlich sind. Beispielsweise sind zur Analyse
von Sensordaten einer Messstation einer Fertigungslinie Angaben zur Positionierung der
Messstation an der Fertigungslinie sowie zum aktuellen Software-Stand der Messstation
erforderlich.

Summa summarum sind Metadaten im Data-Lake-Kontext sehr heterogen und stark
unterschiedlich hinsichtlich Struktur, erzeugenden Systemen und Verwendungszwecken.
Hinzukommt, dass Metadaten auch analytisch gewonnen werden und selbst wiederum
Quelldaten für weitere Analysen darstellen. Ein typischer Anwendungsfall im betrachteten
Industriekonzern ist beispielsweise die analytische Gewinnung von Metadaten zu Videos aus
autonomen Fahrzeugen. Diese Metadaten stellen wiederum die Grundlage für Dashboards
und Berichte zur Auswertung des Fahrverhaltens dar.

5 IT-Werkzeuge zur praktischen Umsetzung des Metadatenmanage-
ments im Data Lake

Die Umsetzung eines ganzheitlichen Metadatenmanagements im Data Lake erfordert eine
integrierte Betrachtung sämtlicher in Kapitel 4 aufgeführter Arten von Metadaten zur Adres-
sierung der in Kapitel 3 beschriebenen Kernanforderungen um Self-Service und Governance.
Das Metadatenmanagement im Data Lake ist damit deutlich umfangreicher und komplexer
als das Metadatenmanagement im klassischen Data Warehouse, das hauptsächlich Metadaten
zu strukturierten transaktionalen Unternehmensdaten umfasst. Diese Komplexität spiegelt
sich auch im Markt für IT-Werkzeuge für das Metadatenmanagement im Data Lake wieder.
Der Markt ist sehr heterogen und entwickelt sich sehr dynamisch, da verschiedene Hersteller
unterschiedlich ausgerichtete Produkte anbieten und meist ähnliche Funktionalitäten unter
verschiedenen, marketinglastigen Begrifflichkeiten referenziert werden.

Als Ausgangspunkt für die praktische Umsetzung im Industriekonzern wurde deswegen
eine umfangreiche Softwarestudie durchgeführt. In diesem Rahmen werden produktunab-
hängige Arten von Werkzeugen für das Metadatenmanagement im Data Lake definiert,
die als Strukturierungselemente für die Marktanalyse dienen. Darüber hinaus werden
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Bewertungskriterien entwickelt, die sich aus den dargestellten Kernanforderungen für das
Metadatenmanagement sowie den relevanten Arten an Metadaten ableiten. Anhand dieser
Kriterien wird anschließend die Eignung der Werkzeugarten für das Metadatenmanagement
im Data Lake analysiert. Im Folgenden werden die im Rahmen der Studie identifizierten
Arten an IT-Werkzeugen für das Metadatenmanagement im Data Lake vorgestellt (siehe
Kapitel 5.1), um anschließend deren Eignung zu diskutieren (siehe Kapitel 5.2). Anzumer-
ken ist, dass aus Vertraulichkeitsgründen nicht näher auf einzelne Produkte bestimmter
Hersteller eingegangen werden kann.

5.1 Werkzeugarten: Datenverzeichnisse, Datenkataloge und Data-Lake-Management-
Plattformen

Im Rahmen der Studie werden ausschließlich produktiv einsetzbare Werkzeuge, sowohl auf
Open-Source- als auch auf Closed-Source-Basis, analysiert. Forschungsprototypen werden
nicht einbezogen, da sie sich nicht für den Aufbau einer praxistauglichen Lösung eignen.
Die Analyse ergibt drei Arten von Werkzeugen für das Metadatenmanagement im Data
Lake, die den Markt repräsentieren: systemintegrierte Datenverzeichnisse, Datenkataloge
sowie Data-Lake-Management-Plattformen (siehe Abb. 4).

Systemintegrierte 
Datenverzeichnisse

• Erfassung, Speicherung und 
Bereitstellung von Metadaten 
innerhalb eines Systems

• Schwerpunkt auf technischen 
und operativen Metadaten

Datenkataloge

• Eigenständige 
Spezialwerkzeuge für das 
Metadatenmanagement

• Erfassung, Speicherung, 
Bereitstellung und Analyse 
von originären Data-Lake-
Metadaten sowie von 
Ergebnismetadaten

Data-Lake-Management-
Plattformen 

• Werkzeug-Suiten aus 
Datenkatalog und weiteren 
Datenmanagement-
Funktionalitäten

• Zusätzliche Verwaltung von 
Data-Lake-API-Metadaten

Abb. 4: Arten von IT-Werkzeugen für das Metadatenmanagement im Data Lake

Systemintegrierte Datenverzeichnisse (engl. data dictionary) [KE06] sind in einem Daten-
haltungssystem integriert und dienen der Erfassung, Speicherung und Bereitstellung von
Metadaten innerhalb dieses Systems. Der Schwerpunkt liegt auf technischen und operativen
Metadaten. Typische Beispiele sind Datenverzeichnisse in relationalen Datenbanksyste-
men, die z.B. Details zu Schemata, Tabellen und Attributen enthalten. Im Hadoop- und
NoSQL-Kontext haben sich nach diesem Vorbild ähnliche Ansätze etabliert, wie z.B. der
Hive Metastore als Datenverzeichnis für Apache Hive [Ap18a].

Datenkataloge (engl. data catalog) [Sh18] stellen eigenständige Spezialwerkzeuge für das
Metadatenmanagement unabhängig von einem spezifischen Datenhaltungssystem dar. Sie
ermöglichen die Erfassung, Speicherung, Bereitstellung sowie die Analyse von technischen,
fachlichen und operativen Metadaten sowie von Ergebnismetadaten. Dabei unterstützen sie
meist eine Vielzahl an Datenhaltungssystemen zur Metadaten-Erfassung, von relationalen
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Datenbanken über NoSQL-Datenbanken bis zu Datenhaltungssystemen aus dem Hadoop-
Kontext. Datenkataloge basieren auf einem Metadaten-Repository und bieten typischerweise
Funktionen zur systemübergreifenden Analyse des Datenverlaufs (engl. data lineage) und
der Datenqualität sowie zur fachlichen Klassifikation von Metadaten, beispielsweise mittels
Tagging und Glossaren. Es werden darüber hinaus auch Kollaborationsfunktionen zur
Einbindung der Endbenutzer bei der Anreichung und Nutzung von Metadaten angeboten,
z.B. durch Bewertungs- und Kommentarfunktionen. Beispielshafte Werkzeuge dieser Art
sind Waterline Smart Data Catalog [Wa18], Informatica Enterprise Data Catalog [In18]
und Collibra Catalog [Co18]. Auch Datenkataloge wie Apache Atlas [Ap18b], die auf
unterschiedliche Datenhaltungssysteme im Hadoop-Kontext fokussieren, gehören zu dieser
Art.

Data-Lake-Management-Plattformen stellen Werkzeugen-Suiten dar, die auf der Basis
eines Datenkatalogs weitere Funktionalitäten für das Datenmanagement im Data Lake
integrieren. Typischerweise geht es um ergänzende Funktionalitäten für ETL, Self-Service-
Data-Preparation und Datenföderation (engl. data federation), die eng mit dem Datenkatalog
integriert sind. Beispielsweise werden Metadaten zu Datentransformationen in ETL-Jobs
direkt im Datenkatalog abgelegt. Data-Lake-Management-Plattformen unterstützen häufig
auch die Definition von APIs zum Zugriff auf Daten im Data Lake und ermöglichen
damit zusätzlich die Verwaltung von Data-Lake-API-Metadaten. Beispielhafte Data-Lake-
Management-Plattformen sind Kylo [Te18] und Iguazio [Ig18].

5.2 Bewertung

Um die Eignung der Werkzeugarten für ein ganzheitliches Metadatenmanagement im Data
Lake zu bewerten, werden die folgenden grundlegenden Kriterien definiert, die aus den
Kernanforderungen (siehe Kapitel 3) sowie den unterschiedlichen Arten von Metadaten
(siehe Kapitel 4) abgeleitet werden:

• Die systemübergreifende Metadaten-Verwaltung bezieht sich darauf, dass Metadaten
über unterschiedliche Datenhaltungssysteme im Data Lake hinweg gemäß des Cross-
Plattform-Ansatzes (siehe Kapitel 2) zu verwalten sind.

• Der offene Metadaten-Austausch bezieht sich auf standardisierte technische Schnitt-
stellen zum Zugriff auf sowie zum Import und Export von Metadaten, um eine
Metadaten-Nutzung in anderen Systemen zu ermöglichen.

• Die unterstützten Metadaten-Arten umfassen sämtliche Metadaten für ein ganz-
heitliches Metadatenmanagement, d.h. originäre Data-Lake-Metadaten, Ergebnis-
Metadaten, IoT-Geräte-Metadaten und Data-Lake-API-Metadaten (siehe Kapitel
4).

• Der Funktionsumfang zur Metadaten-Verwaltung bezieht sich auf grundlegende
Funktionalitäten zur Verarbeitung von Metadaten. Hierbei werden die Speicherung

446 Christoph Gröger, Eva Hoos



Ganzheitliches Metadatenmanagement im Data Lake 13

und Bereitstellung von Metadaten, Datenverlaufsanalysen sowie metadatenbasierte
Mehrwertfunktionen, z.B. zur automatisierten Erkennung personenbezogener Daten
für DSGVO-Szenarien, unterschieden.

Wie in Tab. 1 dargestellt, fokussieren systemintegrierte Datenverzeichnisse auf die da-
tenhaltungsinterne Speicherung und Bereitstellung von originären Data-Lake-Metadaten
und bieten typischerweise keine standardisierten Schnittstellen für den offenen Metadaten-
Austausch. Dementsprechend dienen systemintegrierte Datenverzeichnisse der im Data Lake
verwendeten Datenhaltungssysteme zwar als Quellen für Metadaten, eigenen sich aber nicht
als eigentliche Werkzeuge zur Realisierung eines ganzheitlichen Metadatenmanagements
im Data Lake.

Systemintegrierte Data-Lake-
Kriterien / Werkzeugarten Daten- Datenkataloge Management-

verzeichnisse Plattformen
Systemübergreifende
Metadaten-Verwaltung - + +

Offener Metadaten-Austausch - + +

Unterstützte Metadaten-Arten
Originäre Data-Lake-Metadaten + + +
Ergebnis-Metadaten - + +
IoT-Geräte-Metadaten - - -
Data-Lake-API-Metadaten - - +

Funktionsumfang zur
Metadaten-Verwaltung
Metadaten-Speicherung/-Bereitstellung + + +
Datenverlaufsanalyse - + +
Mehrwertfunktionen (DSGVO, ...) - + -

Tab. 1: Bewertung der Werkzeugarten für ein ganzheitliches Metadatenmanagement

Datenkataloge ermöglichen als eigenständige Werkzeuge eine systemübergreifende
Metadaten-Verwaltung und unterstützen mit standardisierten Schnittstellen, meist APIs,
einen offenen Metadaten-Austausch. Der Funktionsumfang zur Metadaten-Verwaltung ist
im Vergleich zu den anderen Werkzeugarten sehr ausgeprägt. Sie bieten Kollaborations-
funktionen, um den Endbenutzer im Rahmen von Self-Service-Szenarien einzubinden,
und adressieren Governance-Anforderungen, um z.B. mittels Workflowfunktionen eine
hohe, kontrollierte Qualität der Metadaten sicherzustellen. Darüber hinaus werden häufig
metadatenbasierte Mehrwertfunktionen zur Erkennung personenbezogener Daten angeboten.

Data-Lake-Management-Plattformen stellen eine relativ neue Werkzeugart am Markt dar.
Der Funktionsumfang zur Metadaten-Verwaltung der Data-Lake-Management-Plattformen
orientiert sich an dem von Datenkatalogen, weist aber aktuell nicht denselben Reifegrad und

Ganzheitliches Metadatenmanagement im Data Lake 447



14 Christoph Gröger, Eva Hoos

dieselbe Breite auf, insbesondere was metadatenbasierte Mehrwertfunktionen angeht. Ein
Vorteil im Vergleich zu Datenkatalogen besteht jedoch in der integrierten Verwaltung von
Data-Lake-API-Metadaten. Diese müssen bei der Verwendung von Datenkatalogen über
entsprechende Schnittstellen für die Metadaten-Bereitstellung manuell gepflegt werden.

Summa summarum stellen Datenkataloge grundsätzlich die geeignete Werkzeugart zur
praktischen Umsetzung eines ganzheitlichen Metadatenmanagements im Data Lake dar. Die
Studienergebnisse weisen jedoch auf funktionale Unzulänglichkeiten und Erweiterungspo-
tentiale von Datenkatalogen hin. Diese werden als Herausforderungen im folgenden Kapitel
zusammengefasst.

6 Praktische Herausforderungen und Forschungsbedarfe

Ausgehend von den bisherigen Erfahrungen zum Aufbau eines ganzheitlichen Metadaten-
managements für den unternehmensweiten Data Lake des Industriekonzerns lassen sich
IT-technische und fachlich-organisatorische Herausforderungen ableiten und zugehörige
Forschungsbedarfe identifizieren (siehe Abb. 5).

Ganzheitliche Werkzeug-
unterstützung für ein ganzheitliches 
Metadatenmanagement

IT-technische
Herausforderung

Fachlich-organisatorische 
Herausforderung 

Integration heterogener 
Anspruchsgruppen rund um IT, 
Data-Governance-Verantwortliche
und Data-Scientist-Teams 

Abb. 5: Herausforderungen für ein ganzheitliches Metadatenmanagement im Data Lake

Die wesentliche IT-technische Herausforderung besteht darin, eine ganzheitliche Werkzeug-
unterstützung für ein ganzheitliches Metadatenmanagement zu realisieren. Hierbei geht es
insbesondere darum, Unzulänglichkeiten existierender Datenkataloge zu adressieren, wobei
folgende Aspekte eine zentrale Rolle spielen:

• Datengetriebene Analyse des Datenverlaufs: Die Analyse des Datenverlaufs, d.h.
von Zusammenhängen zwischen Metadaten, erfolgt in existierenden Datenkatalogen
größtenteils modellgetrieben, d.h. durch die Nutzung gegebener Modelle zu Metadaten
und deren Zusammenhängen. Dies wird typischerweise durch das Auslesen von
Metadaten aus ETL-Jobs realisiert. Im Rahmen von Self-Service-Szenarien stehen
jedoch meist keine umfassenden Modelle zum Datenverlauf aus ETL-Werkzeugen zur
Verfügung, da sich der Datenverlauf aus manuellen, iterativen Datentransformationen
durch den Endbenutzer ergibt. Es geht folglich darum, Metadaten-Zusammenhänge
datengetrieben zu erfassen und zu analysieren. Denkbar wäre beispielsweise, Data-
Mining-Verfahren auf relationale Tabellenstrukturen anzuwenden, um mögliche
Beziehungen und Ähnlichkeiten zwischen den Tabellen zu erkennen. In existierenden
Datenkatalogen ist die datengetriebene Analyse von Metadaten-Zusammenhängen
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noch sehr rudimentär ausgeprägt und basiert häufig auf Zeitstempeln und existierenden
relationalen Beziehungen.

• Metadaten-Erfassung von Streaming-Komponenten: Der Fokus existierender Datenka-
taloge liegt auf der Erfassung von Metadaten aus Batch-Datenhaltungssystemen, z.B.
durch die Anbindung von systemintegrierten Datenverzeichnissen relationaler Daten-
banken. Die Unterstützung der Metadaten-Erfassung von Streaming-Komponenten,
wie z.B. Apache Kafka, ist bei aktuell verfügbaren Datenkatalogen wenig ausgeprägt.
Für einen spezifischen Datenkatalog muss typischerweise ein eigener Adapter für
jede Streaming-Komponente entwickelt werden. Streaming-Komponenten sind in
Data Lakes für die echtzeitnahe Datenverarbeitung jedoch von großer Bedeutung
[Ma17]. Für ein ganzheitliches Metadatenmanagement ist eine integrierte Verwal-
tung von Metadaten über Batch- und Streaming-Komponenten erforderlich, d.h. der
(Batch-)Datenkatalog ist um einen Ereigniskatalog mit Metadaten zu Ereignisströ-
men (engl. event stream) zu ergänzen. Damit können beispielsweise ganzheitliche
Analysen des Datenverlaufs über Batch- und Streaming-Komponenten, z.B. für
DSGVO-Nachweispflichten, durchgeführt werden.

• Integration von IoT-Geräte-Metadaten und Data-Lake-API-Metadaten: IoT-Geräte-
Metadaten sowie Data-Lake-API-Metadaten werden von existierenden Datenka-
talogen typischerweise nicht betrachtet. Meist werden IoT-Geräte-Metadaten in
dedizierten IoT-Gerätemanagement-Anwendungen verwaltet. Ein ganzheitliches
Metadaten-Management erfordert dementsprechend eine integrierte Verwaltung
von IoT-Geräte-Metadaten und Data-Lake-API-Metadaten gemeinsam mit originären
Data-Lake-Metadaten und Ergebnis-Metadaten.

Die wesentliche fachlich-organisatorische Herausforderung für ein ganzheitliches Meta-
datenmanagement besteht darin, die heterogenen Anspruchsgruppen (engl. stakeholder)
rund um IT, Data-Governance-Verantwortliche und Data-Scientist-Teams zu integrieren,
um eine erfolgreiche Umsetzung des Metadatenmanagements als Gesamtprojekt sicherzu-
stellen. Data-Governance-Verantwortliche sind in der industriellen Praxis ein wesentlicher
Initiator für das Metadatenmanagement, sowohl in analytischen als auch in operativen
IT-Systemen, und definieren zentrale Anforderungen für das Metadatenmanagement. Es
werden beispielsweise Rollen, Prozesse und Verantwortlichkeiten für Dateneigentum und
Datennutzung im Rahmen von Data-Governance-Projekten festgelegt, die im Datenkatalog
abzubilden sind. Data Scientists sind in der Praxis meist als unternehmensübergreifende
Expertenteams organisiert, die stark self-service-orientiert arbeiten, um Anwendungsfälle
schnell umzusetzen [Gr18]. Sie stellen damit eine wesentliche Anspruchs- und Endbenutzer-
gruppe für den Datenkatalog dar. In der Praxis liegt meist eine organisatorische Trennung
der IT, die für die Konfiguration und den Betrieb des Datenkatalogs verantwortlich ist,
Data-Governance-Verantwortlichen in Fachabteilungen sowie Data Scientist-Teams vor, was
zu unterschiedlichen funktionalen Zielsetzungen führt. Die IT fokussiert auf den effizienten
und sicheren Betrieb des Datenkatalogs, Data Scientists sind an möglichst weitreichenden
kollaborationsgetriebenen Self-Service-Funktionalitäten interessiert, wohingegen Data-
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Governance-Verantwortliche meist Transparenz und regelgetriebene Strukturen bevorzugen.
Zur zielgerichteten Umsetzung des Metadatenmanagements ist folglich eine kontinuierli-
che Einbeziehung und Harmonisierung dieser Anspruchsgruppen, d.h. ein systematisches
Stakeholder-Management, erforderlich.

7 Fazit

Die in dieser Arbeit diskutierten Praxiserfahrungen machen deutlich, dass ein ganzheitliches
Metadatenmanagement im Data Lake einen zentralen Erfolgsfaktor für die Umsetzung von
Governance-Anforderungen und Self-Service-Szenarien im Data Lake darstellt. Gleichzeitig
wird deutlich, dass die Anforderungen an ein ganzheitliches Metadatenmanagement sowohl
IT-technisch als auch fachlich-organisatorisch sehr komplex sind. Heterogene Metadaten
sind über heterogene Datenhaltungssysteme im Data Lake systematisch zu verwalten und
organisatorisch getrennte Anspruchsgruppen mit unterschiedlichen Zielsetzungen – IT, Data
Scientists und Data-Governance-Verantwortliche – sind für eine erfolgreiche Umsetzung
konstruktiv einzubeziehen. Zukünftige Forschungsbedarfe ergeben sich insbesondere aus
einer ganzheitlichen Werkzeugunterstützung für das Metadatenmanagement im Data Lake,
bei der die integrierte Verwaltung von Metadaten aus Batch- und Streaming-Komponenten
sowie die datengetriebene Gewinnung von Metadaten über den Datenverlauf im Vordergrund
stehen.
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Abstract:

The IBM Db2 Analytics Accelerator (IDAA) is a state-of-the art hybrid database system that seamlessly
extends the strong transactional capabilities of Db2 for z/OS (Db2z) with very fast column-store
processing in Db2 Database for Linux, Unix, and Windows. IDAA maintains a copy of the data from
Db2z in its backend database. The data can be synchronized in batch with a granularity of table
partitions, or incrementally using replication technology for individual rows.

In this paper we present the enablement of combining the batch loading of a true subset of a table’s
partitions for replicated tables. The primary goal for such an integration is to ensure data consistency.
A specific challenge is that no duplicated rows stemming from the two data transfer paths come into
existence. We present a robust and yet simple approach that is based on IDAA’s implementation of
multi-version concurrency control.

1 Introduction

The IBM® Db2® Analytics Accelerator for z/OS (IDAA, cf. Fig. 1) [Pa15] is an extension
for IBM’s® Db2® for z/OS® database system (Db2z) [IB18]. Its primary objective is the
extremely fast execution of complex, analytical queries on a snapshot of the data copied
from Db2z. Many customer installations have proven that the combination of Db2z with a
seamlessly integrated IDAA delivers an environment where both, transactional workload and
analytical queries, are supported without negatively impacting existing and new applications.
In fact, many new use cases and applications have been developed specifically because of
the existence of IDAA and the performance it delivers on core business data. The achieved
query acceleration for analytical workloads is at least an order of magnitude, often even
exceeding that.

After the initial version of IDAA became available in 2011, functional enhancements were
continuously added to expand the product’s scope. Fine-granular data synchronization
mechanisms, like partial reload and incremental update, were among the first enhancements.
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Fig. 1: System Overview of the IBM Db2 Analytics Accelerator for z/OS (IDAA)

Partial reload allows batch reloading of a subset of the table on a granularity of horizontal
partitions. A table can be partitioned either by-range or by-growth. Contrary to that,
incremental update operates on individual rows. It reads the transaction log of Db2 to detect
data changes and replicates those to IDAA’s backend database system.

Starting with IDAA Version 6, a strategic business decision heavily influenced IDAA and
basically led to a new product: the backend database system changed to IBM Db2 Database2
(for Linux, UNIX, Windows platforms) [IB16]. Db2 LUW does not provide multi-version
concurrency control (MVCC) and snapshot semantics as Netezza [Fr11] did. In this paper,
we present our work to implement MVCC on top of Db2 LUW. We developed a mechanism
to allow Incremental Update to operate most efficiently, while allowing partial reload on
such tables as well. The interaction of both data synchronization processes posed several
challenges, and the solution to them is explained.

The remainder of the paper is structured as follows. The architecture of the IBM Db2
Analytics Accelerator is briefly touched on in section 2, including the simulation of MVCC
in that environment. IBM’s Change Data Capture (CDC) [Be12] is being employed as
replication technology to detect and extract data changes in Db2z and apply them to IDAA’s
backend database. Section 3 outlines how CDC deals with IDAA’s MVCC setup. How we
bring CDC and partial reload together is explained in section 4. Finally, the paper concludes
with a summary in section 5.

2 IBM Db2 Database for Linux, UNIX, and Windows is called Db2 LUW henceforth.
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2 IBM Db2 Analytics Accelerator

The IBM Db2 Analytics Accelerator (IDAA) [Pa15] is a hybrid system, which uses Db2®

for z/OS® [IB18] for transactional workload with excellent performance characteristics,
proven time and again in many customer scenarios. A copy of the Db2z data resides in the
accelerator, which deals with analytical workload in an extremely high-performing way.

The benefits of this system are a reduced complexity of the necessary IT infrastructure on
customer sites for executing both types of workloads and its tight integration into the existing
Db2z system, which results in overall cost reductions for customers. A single system is used
and not a whole zoo of heterogenous platforms needs to be operated and maintained.3 Aside
from the system management aspects, existing investments into a business’ applications is
protected, which is crucial for companies of a certain size. With IDAA, existing applications
can continue to use Db2z unchanged. At the same time, the analytics capabilities of IDAA
can be exploited without any (or just with minuscule) changes.

IDAA provides the data storage and SQL processing capabilities for large amounts of
data. Fig. 1 already showed the high-level architecture. Key is the seamless integration of
all components with Db2z to leverage the appliance as analytical backend. Db2z is the
central entry point for queries and administrative functions. Its optimizer decides whether
to execute queries locally in Db2z – or to route them to the accelerator. In the second case,
a new SQL statement in the dialect of Db2 LUW will be generated by Db2z and sent to
the Accelerator Server, which passes it on to Db2 LUW for execution. Db2 LUW itself
optimizes the statement and executes it on its own copy of the data. The copy is created (and
maintained) by the admin stored procedures (running in Db2z) that are provided as part of
the IDAA solution. Thus, the interface for customers to work with IDAA is Db2z only.

2.1 Data Replication Strategies

IDAA offers three options for refreshing the data that has been shadow-copied from Db2z.
Entire tables or individual table partitions can be refreshed in the accelerator batch-wise.
The latter is called partial reload. Fig. 2 and 3 illustrate both batch-loading scenarios
conceptually. The Db2z table is on the left side, and the IDAA table on the right. The sketch
above the arrow shows which pieces of the Db2z table are copied to the IDAA table.

For tables having a higher update frequency and where a high data concurrency is desired,
the Incremental Update feature (cf. Fig. 4) is suitable. This feature uses IBM® InfoSphere®

Change Data Capture (CDC) [IB13a, Be12], which reads Db2z transaction logs and extracts
all changes to accelerated Db2z tables. Unlike the batch-load strategies, CDC replicates
only changed rows while unchanged data is not affected. A draw-back is the dependency

3 Other systems like [KN11] may also provide an integrated solution. However, customers have made significant
investments over the past decades into Db2z and applications on top of it. That’s why IDAA has been developed
as an enhancement of that platform right from the start.
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Fig. 3: Partial Reload

on the transaction log: any data maintenance operation that bypasses the log cannot be
replicated. For example, batch-loading data into Db2z is often done using the LOAD utility,
which does not log.

incremental 
update

...Col BCol A...Col BCol A
...Col BCol A

Fig. 4: Refreshing Table Data with Incremental Update

The batch-load strategies into IDAA offer great throughputs but require to copy large
data volumes and, hence, are high-latency operations. The incremental update strategy
replicates lower data volumes with larger overheads per tuple, but with low latency. It is
the responsibility of the database user/administrator to trigger the refresh of the data in
each accelerator or to set up incremental update where appropriate [IB13b]. Since many
customers have tens of thousands of tables in Db2z and also in IDAA, it is important to
understand query access patterns to the individual tables and analyzing the accelerated
workload with the help of monitoring tools.

2.2 Simulating Multi-Version Concurrency Control using Views

Multi-version concurrency control (MVCC) [WV02] is a well-known means in database
systems to enable highly parallel data access for read-only and read/write operations. The
basic idea is to not apply data modifications in-place but rather to create a new version of
the row on every such modification. The old row versions are still available for concurrently
running transactions. The following Fig. 5 illustrates the physical storage of such rows. The
arrows indicate the chain of versions that is created for a sample Row 1.

Each INSERT operation produces a new row, of course. But also each UPDATE effectively
produces a new version of the row. The prior existing row remains, but it is marked as
logically deleted. Likewise, DELETE operations only mark a row as logically deleted, but
the row remains in existence.
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Fig. 5: Example for MVCC storage of rows

A key element of this approach is to determine which versions of the rows shall be visible
to data access operations to provide consistent snapshots. For example, a query may access
the table with the (physical) rows shown in Fig. 5. If the query (or rather its transaction)
was started before any of the updates took place, it should see Row 1 in Version 1 – but not
any other version of that row, which may have been created by concurrently running data
modifications. Likewise, if the query starts after the 2nd update of Row 1, it should see that
row in Version 3, but not any of the prior existing versions.

IDAA’s Db2 LUW backend database system does not provide MVCC out of the box.
Using SQL transactions to apply all data changes atomically is also not an option, due
to limitations on the available transaction log space and lock contention that can occur.
(Those are traditional issues with long-running transactions in database systems.) IDAA
uses views to define data visibility and, thus, simulates MVCC. That permits small, arbitrary
transactions to populate data in the backend and even committing the changes in between.
All data ingested into the target table in IDAA via LOAD processing will be versioned
along the way. Data visibility is not handled on individual rows but rather per partition. An
artificial column (named mapped partition ID or backend partition ID) is added to the table
in IDAA’s backend to store the mapped value for a Db2z partition.

Fig. 6: Mapping of Db2z-side partitions to IDAA table
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The view definition will use a simple predicate to ensure correct data visibility. The
generalized pattern for the predicate is the following. The NOT IN predicate is only added
if there are actually any invisible partitions.

mappedPartitionId <= maximum-mapped-id-of-all-visible-partitions AND

mappedPartitionId NOT IN ( list-of-mapped-ids-of-invisible-partitions )

For our specific example in Fig. 6, the predicate becomes:

mappedPartitionId <= 100004 AND mappedPartitionId NOT IN ( 100001 )

All LOAD operations are serialized on a table, which means that no concurrent LOADs
can happen and potentially interfere. The values used for the mappedPartitionId column
in the target table start at 100,000 and are monotonously growing. Thus, any rows that a
later LOAD operation inserts into the table will automatically be invisible, whether those
rows are committed already in the backend database or not. Once the LOAD operation
finishes, it changes the predicates in the view definition, sets the new value for the maximum
mapped partition ID, and updates the list of invisible partitions IDs. Fig. 7 visualizes
this. Subsequent SQL statements, like queries, will pick up the new view definition while
currently running SQL statements continue to use the view definition as it was in effect
when the SQL statement started its execution.

Fig. 7: View Update for Partial Reload Fig. 8: View Update for Full Reload

Changing the definition of a view is an atomic and fast operation. Furthermore, view
resolution takes place during the compilation of SQL statements. The compiled SQL
statement remains unchanged during its execution – even if the view definition changes
concurrently. Thus, stable and consistent results for the SQL statement are guaranteed.

Db2 LUW keeps track of which currently running SQL statements are using which version
of the view definition. Due to that, it is possible to determine whether a specific version of
the view definition is no longer in use. Once an old version of a view definition is no longer
used, those invisible rows will not be accessed henceforth and can be physically purged
from the table. In IDAA, this purging is implemented in asynchronous reorganization jobs
that periodically check view usage and drop outdated data using a DELETE statement.
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A special case occurs if all partitions of a table are to be reloaded. In such a full table
reload, it is possible to create a new target table into which all rows are copied, and the
view definition is changed to refer to that new table (cf. Fig. 8). This optimization drastically
simplifies the physical cleanup of old data, because a DROP TABLE statement is sufficient.

3 Replication

CDC, the replication technology for IDAA’s Incremental Update feature, is not aware of the
mapping of the Db2z-side partition ID as described in Sec. 2.2. It would have been possible
to extend CDC to perform that mapping, but that raises 2 major concerns: synchronization
and performance.

Whenever a LOAD operation in IDAA happens, this mapping has to be updated. CDC
has to be aware of the new mapping, and it has to be aware of it at the right point in time.
Replication runs asynchronously, but changing the mapping has to happen synchronously.
While this can be solved with well-known techniques, implementing them reliably and
robustly requires a significant effort.

Such a synchronization of the partition ID mapping indirectly causes heavy performance
impacts for the replication itself. A lookup via that map would have to occur for each row
being replicated. Achieving throughput rates that can keep up with transactional workload
occurring on Db2z-side is virtually impossible with such a bottleneck.

IDAA’s Incremental Update takes a different route: No mapping of the partition ID occurs.
Instead, all replicated rows get the Db2z-side partition ID assigned. Those partition IDs
are in the range of 0 to 4096, which is lower than the starting value for mapped partition
IDs. Due to the filtering predicate in the view definition (mappedPartitionID <= x) new
replicated rows will be immediately visible once the Db2 LUW update transaction commits,
which also physically deletes any old rows right away. Extending the example from Fig. 6 to
include rows produced by replication in the target table leads to the situation in Fig. 9.

4 Handling Replicated Rows during Partial Reload

A partial reload on a replicated table runs into the issue that each loaded row carries a
mapped partition ID greater than 100000. Any existing version of that row with a mapped
partition ID assigned by IDAA during a prior full table load or partial reload does not pose
a problem. Such a row will become invisible once the view definition is changed at the end
of the LOAD operation. However, that very row may exist already in the target table with
the Db2z-side partition ID – which is what the replication tool would generate.
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Fig. 9: Example for MVCC storage of rows

The filtering predicate in the view definition will always treat all rows with a Db2z-side
partition ID as visible. That is, the Db2z-side partition ID must not be included in the
NOT IN list and it must not be filtered out by any other means. The reason is that data
changes occur in Db2z after the partial reload, and then those changes are replicated to the
accelerator, using the Db2z-side partition ID. Propagating those changes again via a partial
reload must not create duplicates, which implies that formerly replicated rows must be made
invisible as part of the partial reload. Fig. 10 shows the desired result.

Several ideas came to our mind to solve this problem of hiding rows replicated before the
partial reload but still allowing rows replicated after the partial reload to be visible. The
three most promising are discussed in the following.

4.1 Deleting Replication Rows

The first idea to get rid of the old replicated rows is to delete them by a SQL statement like
DELETE FROM ... WHERE mappedPartitionId = .... That statement could be executed
during the partial reload. However, that is not a viable option. Concurrently running queries
may still need to access those rows. In fact, such queries may run longer than the partial
reload itself. Physically deleting the rows would lead to incorrect query results.

4.2 Using Separate Tables for Partial Reload
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Fig. 10: View Update on Partial Reload with Replicated Data

Similarly to the optimization for a full table reload, partial reload could use separate tables
for the newly loaded data. The view definition could be used to pick the data for each partition
from the correct table and combine all of them with a UNION ALL clause. Correctness is
not jeopardized, but this approach increases the number of base tables by several orders of
magnitude. It also impacts SQL statements accessing the view and increases the pressure
on the Db2 LUW optimizer to come up with a good access plan. Since IDAA is used by our
customers to drive their business, maintainability is at least as important as correctness and
performance. This idea was yet not further pursued since the next one has proven to meet
our expectations with much less overhead and was easy to implement.

4.3 Moving Replicated Rows into Loaded Partitions

As part of the partial reload, all previously replicated rows of the affected partition(s) are
updated. The value in the mappedPartitionId column are changed from the Db2z-side
partition ID to the IDAA-defined partition ID – as it was before the update. Referring to
Fig. 10, all rows of partition 1 (mapped to 100001) are being reloaded (now mapped to
100004). All rows that have partition ID 1 originate from the same Db2z-side partition. So
the following SQL statement moves those rows to the old mapped partition ID 100001.

UPDATE ...

SET mappedPartitionId = 100001

WHERE mappedPartitionId = 1
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Visibility of the rows being updated is not impacted – the rows are visible before the filtering
predicates in the view are changed, regardless of whether the partition ID being 1 or 100001.
After the filtering predicates are changed at the end of the batch update, those updated rows
become invisible, exactly as intended. All the way, concurrently running queries can access
the rows.

This UPDATE statement is executing concurrently to the insertion of the rows being reloaded
with mapped partition ID 100004. The statement is actually slightly more complex to limit
the number of rows being updated by one statement execution in order to inject intermediate
COMMITs. Using a sequence of small-sized intermediate transactions significantly reduces
the amount of logging and locking that has to be done on the target table. In particular, lock
escalations are avoided. For example, the following statement, which is executed in a loop
until no more rows are found and modified, limits updates the first 100,000 rows only:

UPDATE ( SELECT ROW_NUMBER() OVER () as rowNumber, mappedPartitionId

FROM ...

WHERE mappedPartitionId = 1 ) AS table

SET mappedPartitionId = 100001

WHERE rowNumber BETWEEN < 100000

Evaluation We found that the UPDATE statement has about the same run time as an INSERT

statement to process the same number of rows. Since the INSERT and the UPDATE can run
concurrently, there is no measurable impact. Only when the system reaches its limits in
terms of CPU and I/O resources, the INSERTs need to be throttled [SBM17].

5 Summary

In this paper we have presented recent enhancements of the IBM Db2 Analytics Accelerator
to support reloading a selected subset of a table’s partitions, which is also synchronized
between Db2 for z/OS and the accelerator using the Incremental Update feature. Data
consistency has to be ensured to avoid that duplicate rows become visible on accelerator-side
due to the two different data synchronization paths. The solution turned out to be really
simple but very effective at the same time: an UPDATE statement moves the replicated rows
into the old mapped partition, which is subsequently made invisible by changing the filtering
predicate of the view definition. Since this can be parallelized with the data transfer and
insertion that has to take place as part of the partial reload anyway, no performance impact
on a used system could be observed.

The next step for our work is the further investigation of reloading partition data into separate
tables (see section 4.2). We strive to evaluate how well the Db2 LUW optimizer handles this
on all possible cases. Functionality-wise, it is not yet clear to us if replicating the deletion
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of a row would try to scan all legs of the UNION ALL or if the Db2 LUW optimizer can
directly determine which of the base tables need to be processed and which ones can be
skipped. A similar question arises for insertion of new (replicated) rows through the view
and whether they will be applied to the correct target base table. It may become necessary
to employ INSTEAD OF triggers on the view to ensure the correct row distribution, whose
impact on replication performance and throughput needs to be evaluated.

Trademarks
IBM, DB2, and z/OS are trademarks of International Business Machines Corporation in
USA and/or other countries. Other company, product or service names may be trademarks,
or service marks of others. All trademarks are copyright of their respective owners.
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Data Profiling – Effiziente Entdeckung Struktureller
Abhängigkeiten

Thorsten Papenbrock1

Abstract: Daten sind nicht nur in der Informatik, sondern auch in vielen anderen wissenschaftlichen
Disziplinen ein unverzichtbares Wirtschaftsgut. Sie dienen dem Austausch, der Verknüpfung und
der Speicherung von Wissen und sind daher unverzichtbar in Forschung und Wirtschaft. Leider sind
Daten häufig nicht ausreichend dokumentiert um sie direkt nutzen zu können – es fehlen Metadaten,
welche die Struktur und damit Zugriffsmuster der digitalen Informationen beschreiben. Informatiker
und Experten anderer Disziplinen verbringen daher viel Zeit damit, Daten strukturell zu analysieren
und aufzubereiten. Da die Suche nach Metadaten jedoch eine hoch komplexe Aufgabe ist, scheitern
viele algorithmische Ansätze schon an kleinen Datenmengen.

In der Dissertation, die dieser Zusammenfassung zugrunde liegt, stellen wir drei neuartige Ent-
deckungsalgorithmen für wichtige und zugleich schwierig zu findende Typen von Metadaten vor:
Eindeutige Spaltenkombinationen, funktionale Abhängigkeiten und Inklusionsabhängigkeiten. Die
vorgeschlagenen Algorithmen übertreffen deutlich den bisherigen Stand der Technik in Laufzeit und
Ressourcenverbrauch und ermöglichen so die Nutzbarmachung von erheblich größeren Datensätzen.
Da die Anwendung solcher Algorithmen für fachfremde Nutzer nicht einfach ist, entwickeln wir
zusätzlich das Programm Metanome zur intuitiven Datenanalyse. Metanome bietet dabei nicht
nur die in dieser Arbeit vorgeschlagenen Algorithmen an, sondern auch Entdeckungsalgorithmen für
andere Typen von Metadaten. Am Anwendungsfall der Schema-Normalisierung demonstrieren wir
schließlich, wie die gefundenen Metadaten effektiv genutzt werden können.2

1 Extraktion struktureller Metadaten

Data Profiling bezeichnet eine Disziplin der Informatik, bei der es darum geht Metdaten in
verschiedenen Datensätzen zu bestimmen. Die verschiedenen Typen von Metadaten reichen
von einfachen Statistiken wie Tupelzahlen, Spaltenaggregationen und Wertverteilungen
bis hin zu weit komplexeren Strukturen, insbesondere Inklusionsabhängigkeiten (INDs),
eindeutige Spaltenkombinationen (UCCs) und funktionale Abhängigkeiten (FDs). Sofern
vorhanden dienen diese Statistiken und Strukturen dazu, die Daten zu verstehen, sie effizient
zu speichern, zu lesen und zu ändern. Da die meisten Datensätze ihre Metadaten aber
nicht explizit als beschreibendes Regelwerk zur Verfügung stellen, sind Informatiker häufig
gezwungen diese strukturellen Regeln mittels Data Profiling zu bestimmen.
1 Universität Potsdam, Hasso-Plattner-Institut, Fachgebiet Informationssysteme, Prof.-Dr.-Helmert-Str. 2-3,

D-14482 Potsdam, Deutschland, thorsten.papenbrock@hpi.de
2 Dieser Artikel ist ebenfalls erschienen im LNI Sammelband “Ausgezeichnete Informatikdissertationen 2017”.
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Unique Column Combinations (UCCs) 
{Name, Sex} 

Inclusion Dependencies (INDs) 
Pokemon.Location ⊆ Location.Name 

Functional Dependencies (FDs) 
Type  Weak 

ID Name Evolution Location Sex Weight Size Type Weak Strong Special 

25 Pikachu Raichu Viridian Forest m/w 6.0 0.4 electric ground water false 

27 Sandshrew Sandslash Route 4 m/w 12.0 0.6 ground gras electric false 

29 Nidoran Nidorino Safari Zone m 9.0 0.5 poison ground gras false 

32 Nidoran Nidorina Safari Zone w 7.0 0.4 poison ground gras false 

37 Vulpix Ninetails Route 7 m/w 9.9 0.6 fire water ice false 

38 Ninetails null null m/w 19.9 1.1 fire water ice true 

63 Abra Kadabra Route 24 m/w 19.5 0.9 psychic ghost fighting false 

64 Kadabra Alakazam Cerulean Cave m/w 56.5 1.3 psychic ghost fighting false 

130 Gyarados null Fuchsia City m/w 235.0 6.5 water electric fire false 

150 Mewtwo null Cerulean Cave null 122.0 2.0 psychic ghost fighting true 

Abb. 1: Eine Relation über Pokémon, die drei ausgewählte Schlüsselbeziehungen zeigt: ein potentieller
Primärschlüssel (UCC), ein Fremdschlüssel (IND) und eine innere Schlüsselabhängigkeit (FD).

Während einfache Statistiken noch relativ schnell zu berechnen sind, stellen die komplexeren
Strukturen schwere, zumeist NP-vollständige Entdeckungsaufgaben dar. In der Regel ist
es also auch mit gutem Domänenwissen nicht möglich, sie händisch zu bestimmen. Es
wurden daher bereits verschiedenste Profiling Algorithmen entwickelt, um die Entdeckung
zu automatisieren. Keiner dieser Algorithmen kann allerdings Datensätze von heutzutage
typischer Größe verarbeiten, weil entweder der Ressourcenverbrauch oder die Rechenzeit
effektive Grenzen überschreitet.

In dieser Arbeit stellen wir neuartige Profiling Algorithmen vor, die automatisch die drei
populärsten Typen komplexer Metadaten entdecken, nämlich UCCs, FDs und INDs. Die
Popularität dieser drei Strukturen begründet sich in der Tatsache, dass mit ihrer Hilfe die
wichtigsten Formen von Schlüssel-Abhängigkeiten beschrieben werden: UCCs beschreiben
Schlüssel für eine relationale Tabelle, FDs beschreiben Schlüssel innerhalb einer relationalen
Tabelle und INDs beschreiben Fremdschlüsselbeziehungen zwischen relationalen Tabellen.
Sie dienen damit nicht nur der Identifikation von Entitäten in einem Datensatz, sondern auch
der Verknüpfung, Bereinigung, Anfrage, Integration und logischen Formatierung von Daten.
Abbildung 1 zeigt eine Beispielrelation über Pokémon Daten – kleine “Taschenmonster” für
Kinder. Von den ebenfalls dargestellten Schlüsselabhängigkeiten lernen wir, dass Pokémon
über ihren Namen und ihr Geschlecht eindeutig identifiziert werden (UCC), der Typ eines
Pokémon auch dessen Schwäche bestimmt (FD) und zusätzliche Informationen über die
Herkunft eines Pokémon in einer anderen Tabelle gefunden werden können (IND).

Die Aufgabe eines Entdeckungsalgorithmus ist es alle gültigen Vorkommen einer speziellen
Abhängigkeit aus einer gegebenen relationalen Instanz zu extrahieren – ein induktives Such-
und Prüfverfahren also, welches die Daten systematisch auf Abhängigkeiten untersucht. Die
von uns entwickelten Algorithmen nutzen dazu sowohl bewährte Entdeckungstechniken
aus verwandten Arbeiten des Data Profiling, als auch für das Data Profiling neuartige
Techniken, wie beispielsweise Teile-und-Herrsche Verfahren, hybrides Suchen, Progres-
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sivität, Speichersensibilität, Parallelisierung und innovative Streichungsregeln. Über eine
Reihe systematischer Experimente zeigen wir, dass die vorgeschlagenen Algorithmen
nicht nur um Größenordnungen schneller sind als alle verwandten Algorithmen, sie heben
auch einige der aktuellen Beschränkungen auf und sind so in der Lage Datensätze von
häufig vorkommender Größe, d.h. mehrerer Gigabyte Größe, mit akzeptablem Speicher-
und Zeitverbrauch zu verarbeiten. Um die entwickelten Algorithmen der Forschungs- und
Entwicklungsgemeinschaft, sowie Informatik-Laien zugänglich zu machen, haben wir alle
Verfahren in das praktische Profiling Werkzeug Metanome3 integriert, welches frei und
quelloffen verfügbar ist. Zusammengefasst leistet diese Arbeit daher die folgenden Beiträge:

1. HyFD: Ein effizienter Algorithmus zur Entdeckung funktionaler Abhängigkeiten, der
ein hybrides Suchverfahren zur Identifikation valider FDs im Suchraum einsetzt [PN16].
2. HyUCC: Ein effizienter Algorithmus zur Entdeckung eindeutiger Spaltenkombinationen,
der ebenfalls auf eine hybride Suche setzt, um Schlüsselkandidaten zu finden [PN17b].
3. Binder: Ein effizienter Algorithmus zur Entdeckung von Inklusionsabhängigkeiten, der
mittels Datenpartitionierung die Prüfung von IND-Kandidaten beschleunigt [Pa15c].
4. Metanome: Ein leicht erweiterbares Data Profiling Werkzeug, das verschiedene
Entdeckungsalgorithmen praktisch nutzbar macht [Pa15a].
5. Normalize: Ein Algorithmus zur Schema-Normalisierung, der entdeckte Schlüssel-
Abhängigkeiten automatisiert bewertet und zur Schema-Reorganisation einsetzt [PN17a].

Im Folgenden erläutern wir zunächst die theoretischen Grundlagen für diese Arbeit und
fassen anschließend die einzelnen Beiträge der Dissertation kapitelweise zusammen. Die
vollständige Fassung der Dissertation ist in englischer Sprache erschienen [Pa17].

2 Schlüsselabhängigkeiten

Das relationale Datenmodell stellt Daten in tabellarischer Form mittels eines festen Schemas
dar und ist damit das zur Zeit am weitesten verbreitete Modell. Jede Spalte hat eine eindeutige
Bezeichnung, und jede Zeile beschreibt eine in der Tabelle gespeicherte Entität. Spalten
und Zeilen werden häufig auch als Attribute und Einträge bezeichnet. Wir definieren nun
unsere drei Schlüsselabhängigkeiten als Beziehungen zwischen verschiedenen Spalten:

Funktionale Abhängigkeiten (FDs) werden geschrieben als X → A und drücken damit
aus, dass alle Paare von Einträgen mit gleichem Wert in der Attribut-Menge X auch den
gleichen Wert im Attribut A haben – die X -Werte bestimmen funktional die A-Werte. Wenn
wir die relationale Instanz mit r und ihr Schema mit R bezeichnen, dann definiert sich
dieser Zusammenhang formal als ∀ti, t j ∈ r : ti[X ] = t j[X ]⇒ ti[A] = t j[A], wobei X ⊆ R
und A ∈ R ist. Um alle funktionalen Abhängigkeiten eines Datensatzes zu bestimmen
reicht es aus, nur minimale Abhängigkeiten aufzuzählen, bei denen aus der Attributmenge
X kein Attribut entnommen werden kann, ohne die FD zu verletzen. Da das Hinzufügen

3 www.metanome.de
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beliebiger Attribute auf der linken Seite der FD die Abhängigkeit nicht verletzt, lassen sich
alle nicht-minimalen FDs aus der vollständigen Menge aller minimalen FDs leicht ableiten.

Eindeutige Spaltenkombinationen (UCCs) sind Mengen von Attributen X , in denen kein
Wert (bzw. keine Wertekombination) doppelt vorkommt. Jeder einzelne Wert identifiziert
daher eindeutig einen bestimmten Eintrag in der Tabelle. Formal definieren wir eindeutige
Spaltenkombinationen X mit X ⊆ R als ∀ti, t j ∈ r, i , j : ti[X] , t j[X]. Analog zu
FDs reicht es zur Entdeckung aller UCCs aus nur solche aufzuzählen, die minimal sind.
Eine minimale eindeutige Spaltenkombination ist jene, die bei Entfernung eines beliebigen
Attributes aus X ungültig wird. Aus den minimalen UCCs lassen sich dann ebenfalls alle
anderen UCCs ableiten, indem diese durch weitere Attribute ergänzt werden.

Inklusionsabhängigkeiten (INDs) werden geschrieben als Ri[X] ⊆ Rj[Y ] und besagen,
dass alle Werte (bzw. Wertekombinationen) der Attribute X auch in der Menge der Werte
von Y vorkommen – sie sind also darin enthalten. Nützlich ist dieser Zusammenhang, weil
über Join-Operationen die Einträge, die an diesen Werten hängen, miteinander verbunden
werden können. Eine formale Definition dieses Zusammenhangs ist ∀ti[X] ∈ ri, ∃t j[Y ] ∈
r j : ti[X ] = t j[Y ], wobei ri und r j relationale Instanzen der Schemata Ri und Rj darstellen.
Im Gegensatz zu den meisten anderen Arten von Datenabhängigkeiten suchen wir bei INDs
nach maximalen Ausdrücken, da beim Entfernen von Attributen auf linker und rechter Seite
der Beziehung die Gültigkeit immer erhalten bleibt, die Gültigkeit aber verloren gehen kann,
wenn Attribute hinzugefügt werden.

Die Mengen aller FD, UCC und IND Kandidaten wird bestimmt durch die Potenzmengen
ihrer linken Seiten. Der Suchraum wird daher häufig als Gitter (engl. lattice) von Kandidaten
modelliert: Beginnend mit Beziehungen zwischen einzelnen Attributen werden sukzessiv
mehr Attribute zu diesen Kandidaten hinzugefügt. Abbildung 2 visualisiert wie diese
Gitter, also die Suchraumgrößen, für die einzelnen Abhängigkeiten mit der Anzahl an
Attributen im Datensatz immer weiter wachsen. Bezüglich der Anzahl von Attributen m
liegen die Komplexitäten der automatischen Entdeckung dieser drei Arten von Metadaten
daher in O(2m) für UCCs, O(2m · ( m2 )2) für FDs und O(2m · m!) für INDs (wobei m! eine
Vereinfachung ist) [Li12].

3 Entdeckung von funktionalen Abhängigkeiten

Um effizient alle minimalen funktionalen Abhängigkeiten zu finden haben verwandte
Arbeiten bereits zwei unterschiedliche Ansätze vorgeschlagen: Der erste Ansatz testet die
FD Kandidaten im Suchraumgitter systematisch von unten nach oben und streicht dabei
als ungültig erkennbare Kandidaten von der weiteren Suche [Hu99]; der zweite Ansatz
vergleicht alle Paare von Einträgen in der Tabelle, berechnet aus diesen Vergleichen alle
Verletzungen der FDs (entsprechend ihrer Definition) und leitet am Ende aus der Menge aller
Verletzungen die Menge aller gültigen minimalen FDs ab [FS99]. In einer evaluierenden
Arbeit [Pa15b] haben wir festgestellt, dass der erste Ansatz auf breiten Datensätzen (ca. 40
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Abb. 2: Wachstum der Suchräume für UCCs, FDs und INDs mit der Anzahl Attribute.

Attribute und aufwärts) ineffizient wird und der zweite Ansatz bei langen Datensätzen (ca.
100.000 Einträge und aufwärts) Schwächen aufweist, viele Datensätze aber sowohl breit
als auch lang sind. Wir schlagen daher den hybriden Algorithmus HyFD vor, der beide
Strategien so kombiniert, dass sie sich gegenseitig unterstützen, um sowohl auf breiten als
auch langen Datensätzen effizienter zu sein als je eine Strategie für sich allein.

Abbildung 3 veranschaulicht die hybride Suchstrategie von HyFD: In der Preprocessor
Komponente wird der Datensatz zunächst in kompakte Indexstrukturen übersetzt: Posi-
tionslisten-Index (Pli) und komprimierter Entitäten-Index (PliRecord). Anschließend
beginnt die SamplerKomponente bestimmte Zeilen in der Tabelle zu vergleichen und daraus
Verletzungen der FDs zu berechnen. Dies ist eine der beiden Suchstrategien, die allerdings
abgebrochen wird, sobald eine überwiegende Mehrheit an Zeilenvergleichen keine neuen
Verletzungen mehr geliefert hat – die Strategie ist ineffizient geworden. Daraufhin leitet der
Inductor des HyFD Algorithmus all jene FD Kandidaten ab, die unter Berücksichtigung
der bisher gefundenen Verletzungen noch minimal und gültig sein können. Das Ergebnis
formt nun ein Kandidatenset, welches die Validator Komponente systematisch mit dem
Gitter-Verfahren zu überprüfen beginnt. Auch hier gilt nun, dass HyFD die Validierung
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Abb. 3: Übersicht über den HyFD Algorithmus.

dynamisch abbricht, sobald eine Überzahl an Überprüfungen ein negatives Ergebnis liefern
und sich die Validierung als ineffizient herausstellt. Wir tauschen nun Vergleichsvorschläge
mit der Sampler Komponente aus und wechseln zurück zur ersten Suchstrategie. Alle
Ergebnisse, die vom Validator bisher als gültig identifiziert wurden, sind exakte, minimale
funktionale Abhängigkeiten und werden ausgegeben. Der Algorithmus terminiert, sobald
dem Validator keine weiteren Kandidaten mehr vorliegen.

Tabelle 1 zeigt die Laufzeiten von HyFD für verschiedene Echtwelt-Datensätze. Die aufge-
führten Datensätze bereiten den bisherigen Entdeckungsalgorithmen große Schwierigkeiten,
da diese Ansätze entweder ein Speichervolumen von mehr als 100 GB überschreiten oder
auch innerhalb mehrerer Tage kein vollständiges Ergebnis berechnen können. Der hybride
Ansatz konnte jede Analyse auf einem Rechner mit 16 Prozessorkernen und 128 GB RAM
(wovon tatsächlich aber nur ein Bruchteil genutzt wird) problemlos durchführen. Vor allem
aber zeigt sich in diesen (und weiteren) Experimenten, dass die Laufzeit mehr von der
zu findenden Ergebnisgröße abhängt als von der Größe des Datensatzes – eine ideale
Laufzeiteigenschaft für Profiling Algorithmen.

Datensatz Spalten Zeilen Größe FDs HyFD
[#] [#] [MB] [#] [s/m/h/d]

TPC-H.lineitem 16 6 m 1,051 4 k 4 m
PDB.ATOM_SITE 31 27 m 5,042 10 k 64 m
SAP_R3.ILOA 48 45 m 8,731 16 k 8 h
SAP_R3.CE4HI01 65 2 m 649 2 k 10 m
NCVoter.statewide 71 1 m 561 5 m 31 h
UCI.flight 109 1 k 1 982 k 54 s

Tab. 1: Laufzeiten des HyFD Algorithmus auf verschiedenen Datensätzen.
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4 Entdeckung von eindeutigen Spaltenkombinationen

Zur Entdeckung eindeutiger Spaltenkombinationen nutzt der HyUCC Algorithmus ein
sehr ähnliches Verfahren wie der HyFD Algorithmus: Nach der Komprimierung des
Datensatzes in Indexstrukturen wechseln sich eine Suchstrategie, die auf dem Vergleich von
Einträgen basiert, und eine Suchstrategie, die Kandidaten im Suchgitter vergleicht, immer
wieder gegenseitig ab. Die Strategien tauschen Zwischenergebnisse untereinander aus und
implementieren zudem Optimierungen wie beispielsweise das frühzeitige Abbrechen und
Parallelisieren von Kandidaten-Checks. So ist auch HyUCC allen bisherigen Ansätzen der
UCC Entdeckung überlegen, da diese immer auf nur einer Suchstrategie beruhen.

Mit HyUCC konnten wir zeigen, dass hybrides Suchen nicht nur für funktionale Abhängig-
keiten, sondern auch für weitere Arten komplexer Metadaten eine vielversprechender Ansatz
ist. Mittlerweile haben sich weitere Entdeckungsalgorithmen mit demselben Suchprin-
zip bewährt, nämlich Aid-FD [Bl16b] für approximative funktionale Abhängigkeiten
(approximate FDs), MvdDetector [Dr16] für Multivalued Dependencies (MVDs), Hy-
dra [Bl16a] für Denial Constraints (DCs) und HyMD [Dr18] für Matching Dependencies.

5 Entdeckung von Inklusionsabhängigkeiten

Die größte Herausforderung bei der Suche nach Inklusionsabhängigkeiten in einem relatio-
nalen Datensatz ist die effiziente Ausführung einer extrem großen Anzahl von Kandidaten-
überprüfungen. Jede einzelne Überprüfung eines IND Kandidaten ist dabei aufwendiger als
die Überprüfung eines FD oder UCC Kandidaten, weil nicht nur die Positionen gleicher
Werte in einer Spalte relevant sind, sondern das exakte Übereinstimmen von Werten in
verschiedenen Spalten. Eine Komprimierung des Datensatzes in Positionslisten ist daher
nicht möglich. Um die Kandidaten möglichst effizient zu prüfen setzen einige IND Ent-
deckungsalgorithmen – wie auch unser Binder Algorithmus – auf das simultane Testen
mehrerer Kandidaten. Das von Binder vorgeschlagene Testverfahren ähnelt einem großen
Hash-Join aller Attribute, wohingegen Konkurrenzalgorithmen wie Spider [BLN06] auf
Sort-Merge-Joins setzen.

Solch simultane Validierungsverfahren für INDs sind recht effizient, allerdings ist auch
der benötigte Speicherbedarf hoch. Damit der Algorithmus nicht – wie einige verwandte
Verfahren – an Speichermangel scheitert, schlägt Binder einen Teile-und-Herrsche Ansatz
für die Datenhandhabung vor: Wie in Abbildung 4 veranschaulicht wird der Datensatz
zunächst Attribut-weise per Hash-Verfahren in Körbe aufgeteilt. Der Algorithmus entfernt
dabei doppelte Werte in den Körben, um diese möglichst klein zu halten. Alle Körbe
landen schließlich auf der Festplatte und werden dann zum Validieren der IND Kandidaten
schrittweise wieder eingelesen. Wurde ein Attribut von allen IND Kandidaten entfernt, so
müssen dessen Körbe in kommenden Validierungsschritten nicht mehr mitgelesen werden.
Alle Kandidaten, die alle Validierungsschritte überstehen, sind gültige INDs und werden
von Binder ausgegeben.
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Abb. 4: Bucketierung und Validierung im Binder Algorithmus.

Unsere Experimente zum Binder Algorithmus zeigen, dass dieser meist effizienter ist als
seine Konkurrenz. Der wichtigste Beitrag besteht aber darin, dass der Algorithmus an keiner
der bisher bekannten Grenzen scheitert: Er setzt nicht das Vorhandensein einer Datenbank
voraus, er scheitert nicht an unzureichend großem Hauptspeicher und er erschöpft nicht das
Maximum offener Dateizeiger (engl. file handles) eines Betriebssystems.

6 Das Metanome Data Profiling Werkzeug

Aufgrund der praktischen Relevanz des Data Profilings hat die Industrie verschiedene
Profiling Werkzeuge entwickelt, die Informatiker in ihrer Suche nach Metadaten unterstützen
sollen. Diese Werkzeuge bieten zwar eine gute Unterstützung für die Berechnung einfacher
Statistiken, und sie sind auch in der Lage einzelne Abhängigkeiten zu validieren. Allerdings
mangelt es ihnen an Funktionen zur echten Entdeckung von Metadaten. Um diese Lücke zu
schließen schlagen wir das Werkzeug Metanome vor, eine erweiterbare Profiling Plattform,
die nicht nur unsere eigenen Algorithmen, sondern auch viele weitere Algorithmen anderer
Forscher integriert. Derzeit bieten wir 21 Entdeckungsalgorithmen für 9 verschiedene
Arten von Metadaten an und arbeiten kontinuierlich mit Wissenschaftlern anderer Institute,
darunter Institute in Frankreich, Italien, Kanada, Neuseeland, Indien, China und den USA, an
weiteren Verfahren. Wir haben Metanome ebenfalls in Kooperation mit den Unternehmen
FlixBus, IBM und SAP erfolgreich eingesetzt.

Abbildung 5 zeigt die Nutzeroberfläche des Tools: Im linken Teil der Oberfläche werden
die zu entdeckenden Metadaten über ihre Algorithmen ausgewählt, links daneben befindet
sich der Import- und Auswahlbereich für Datensätze, und im unteren Teil können Profiling
Prozesse konfiguriert und ausgeführt werden. Die Ergebnisse werden dann nach erfolgreicher
Ausführung in einer weiteren Maske angezeigt. Auf diese Weise macht Metanome unsere
Forschungsergebnisse nicht nur für Informatiker sondern auch für fachfremde Nutzer
zugänglich. Neben der Metadaten-Entdeckung bietet die Plattform auch Unterstützung bei
der Bewertung und Visualisierung gefundener Metadaten.
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Algorithmen Datenstäze 

A → B 

A ⊂ B 

A » B 

A B C D 

Abb. 5: Die Nutzersicht auf das Metanome Werkzeug mit dem Fenster zur Erstellung von Profiling-
Läufen (Mitte) und einem Ergebnis-Fenster (Vorne).

7 Metadaten getriebene Schema-Normalisierung

Unsere neuen Profiling Algorithmen ermöglichen die effiziente Entdeckung aller syntaktisch
korrekten Metadaten auf realistisch großen Datensätzen. Dies führt nun zur Folgeaufga-
be, aus den gefundenen Abhängigkeiten nur die für einen gegebenen Anwendungsfall
semantisch bedeutsamen Teile zu extrahieren. Das Extrahieren bedeutsamer Metadaten
aus allen findbaren Abhängigkeiten ist eine Herausforderung, da zum einen die Mengen
der gefundenen Metadaten überraschenderweise groß sind (oft größer als der untersuchte
Datensatz selbst) und zum anderen die Entscheidung über die Anwendungsfall-spezifische
semantische Relevanz einzelner Abhängigkeiten schwierig ist.

Um zu zeigen, dass die Vollständigkeit der Metadaten sehr wertvoll für ihre Nutzung ist,
veranschaulichen wir die effiziente Verarbeitung und effektive Bewertung von Schlüssel Ab-
hängigkeiten am Anwendungsfall der Schema-Normalisierung: Das Normalize Verfahren
bewertet automatisch alle gefundenen Abhängigkeiten daraufhin, ob sie auch semantisch
korrekte Schlüssel darstellen, und strukturiert die zugehörige Tabelle anschließend entspre-
chend um. Wir haben Normalize getestet, indem wir zunächst wohlgeformte Schemata
denormalisiert haben, dann alle Schlüsselabhängigkeiten mit Metanome finden ließen
und anhand dieser Abhängigkeiten schließlich ein normalisiertes Schema abgeleitet haben.
Da das abgeleitete Schema dem ursprünglichen sehr ähnlich ist, schließen wir auf eine hohe
Effektivität für den Normalize Algorithmus.
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Architectural Principles for Database Systems on
Storage-Class Memory1

Ismail Oukid2

Abstract: Storage-Class Memory (SCM) is a novel class of memory technologies that combine the
byte addressability and low latency of DRAM with the density and non-volatility of traditional storage
media. Hence, SCM can serve as persistent main memory, i.e., as main memory and storage at the
same time. In this thesis, we dissect the challenges and pursue the opportunities brought by SCM to
database systems. To solve the identified challenges, we devise necessary building blocks for enabling
SCM-based database systems, namely memory management, data structures, transaction concurrency
control, recovery techniques, and a testing framework against new failure scenarios stemming from
SCM. Thereafter, we leverage these building blocks to build SOFORT, a novel hybrid SCM-DRAM
transactional storage engine that places data, accesses it, and updates it directly in SCM, thereby doing
away with traditional write-ahead logging and achieving near-instant recovery.

Keywords: Non-Volatile Memory, Storage-Class Memory, Indexing, Transaction Processing, Memory
Management, Testing, Recovery.

1 Introduction

Database systems have long been optimized to hide the higher latency of storage media,
yielding complex persistence mechanisms. With the advent of large DRAM capacities,
it became possible to keep a full copy of the data in DRAM. Systems that leverage this
possibility, such as main-memory databases, keep two copies of the data: one in main memory
and the other one in storage. The two copies are kept synchronized using snapshotting and
logging. This main-memory-centric architecture yields orders of magnitude faster analytical
processing than traditional, disk-centric architectures. The rise of Big Data emphasized the
importance of such systems with an ever-increasing need for more main memory. However,
DRAM is hitting its scalability limits: It is intrinsically hard to further increase its density.

Storage-Class Memory (SCM) is a group of novel memory technologies that promise to
alleviate DRAM’s scalability limits. They combine the non-volatility, density, and economic
characteristics of storage media with the byte-addressability and a latency close to that of
DRAM. Therefore, SCM can serve as persistent main memory, thereby bridging the gap
between volatile main memory and persistent storage. In this thesis, we explore the impact
1 This paper is a summary of the author’s PhD thesis of the same title.
2 TU Dresden & SAP SE, Database Systems Group, Nöthnitzer Str. 46, D-01062 Dresden, ismail.oukid@sap.com
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of SCM as persistent main memory on the design and architecture of database systems.
Assuming a hybrid SCM-DRAM hardware setting, we propose a novel software architecture
for database systems that places primary data in SCM and directly operates on it, eliminating
the need for traditional I/O. This architecture yields many benefits: First, it obviates the
need to reload data from storage to main memory during restart, as data is discovered and
accessed directly in SCM. Second, it allows replacing the traditional logging infrastructure
by fine-grained, cheap micro-logging techniques at data-structure level. Third, secondary
data can be stored in DRAM and efficiently reconstructed during recovery. Fourth, system
runtime information can be stored in SCM to improve recovery time. Finally, the system
may retain and continue in-flight transactions in case of system failures.

CPU

Buffer

Caches

Buffer

SCM Controller

SCM Device

Transient
Persistent

Legend

Fig. 1: Volatility chain in x86-like
processors.

Unfortunately, SCM is no panacea as it raises un-
precedented programming challenges. Given its byte-
addressability and low latency, processors can access,
read, modify, and persist data in SCM using load/store
instructions at a CPU cache line granularity. The path
from CPU registers to SCM is long and mostly volatile,
as illustrated in Figure 1, including store buffers and
CPU caches, leaving the programmer with little control
over when data is persisted. Therefore, there is a need
to enforce the order and durability of SCM writes using
persistence primitives, such as cache line flushing instruc-
tions. This in turn creates new failure scenarios, such as
missing or misplaced persistence primitives.

Within this thesis, we devise several building blocks to overcome these challenges [OL17].
First, we tackle memory management, as the first required building block to build a database
system, by designing a highly scalable SCM allocator, named PAllocator [Ou17a], that
fulfills the versatile needs of database systems (Section 2). Thereafter, we propose the
FPTree [Ou16b], a highly scalable hybrid SCM-DRAM persistent B+-Tree that bridges the
gap between the performance of transient and persistent B+-Trees (Section 3). Using these
building blocks, we realize our envisioned database architecture in SOFORT [Ou14, Ou15],
a hybrid SCM-DRAM columnar transactional engine. We propose an SCM-optimized
MVCC scheme that eliminates write-ahead logging from the critical path of transactions
(Section 4). Since SCM-resident data is near-instantly available upon recovery, the new
recovery bottleneck is rebuilding DRAM-based data. To alleviate this bottleneck, we propose
a novel recovery technique that achieves nearly instant responsiveness of the database by
accepting queries right after recovering SCM-based data, while rebuilding DRAM-based
data in the background [Ou17b] (Section 5). Additionally, SCM brings new failure scenarios
that existing testing tools cannot detect. Hence, we propose an online testing framework that
is able to automatically simulate power failures and detect missing or misplaced persistence
primitives [Ou16a] (Section 6). In summary, our proposed building blocks can serve to
devise more complex systems, paving the way for future database systems on SCM.
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Fig. 2: Data recovery using persistent pointers consisting of a file ID and an offset within that file.

2 Persistent Memory Management

The rise of SCM might spur a major change in the architecture of database systems, as it
invalidates long-standing architectural assumptions. In this incoming era of SCM-based
database systems, everything is yet to be done, starting from persistent memory management
as a fundamental building block. In general, SCM is handled using a file system. User space
access to SCM is granted via memory mapping using mmap(). The mapping behaves like
mmap() for traditional files, except that the persistent data is directly mapped to the virtual
address space, instead of to a DRAM-cached copy. When a program crashes, its pointers
become invalid since the program gets a new address space when it restarts. This implies
that these pointers cannot be used to recover persistent data structures.

To solve this problem, we propose a new pointer type, denoted Persistent Pointer (PPtr), that
remains valid across restarts. It consists of a base, which is a file ID, and an offset within that
file that indicates the start of the block pointed to. Persistent pointers can easily be translated
into regular pointers by adding the offset to the start address of the memory-mapped file, as
illustrated in Figure 2. To perform recovery, we need to keep track of an entry point. One
entry point is sufficient for the whole storage engine since every structure is encapsulated
into a larger structure up to the full engine.

To manage SCM, we propose PAllocator [Ou17a], a highly scalable, fail-safe, and persistent
allocator for SCM, specifically designed for databases that require very large main memory
capacities. PAllocator uses internally two different allocators: SmallPAllocator, a small
block persistent allocator that implements a segregated-fit strategy; and BigPAllocator, a big
block persistent allocator that implements a best-fit strategy and uses hybrid SCM-DRAM
trees to persist and index its metadata. The use of hybrid trees enables PAllocator to also
offer a fast recovery mechanism. PAllocator uses big SCM files that are cut into smaller
blocks for allocation. It maps these files to virtual memory to enable the conversion of PPtrs
to regular pointers. At restart time, a new mapping to virtual memory is created, allowing to
re-convert PPtrs to new valid regular pointers.

Moreover, PAllocator addresses fragmentation in persistent memory, which we argue is an
important challenge, and implements an efficient defragmentation algorithm that is able to
reclaim the memory of fragmented blocks by leveraging the hole punching feature of sparse
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Fig. 3: Selective persistence for a B+-Tree: Inner nodes are in DRAM while leaf nodes are in SCM.

files. To the best of our knowledge, PAllocator is the first SCM allocator that proposes a
transparent defragmentation algorithm as a core component for SCM-based database systems.
Our evaluation shows that PAllocator improves on state-of-the-art persistent allocators
by up to two orders of magnitude in operation throughput, and by up to three orders of
magnitude in recovery time. Furthermore, we integrate PAllocator and a state-of-the-art
persistent allocator in a persistent B+-Tree, and show that PAllocator enables up to 2.39x
better operation throughput than its counterpart.

3 Persistent Data Structures

In this section we investigate the design of persistent index structures as one of the core
database structures, motivated by the observation that traditional main memory B+-Tree
implementations do not fulfill the consistency requirements needed for such a use case.
Furthermore, while expected in the range of DRAM, SCM latencies are higher and
asymmetric with writes noticeably slower than reads. We argue that these performance
differences between SCM and DRAM imply that the design assumptions made for previous
well-established main memory B+-Tree implementations might not hold anymore. Therefore,
we see the need to design a novel, persistent B+-Tree that leverages the capabilities of SCM
while exhibiting performance similar to a traditional transient B+-Tree.

To lift this shortcoming, we propose the Fingerprinting Persistent Tree (FPTree) [Ou16b]
that is based on the following design principles to achieve near-DRAM performance:

1. Fingerprinting. Fingerprints are one-byte hashes of in-leaf keys, placed contiguously
in the first cache-line-sized piece of the leaf. The FPTree uses unsorted leaves with
in-leaf bitmaps – originally proposed in [CGN11] – such that a search iterates linearly
over all valid keys in a leaf. By scanning the fingerprints first, we are able to limit the
number of in-leaf probed keys to one in the average case, which leads to a significant
performance improvement.

2. Selective Persistence. The idea is based on the well-known distinction between
primary data, whose loss infers an irreversible loss of information, and non-primary
data that can be rebuilt from the former. Selective persistence consists in storing
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Fig. 4: Data layout overview in SOFORT.

primary data in SCM and non-primary data in DRAM. Applied to the FPTree
(illustrated in Figure 3), this corresponds to storing the leaf nodes in SCM and the
inner nodes in DRAM. Hence, only leaf accesses are more expensive during a tree
traversal compared to a fully transient counterpart.

3. Selective Concurrency. This concept consists in using different concurrency schemes
for the transient and persistent parts: The FPTree uses Hardware Transactional Memory
(HTM) to handle the concurrency of inner nodes, and fine-grained locks to handle that
of leaf nodes. Selective Concurrency elegantly solves the apparent incompatibility
of HTM and persistence primitives required by SCM such as cache line flushing
instructions which cause HTM transactions to abort.

We implemented the FPTree and two state-of-the-art persistent trees, namely the NV-
Tree [Ya16] and the wBTree [CJ15]. Using microbenchmarks, we show that the FPTree
outperforms the two competitors by up to 4.8× for an SCM latency of 90 ns (DRAM’s
latency), and by up to 8.2× for an SCM latency of 650 ns. The FPTree achieves these results
while keeping less than 3% of its data in DRAM. Additionally, we demonstrate how the
FPTree scales on a machine with 88 logical cores. Moreover, we show that the FPTree
recovery time is 76.96× and 29.62× faster than a full rebuild for SCM latencies of 90 ns
and 650 ns, respectively.

4 SOFORT: A Hybrid SCM-DRAM Storage Engine

After having outlined the core building blocks, namely memory management and data
structures for the design and implementation of SCM-based data-management systems, we
demonstrate such a system and present SOFORT, a hybrid SCM-DRAM dictionary-encoded
columnar transactional engine tailored for hybrid transactional and analytical workloads
and fast data recovery [Ou14, Ou15]. SOFORT is a single-level store, i.e., the working
copy of the data is the same as the durable copy of the data. To achieve this, SOFORT
leverages the byte-addressability of SCM to persist data in small increments at cache-line
granularity. Since the database state is always up-to-date, SOFORT does not need a redo
log. SOFORT implements serializable multi-version concurrency control (MVCC) coupled
with cooperative garbage collection.
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SOFORT is architected as a twin-store columnar main-memory database, with a larger
static immutable read-optimized store and a smaller dynamic read/write store. The dynamic
store is periodically merged into the static store to do compaction. This keeps the size of the
dynamic store small and therefore results in good performance for reads and writes. Andrei
et al. [An17] showed that the static store can be entirely kept in SCM at a negligible cost
for query execution, and instantly recovered after failure. Therefore, we focus only on the
dynamic part in this thesis.

Figure 4 gives an overview of the data organization in SOFORT. Tables are stored as a
collection of append-only columns. Each column consists of an unsorted dictionary stored
as an array of the column’s unique data values, and an array of value IDs, where a value
ID corresponds to a dictionary index (position). These two arrays are sufficient to provide
data durability and constitute the primary data. SOFORT stores primary data, accesses it,
and updates it directly in SCM. Other data structures are required to achieve reasonable
performance including, for each column, a dictionary index that maps values to value IDs,
and for each table, a set of multi-column inverted indexes that map sets of value IDs to
the set of corresponding row IDs. We refer to these structures as secondary data since
they can be reconstructed from the primary data. SOFORT can keep secondary data in
DRAM or in SCM. Putting all indexes to DRAM gives the best performance but might
stress DRAM resources, while placing indexes in SCM exposes them to its higher latency
which compromises performance.

To track conflicts between transactions, MVCC keeps for every transaction, among other
metadata, a write set that contains the row IDs of the tuples that the transaction inserted or
deleted. This information is enough to undo a transaction in case it is aborted. We make the
observation that the same information can be used to undo the effects of in-flight transactions
during recovery. Therefore, to provide durability, SOFORT places the MVCC write set in
SCM, which enables it to remove the traditional write-ahead log from the critical path of
transactions. Furthermore, by persisting more MVCC metadata, SOFORT can allow the
user to continue executing open transactions after a system failure.

SOFORT stores its columns contiguously in memory, which complicates memory reclama-
tion of deleted tuples. Indeed, the latter would require a writer-blocking process which would
replace the current columns with new, garbage-free ones. To remedy this issue, we propose
to keep track of deleted rows and re-use them when inserting new tuples whenever possible
instead of appending them to the table. Through an extensive experimental evaluation, we
show that SOFORT exhibits competitive OLTP performance despite being a column-store.

5 SOFORT Recovery Techniques

SCM-enabled database systems such as SOFORT keep a single copy of the data that
is stored, accessed, and modified directly in SCM. This eliminates the need to reload a
consistent state from durable media to memory upon recovery, as primary data is accessed
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directly in SCM. Hence, the new recovery bottleneck is rebuilding DRAM-based data
structures. We address this bottleneck following two orthogonal dimensions: The first one
pertains to secondary data placement in SCM, in DRAM, or in a hybrid SCM-DRAM
format. We show that near-instant recovery is achievable if all secondary data is persisted
in SCM. However, this comes at the cost of a decreased query performance by up to
51.1%. Nevertheless, near-instant recovery offers guarantees that are appealing to business
applications where availability is critical. Hybrid SCM-DRAM data structures offer a good
compromise by reducing recovery time by up to 5.9× while limiting the impact on query
performance between 16.6% and 32.7%. The second dimension is optimizing the recovery
of DRAM-based data independent of data placement.

After recovering its SCM-based data structures, SOFORT rebuilds DRAM-based secondary
data structures, then starts accepting requests. If DRAM-based secondary data structures
are large, restart times can still be unacceptably long. To address this, we propose an Instant
Recovery strategy. It allows queries to be answered concurrently with the rebuilding of
DRAM-based data structures, i.e., while recovery is still in progress. However, while the
secondary data structures are being rebuilt, request throughput is reduced, partially because
of the overhead of rebuilding, but more importantly because of the unavailability of the
DRAM-based secondary data structures, resulting in sub-optimal access plans.

To remedy the shortcomings of instant recovery, we propose a novel recovery strategy,
named Adaptive Recovery [Ou17b]. It is inspired by the observation that not all secondary
data structures are equally important to a given workload. It improves on instant recovery in
two ways. First, it prioritizes the rebuilding of DRAM-based secondary data structures based
on their benefit to a workload (instant recovery simply uses an arbitrary order). Second,
it releases most of the CPU resources dedicated to recovery once all of the important
secondary data structures have been rebuilt (instant recovery statically splits CPU resources
between recovery and query processing for the entire recovery period).

Through our experimental evaluation, we showed that SOFORT regains its peak performance
up to 4.3× faster with adaptive recovery than with synchronous recovery, while allowing
the system to be responsive near-instantly. We demonstrated that our benefit ranking adapts
well to workload changes during recovery and allows to regain pre-failure throughput up to
2.1× faster than rankings that do not take into consideration the recovery workload.

6 Testing of SCM-Based Software

Consistency failure scenarios and recovery strategies of software that persists data depend
on the underlying storage technology. In the traditional case of block-based devices, software
has full control over when data is made persistent. Basically, software schedules I/O to persist
modified data at a page granularity. The application has no direct access to the primary
copy of the data and can only access copies of the data that are buffered in main memory.
Hence, software errors can corrupt data only in main memory which can be reverted
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as long as the corruption was not explicitly propagated to storage. In fact, crash-safety
for block-based software highly depends on the correctness of the underlying file system.
In contrast, SCM is byte-addressable and is accessed via volatile store buffers and CPU
caches, over which software has little control. As a side effect, changes can be speculatively
propagated from the CPU cache to SCM at any time, and compilers and out-of-order CPU
execution can jeopardize consistency by reordering memory operations. Moreover, changes
are made persistent at a cache line granularity which necessitates the use of CPU persistence
primitives. This adds another level of complexity as enforcing the order in which changes
are made persistent cannot be delayed like with block-based storage devices, and must be
synchronous. Hence, storing the primary copy of the data in SCM and directly updating it
in-place significantly aggravates the risk of data corruption.

Several proposals tackled these challenges following two main approaches. The first one
focuses on providing global software-based solutions, mainly transactional-memory-like
libraries, to make it easier for developers to write SCM-based software. The second and
more mainstream approach is to rely solely on existing hardware persistence primitives, such
as cache line flushing instructions and memory barriers to achieve consistency. Nevertheless,
all approaches have in common that SCM-related errors may result in data corruption. In
contrast to volatile RAM where data corruption can be cured with a restart of the program,
data corruption in SCM might be irreversible as it is persistent. Therefore, we argue for the
need of testing the correctness of SCM-based software against software crashes and power
failures–which result in the loss of the content of the CPU cache.

We tackle this challenge by proposing a lightweight automated on-line testing framework,
illustrated in Figure 5, that helps detecting and debugging a wide range of SCM-related bugs
that can arise upon software or power failures [Ou16a]. We particularly focus on detecting
missing cache line flushing instructions. Our testing framework employs a suspend-test-
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resume approach and simulates power failures using data replication, similar to shadow
memory testing approaches [NS07]. The testing framework creates a mirror segment for
each segment that the program creates; the mirror segment contains only data that is
explicitly flushed by the program. The testing framework triggers randomly simulated
crashes in the path of persistence primitives, upon which a test process is forked and the
main process is suspended. Then, the test process executes a user-defined program that
recovers using the mirror segment with copy-on-write access semantics. Upon completion
of the user-defined program, the test process is terminated and the changes to the mirror
segments are discarded.

An important feature of our testing framework is its ability to avoid excessive duplicate
testing by tracking the call stack information of already tested code paths, which leads to
fast code coverage. Additionally, our testing framework is able to partially detect errors that
might arise due to the compiler or the CPU speculatively reordering memory operations.
It can further simulate crashes in the recovery procedure of the tested program, which
we argue is important since hidden SCM-related errors in the recovery procedure may
compromise the integrity of the data upon every restart. We show with an experimental
evaluation on the FPTree and PAllocator that our testing framework achieves fast testing
convergence, even in the case of nested crash simulations.

7 Conclusion

SCM is emerging as a disruptive hybrid memory and storage technology, requiring us to
fundamentally rethink current database system architectures. In this thesis, we endeavored
to explore this potential by building a hybrid transactional and analytical database system
from the ground up that leverages SCM as persistent main memory. Our pathfinding work
led us to identify the challenges and opportunities brought by SCM for database systems.
As a result, we devised a set of building blocks, including an SCM allocator, a hybrid
SCM-DRAM persistent and concurrent B+-Tree, an adaptation of MVCC for SCM, novel
database recovery techniques, and a testing tool for SCM-based software. Armed with
these building blocks, we designed and implemented SOFORT, a hybrid SCM-DRAM
transactional engine that keeps primary data in SCM and directly operates on it. We showed
how SOFORT’s architecture enables near-instant recovery, allows to continue unfinished
transactions after failure, removes traditional write-ahead logging from the critical path of
transactions, and therefore achieves low transaction latencies. These building blocks can be
used to build more complex systems, exemplified by SOFORT, paving the way for future
database systems on SCM.
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Modern techniques for transaction-oriented database
recovery1

Caetano Sauer2

Abstract:

Transaction-oriented database recovery has been a “solved problem” for at least 25 years since
the introduction of the ARIES methods for logging and recovery. However, recent technological
developments have urged the need for new software architectures that can better exploit the efficiency of
modern hardware. In the context of recovery, new algorithms are required to effectively accommodate
the exponential decrease in main-memory cost, the advent of flash memory, the rapid expansion into
many-core CPUs, the ever-increasing capacity of magnetic disks, and, on the long term, the potential
adoption of non-volatile memory. In our research, we evaluated a variety of new software techniques
for efficient transaction-oriented database recovery, focusing on availability and architectural simplicity.
The techniques presented here differ from most recent work in the field in which they aim to be
hardware-agnostic, supporting different memory and storage configurations with the same software,
as well as fully functional in comparison with traditional database systems, e.g., by supporting
media recovery, index management, larger-than-memory datasets, and arbitrary access structures with
structural modifications.

1 Motivation

Most existing approaches for database recovery based on write-ahead logging (WAL),
including the widely used ARIES [Mo92] methods implemented in the vast majority
of commercial database systems, suffer from two major problems. The first problem is
that recovery is usually performed offline, meaning that the database and its applications
only become available to new transactions after the full recovery process is completed.
This process can take multiple hours to complete, depending on factors such as hardware
characteristics, workload access patterns, and transaction volume. The second problem is
that individual recovery actions, such as the replay of updates on a single data page or the
rollback of a transaction, are not scheduled in a way that prioritizes the needs of applications
after a failure. Aiming to solve these two problems, a new technique called instant recovery
enables access to individual data pages (or contiguous sets thereof) before the complete
recovery process is finished. These techniques cover all classes of database failures, most
notably system and media failures. By performing recovery actions on demand, system
1 This short article summarizes a doctoral dissertation with the same title [Sa17]
2 Tableau Software, csauer@tableau.com (Dissertation completed at TU Kaiserslautern)
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availability as observed by individual transactions can be effectively increased by up to two
“nines” by means of simple and incremental software techniques.

Besides increasing availability by optimizing the recovery process, efficient checkpointing
as well as backup techniques are required to maintain the persistent database in a fresh
state and thus effectively reduce the amount of recovery work to be performed in case of a
failure. Building upon a discussion of efficient checkpoint algorithms, as well as on ideas
from instant recovery, this work presents a novel family of techniques called decoupled
persistence. The main goal of this effort is to simplify checkpoint and recovery techniques
by decoupling them from critical components of the database system such as the buffer
pool and the transaction manager. The key technique employed is to rely solely on log
information to perform checkpoints and propagate changes to the persistent database. This
approach not only enhances the reusability of the database system’s internal components,
but also potentially improves performance by eliminating the interference of checkpoint
actions on critical system components.

Looking beyond traditional WAL architectures, these ideas are taken further with a novel
design for database storage and recovery called FineLine. Its goal is to simplify the recovery
and checkpointing processes by eliminating the persistent database, relying solely on the
recovery log for data storage and retrieval. With FineLine, there is no duality between
persisted database and log and, as a consequence, no algorithmic logic that is exclusive
to recovery from failures; instead, recovery is embedded in the data access protocol,
without distinction between normal and recovery processing modes. This results in a
much simpler system architecture, which also decouples in-memory data structures from
persistence concerns and reduces log volume, thus improving performance for memory-
resident workloads. From a more general perspective, the goal of FineLine is to provide
efficient, transparent, reliable, and highly-available persistence as a decoupled component,
accommodating arbitrary implementations of in-memory access methods and concurrency
control. As such, it blurs the lines between in-memory and disk-based database systems.

If a system is able to keep the amount of recovery work manageable and perform this
recovery work not only while transactions are running but also prioritizing the needs of
those transactions, then the challenge postulated by Jim Gray in his ACM 1998 Turing
Award Lecture of a system “unavailable for less than one second per hundred years” [Gr03]
gets one step closer to becoming a reality.

2 Key contributions

This section summarizes the contributions of the author’s dissertation in five parts. Further
details are provided in the cited references as well as in the published dissertation [Sa17].
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2.1 Instant restart

Instant restart is a technique for recovery from system failures that builds upon single-page
repair [GK12] to provide incremental, page-oriented redo in addition to the traditional
log-oriented redo phase of ARIES recovery. Furthermore, by collecting acquired locks
during checkpoints and log analysis, the technique also enables incremental and on-demand
undo actions by detecting lock conflicts between pre-failure (i.e., “loser”) and post-failure
transactions. The resulting recovery algorithm allows the execution of new transactions
immediately after the log analysis phase, and the access pattern of post-failure transactions
actually guides the redo and undo actions required for recovery. This requires exploiting the
independence of recovery among objects that is inherent to physiological logging [Mo92]
and reorganizing the recovery process accordingly. Building upon this independence, fine-
granular recovery actions can then be scheduled following the demands of new transactions
started after a failure, which essentially reduces the observed mean time to repair by multiple
orders of magnitude.

The instant restart algorithm uses the same building blocks and actually executes the exact
same actions as the ARIES algorithm during recovery. In the redo phase, the same log
records are replayed on the same set of pages as in ARIES restart; in the undo phase, the
same transactions are rolled back, producing the same logical compensation actions. The key
difference is that these actions can be performed concurrently with post-failure transactions,
and their access pattern is actually used to guide recovery in an on-demand schedule.

Fig. 1: Example of log records with per-page and per-transaction chains

Log-record chains are a fundamental technique to enable on-demand restart recovery. They
are illustrated in Fig. 1, which shows an example of log snippet in which two transactions, 1
and 2, make modifications to three pages, A, B, and C. In this log, two independent system
transactions, identified with SSX, are performing a split on page A of a B-tree data structure
in two steps: first, a new page C is allocated, and then records are moved from A to C in a
rebalance operation. On the right side of the diagram, two in-flight user transactions are
shown with their per-transaction log chains; these are used for undo recovery and are also
present in the original ARIES design [Mo92]. Note that user transaction 1 is allowed to
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insert a record in page C while the page split is still happening—this illustrates the utility of
system transactions as well as the fundamental distinction between database contents and
their representation [Gr12].

The left side of the diagram shows per-page log chains for pages A, B, and C. Each log record
points to the last log record that modified that same page. This chain can be easily maintained
by saving the page LSN value into the log record before applying its corresponding update
and setting the new page LSN to its own LSN value [GGS14].

To understand instant restart by example, consider that a system failure occurred and the
log of Figure 1 is all the log that is found after restart and that none of its updates has been
propagated to the database. In that case, the log analysis phase determines that transactions 1
and 2 need to be undone and pages A, B, and C need to be redone. The exclusive locks held
by transactions 1 and 2 (i.e., the loser transactions) before the failure are also reacquired
during log analysis. This information can be kept in the lock manager and in the buffer
manager, respectively, as special entries that also mark the head of each log chain. Once log
analysis is finished, and, most importantly, before any undo or redo actions take place, the
system is made available for new transactions.

Post-failure transactions have unrestricted access to the database: if they fix a page in
the buffer pool that needs redo recovery, the old image is fetched and redo recovery is
performed, on that page only, by following the per-page log chain until the page LSN value
and reapplying the log records in reverse order (i.e., using a stack). Following the repeating
history paradigm, updates of loser transactions are also redone [Mo92].

Once a page is fixed and all its updates redone, it may still contain updates of loser
transactions, which have to be undone. This is achieved by aborting a loser transaction on
demand as soon as a post-failure transaction requests a lock on a record or key value that is
currently held by it (i.e., a lock reacquired during log analysis).
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offline end offline end

Fig. 2: Logistic function patterns of instant restart and ARIES restart

The performance of instant restart depends on factors such as storage hardware characteristics,
transaction volume, and workload behavior. These were evaluated in detail in the dissertation
[Sa17], but the general behavior expected during restart is that of a logistic function depicted
in Fig. 2, where time is shown in the x-axis and transaction throughput in the y-axis.
The chart shows the behavior of instant restart in comparison with ARIES restart as two
logistic curves and their respective offline phases, i.e., the points for which transaction

490 Caetano Sauer



5

throughput is zero. With instant restart, the offline phase finishes much earlier than ARIES,
and recovery is performed as a side-effect of the workload access pattern; thus, throughput
is increased more gradually as the buffer pool is warmed up. The net result is that the
number of transactions missed due to a failure—the shaded area labeled “region 1”–is
significantly lower. Once again, we refer to the dissertation for concrete numbers under
different experiment configurations [Sa17].

2.2 Single-pass restore

The benefit of on-demand recovery can also be achieved for media failures, but since the
amount of log that must be accessed during media recovery is likely to be many orders of
magnitude larger than during restart recovery, we first address the issue of media recovery
efficiency with a technique called single-pass restore [SGH15].

Single-pass restore maintains the log archive in a partially sorted organization, by introducing
a run generation phase to the log archiving process. Within each run, log records are sorted
primarily by page identifier rather than by LSN, so that a merge of log archive partitions and
an old database backup is able to produce an up-to-date database using a single sequential
pass, rather than a sequential pass of the log with random accesses on a database backup and
its replacement device. The process is illustrated in Fig. 3, and more details are available in
the original publication [SGH15].

A B
A B
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Full backup

Incr.
backups

Buffer pool Replacement
drive
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merge join sequential

writes

fix A, replay all updates, unfix
fix B, replay all updates, unfix

.
.
.

...

...

...

Partially 
sorted log 

archive

P0

P1

P2

Fig. 3: Single-pass restore

In our measurements, run generation during log archiving adds less than 3% overhead to
regular forward processing [SGH15], and the gained benefit is that full recovery of an up-to-
date database takes the same amount of time as copying an old backup image in traditional
methods. Single-pass restore also makes the management of backups much simpler, renders
incremental backups obsolete, and enables system administrators to substantially reduce the
frequency of full backups without compromising availability [GGS14].
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2.3 Instant restore

Instant restore [SGH17] builds upon the partially sorted log archive of single-pass restore by
adding an index to each sorted partition. This enables the retrieval of log records of a given
database page or—more appropriately to exploit sequential access speeds—a contiguous set
of database pages, which we call a segment. Such an indexed log archive enables on-demand
restoration of database segments in the same fashion that individual pages are redone in
instant restart; the only difference is that log records are retrieved from an index rather than
by following a chain of log records.

Despite sharing the same general principle of on-demand recovery, instant restart after a
system failure and instant restore after a media failure are quite different in their causes,
effects, and recovery measures. When a media failure is detected, the system process is
not affected, and thus its main-memory state—including buffer pool, transaction and lock
managers, etc.—is not lost. This is unlike a system failure, or crash, in which all volatile
state is lost. This means that user transactions may continue execution after a media failure,
provided that they only access data that is either in the buffer pool or on other (still healthy)
persistent devices. A transaction that accesses data on a failed device is normally aborted,
but with instant restore, it can actually trigger the restoration of the segments that contain
the accessed pages on demand. Thus, a moderate delay is added to the transaction’s response
time (in addition to the page miss that would have occurred even without the media failure)
rather than aborting it.

... ... ...

Fig. 4: Illustration of instant restore

Restoration of a failed device from a full backup and an indexed log archive is illustrated in
Fig. 4, which shows an example segment consisting of just two pages, A and B. Thanks to
the grouping of pages into segments and the partially-sorted order of log archive partitions,
the access pattern is mostly sequential, and thus recovery is as efficient as single-pass restore.
Thanks to the index added on top of the sorted log partitions, segments which are needed
most immediately by applications are prioritized, while the remaining “cold” segments can
be restored in the background.
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2.4 Decoupled persistence

Our work on propagation strategies [Sa16] emphasizes the problem of efficiently propagating
updates from the buffer pool (i.e., cached dirty data in volatile storage) to persistent storage.
It highlights the need for a well-balanced architecture in which the aggregate bandwidth
of propagation matches the update rate of the transaction workload—in other words, in
which the cleaning speed matches the dirtying speed. This problem is especially relevant
for write-heavy workloads (such as TPC-C) running on memory-abundant systems. In such
cases, inefficient propagation may lead to a disk bottleneck on transaction throughput, even
though an application’s working set fits entirely in main memory, as illustrated in Fig. 5
(more details of this experiment in the original publication [Sa16]).

These observations lead to the insight that update propagation for memory-intensive and
write-heavy applications must happen under control of a dedicated background service
called the page cleaner [Sa17] rather than on a page-by-page basis and triggered exclusively
by a page replacement strategy, which is the traditional approach. Such a cleaner service
must decide, from a set of dirty candidate pages, which pages to write back to disk at a
particular point in time. This choice depends on a model that takes into account the benefit of
writing a particular page and the cost of doing so for a given storage hardware configuration.
In addition to these observations, our work proposes a log-based model in which updates
are propagated not by writing cached pages directly, but by replaying log records from the
partitioned index presented earlier for instant restore [Sa16]. This idea, when taken to the
extreme, leads to the system design presented in the next section.

2.5 FineLine

FineLine [SGH18] is a novel system design that stores all data in the log, thus departing
from a traditional write-ahead logging architecture, in which persistent data lives both in
the log and in a database file. Unlike a traditional, time-ordered log, the FineLine log is
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actually a partitioned index on database page identifiers, as proposed for instant restore.
Propagation of updates from volatile caches to persistent storage happens solely via logging,
which contains only redo information thanks to its no-steal approach [HR83]. In order to
fetch a page from persistent storage, its state is simply reconstructed from its pertaining log
records, as illustrated in Fig. 6.

Log records

Data
structure

fetch

append

Indexed
log

reorg.

WAL
Log records

Database

Data
structure

write

read

volatile persistent

append

volatile persistent

FineLine:Write-ahead logging:

Fig. 6: Propagation of updates in WAL (left) vs. FineLine (right)

The partitions in the log are periodically merged in order to deliver acceptable read
performance, similar to log-structured merge trees [ON96]. The key difference is that
FineLine relies on physiological logging, thus indexing log records by their page identifier
rather than by key values in the application domain. As such, it can be seen as a persistence
module that supports transactional durability to arbitrary in-memory data structures. Unlike
log-structured merge trees, the log index itself provides durability and there is no separate
write-ahead log. By relying on physiological logging, FineLine also inherits all the benefits
of ARIES and instant recovery, including on-demand system and media recovery, support
for system transactions for space management and structural operations, secondary indexes,
buffer management, and orthogonality to isolation mechanisms (i.e., two-phase locking,
optimistic validation, multi-versioning, etc. are all supported). Lastly, compared to a
Shore-MT-based prototype that implements ARIES-based logging and recovery, FineLine
improves performance of a memory-resident workload by about 2×, requires less code, and
is more modular [SGH18].

3 Lessons learned and outlook

In this dissertation, we attempted to improve the availability and efficiency of logging and
recovery algorithms for transaction-oriented database systems. The following paragraphs
summarize some guiding principles that we followed in this work and are likely also relevant
for future work.

Database systems are effective and versatile tools that build the backbone of some of the
most critical and useful applications in the world. Given this key position, database systems
are also extremely performance-critical, and thus a large share of research efforts in the
field are invested towards making databases as fast as possible. However, in many cases,
optimizing for performance conflicts with the goals of versatility and data independence.
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As in many endeavors in science and engineering, the challenge therefore lies in finding the
correct compromise.

Over the last decade, the advent of cheap main memory and multi-core CPUs pushed database
researchers to reconsider their architectures. Perhaps most influential in this effort was the
work of Stonebraker et al. on H-Store [St07]. This system achieves orders-of-magnitude
improvement in transactional performance by completely eliminating components such
as logging and recovery, locking, and buffer management. While this work served as an
important “wake-up call” that deeply influenced many of the systems designed in the last
decade, the rather extreme approach of trimming off as much functionality as possible
for the goal of performance is likely too restrictive for database systems in general. Since
H-Store was proposed, research papers that followed gradually reintroduced functionality
such as concurrency control, recovery, and buffer management. In a way, the “complete
rewrite” was extremely useful as a reconsideration of software architectures in the light of
modern hardware, but the end result (if there is one) might look much more similar to a
traditional architecture than expected.

In the context of transaction recovery, our work advocates for the retainment of certain
fundamental design principles, such as physiological logging and buffer management. These
are crucial to provide functionality such as media recovery (by means other than replication
and failover), native indexing support, access-path (i.e., data-structure) independence, system
transactions, and independence of concurrency control mechanisms (e.g., fine-grained two-
phase locking). Our benchmark has been to support all the functionality that ARIES [Mo92]
supports—if our work can be as applicable as the most ubiquitous recovery mechanism
in the history of database systems, then we have indeed succeeded across at least one
dimension.

The “main-memory revolution“ of the last decade has been, in a perhaps quite ironic
way, accompanied by a revolution in storage hardware architectures. In fact, this “storage
revolution” is still going on and will likely continue until non-volatile memory (NVM) is
established in the market and its development somehow stabilizes. Flash memory and fast
solid-state drives already changed many assumptions of the storage hierarchy, but upcoming
NVM storage has the potential to beget another “complete rewrite”. While preliminary
proposals for NVM-based transactional systems are promising, many of them wage on
NVM “taking over” the storage hierarchy, while, in reality, the storage landscape is likely to
remain heterogeneous.

Given the uncertainty about how a future storage hierarchy might look like, the unlikelihood
of it being NVM-only, and the lessons learned from the main-memory revolution about
versatility and applicability, our work focused on hardware-agnostic software techniques,
which have the potential to be optimized for NVM rather than being designed exclusively
for it. We believe this is an important principle to follow if our research community should
invent a “new ARIES” that will become standard in database systems to come.
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The Borda Social Choice Movie Recommender

Johannes Kastner1, Nemanja Ranitovic2, Markus Endres1

Abstract: In this demo paper we present a recommender system, which exploits the Borda social
choice voting rule for clustering recommendations in order to produce comprehensible results for
a user. Considering existing clustering techniques like k-means, the overhead of normalizing and
preparing the preferred user data is dropped. In our demo showcase we facilitate a comparison of our
clustering approach to the well known k-means++ with traditional distance measures.

Keywords: Clustering, k-means, Borda, Social choice

1 Introduction

Recommendations are becoming more and more common, because the quantity of data,
e.g., in online shopping platforms like Amazon, movie on-demand streaming services like
Netflix and Amazon Prime Video, or music-streaming platforms, e.g., Spotify is growing
continuously. In order to handle these large and confusing sets of objects easily, clustering
is a very promising approach to encapsulate similar objects and to present only a few
representatives of the sets to the user.

For example, consider the case where Bob wants to watch a movie. He favors old-school
movies of the late 70s to the early 90s. He only wants to watch movies, which have a runtime
between 90 and 130 minutes. Furthermore Bob prefers ambitious movies with a user rating
higher than 7 on a score from 0 to 10. The result of such a preference query (cp. [KEW11])
on a movie data set, e.g., the Internet Movie Database (IMDb) could produce large and
confusing results (cp. Table 1). Now, Bob has to select one movie out of this quite confusing
set of movies. This is in most cases a difficult decision, especially if the user preferences get
more and more complex regarding constraints in several dimensions.

ID movie rating running time release year genres

1 Star Wars 8.8 125 1977 Action, Sci-Fi
7 Reservoir Dogs 8.4 99 1992 Crime, Drama, Thriller
23 Indiana Jones II 7.6 118 1984 Action, Adventure, Fantasy
27 Die Hard 2 7.1 124 1990 Action, Thriller, Crime
... ... ... ... ... ...

Tab. 1: Sample result of Bob’s 4-dim preference query.
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Clustering approaches like k-means ensure that these large and confusing sets are encapsu-
lated and presented in a clear manner to the user. However, if we consider the individual
domains of each dimension, traditional distance measures, like the Euclidean distance,
stretch to their limits. Since these dimensions have quite diverse domains, using traditional
distance measures in k-means meet problems with this use case, because the domains are
not set into an equal relation to each other. To apply k-means, one has to adjust the domains
before the clustering process by normalization. However, this might be a very challenging
task due to various and versatile domains.

In our work, we adapt the Borda social choice voting rule for cluster allocation in
recommender systems. Each object is considered equally in each dimension and receives
a “voting”, which yields to a competitive result compared to a cluster allocation using
traditional distance measures. In order to present our novel decision criterion we created
an online movie recommender system to facilitate a visual comparison of using different
distance measures for k-means clustering. Furthermore we include quality measures like
Silhouette and Davies-Bouldin for choosing the possibly best number of desired clusters
[DB79, Ro87].

2 Background
In general, social choice deals with the aggregation of individual preferences for managing
social assessments and ruling. Borda is a voting rule, which is omnipresent in political
or other elections, e.g., the Eurovision Song Contest. As mentioned in [De92], Borda is a
very appealing approach to consider each dimension in a multi-dimensional scenario in
an equal manner. We adapt Borda for the allocation of objects in k-means to one and only
one cluster and therefore more influence of smaller domains are allowed, because every
candidate receives equal weighed votes from each voter.

Given k candidates Ci , and d voters Vj , where each voter votes for each candidate. Each voter
Vj has to allocate the voting vjm ∈ {0, ..., k − 1}, m = 1, ..., k, where all vjm are pairwise
distinct. Afterwards, the votes for each candidate are summed up as bordaSumCi =

∑d
l=1 vli ,

while the Borda winner is determined as bordaWinner = max{bordaSumCi | i = 1, .., k}.
If we apply this approach to our clustering framework, the candidates correspond to the
available clusters and the voters to the dimensions of the d-dimensional object which should
be allocated to a cluster. Then, for each dimension votes are assigned for the distances
between the object and the centroids of the clusters. While the closest distance receives a
maximum vote of k-1, the second closest a vote of k-2, the largest distance obtains a vote
of 0. After the voting the sum of all votes for each cluster and subsequently the winner
is determined. We integrated this novel approach into the basic k-means++ clustering
algorithm as it is defined in [AV07]. Using Borda, dimensions, which would not be equally
considered because of a smaller domain, get equal weighted votes like the other dimensions
and have a higher influence on the clustering process. Finally we avoid the overhead of
normalization.

500 Johannes Kastner, Nemanja Ranitovic, Markus Endres



Borda Movie Recommender 3

Table 2 shows an example based on the dataset in Table 1 for our Borda cluster allocation.
We want 3 clusters and present the allocation for movie (27). The centroids of the initial
clusters C1,C2,C3 are the movies with the IDs (1), (7), (23). For each dimension the distances
between movie (27) and the centroids are calculated. The Borda votes are depicted in
parentheses, e.g., the dimension rating is closest to C3 and therefore gets a vote of k − 1 = 2.
The second closest centroid is C2 with vote 1, and C1 gets the vote 0. Finally, C2 with movie
(7) as initial centroid is determined as the bordaWinner with a bordaSum of 5. Compared
to the Euclidean distance we obtain a more concise result for the cluster allocation, due
to ranking the values in each dimensions according to their closeness. Note that we used
the Jaccard coefficient3 for calculating the similarity of genres between the movie and the
centroid and that a Jaccard coefficient of 1.0 is the best value.

Movie (27): Die Hard
Dimension C1 C2 C3
rating 1.70 (0) 1.30 (1) 0.50 (2)
running time 1.00 (2) 25.00 (0) 6.00 (1)
release year 13.00 (0) 2.00 (2) 6.00 (1)
genre 0.25 (1) 0.50 (2) 0.20 (0)∑

3 5 4

Tab. 2: Cluster allocation for movie (27).

3 Showcase Application

Our demonstration scenario showcases a web application based recommender system on the
IMDb. The application assists the users in finding movies which satisfy their preferences.
In order to evaluate our novel Borda clustering technique in a user study, we added an
evaluation mode as well. The user interface of our web-based demo-application consists of
a search bar where users can determine their preferences for movie search (cp. Fig. 1). On
the one hand, favorite actors can be searched and genres selected in the drop down list. On
the other hand, further features of movies can be chosen, such as the release year and the
length as an interval and the IMDb movie rating.

In our demo application always two clustering setups can be compared side by side. For
each setup the distance measure, the number of desired clusters and the initialization with
k-means++ can be chosen. Furthermore we allow the user to choose the number of desired
clusters k, based on clustering quality measures. To find the most promising k, we used the
quality measures Silhouette and Davies-Bouldin from which the user can choose a value.

In an extensive user study with 165 participants we evaluated our novel Borda social
choice based k-means++ clustering technique against k-means++ using Euclidean and
Canberra distance in order to investigate the quality of our approach on different scenarios.
In each scenario sets between 50 and 60 movies where evaluated. We used this demo to
show that our Borda clustering approach reaches adequate results considering the internal

3 Jaccard: J(A, B) = |A∩ B |/ |A∪ B | for two sets A and B. Jδ (A, B) = 1 − J(A, B)
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Fig. 1: Showcase recommender search menu.

clustering quality. Furthermore we reached satisfying results in our study, so our Borda
approach constitutes a worthwhile alternative to the basic k-means++ with traditional
distance measures with the benefit of avoiding normalization before the clustering process.

We also investigated runtime and the number of iterations until a stable clustering is
reached in [EKR19]. In summary, our Borda approach works nearly as good as the classic
k-means algorithm w.r.t. the runtime, though the complexity of the Borda voting rule is
O(nd · k2 · log(k)) where n is the number of d-dimensional objects, which get clustered in k
clusters. However, our approach needs only a fractional part of iterations until termination
and therefore is an alternative to k-means++ clustering using traditional distance measures
without the overhead of normalization. While the convergence of our approach depends
on the initial seeding, especially in higher dimensions, k-means++ provides an auxiliary
benefit for our alternative approach.
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RelaX: A Webbased Execution and Learning Tool for
Relational Algebra

Johannes Kessler1, Michael Tschuggnall2, Günther Specht3

Abstract: The relational model and especially the relational algebra is the fundament of each relational
database system and thus content of almost every database lecture. Even though there exist a few tools
allowing to experiment with relational algebra, a common way to learn it is still by formulating queries
on paper, without the option of checking them for syntax or even executing them. To fill this gap and
to support students in their learning process, we propose RelaX, a webbased tool which is capable of
executing arbitrary relational algebra statements on arbitrary datasets. By drawing interactive operator
trees corresponding to the queries, it is also possible to compute the final result in a step-by-step
manner. Finally, RelaX is also equipped to execute SQL queries and to automatically translate them to
relational algebra.

Keywords: relational algebra, database systems, learning tool

1 Motivation

The relational model and the relational algebra have been proposed in 1970 by E. F. Codd
[Co70] and have evolved to be the theoretical fundament of almost every modern relational
database system. Through its procedural structure it is very well suited to transmit an
understanding of the basic operations of the relational model, and is thus often utilized
for (academic) teaching purposes as a solid base for a subsequent introduction to SQL.
While there exist numerous possibilities to learn the latter using various database systems,
query tools and corresponding datasets, relational algebra is still mostly taught purely
theoretically due to the lack of proper execution tools. The two fundamental differences
to SQL in terms of learning support can be summarized as follows: First, while the SQL
standard defines a clear syntax with minor variations in current database systems, there is no
official, standardized syntax for relational algebra. This leads to the problem that notations
often differ significantly from one text book or author to another, making the verification
of correctness a cumbersome procedure for students as well as for tutors. Second, SQL
can be executed and tested directly on different database systems. On the contrary, tools
that allow the execution of relational algebra statements are rare (e.g., radb [Ya18], IRA
[Mu18] or Relational [To18]) and come with certain limitations. These include restrictions
1 Department of Computer Science, Universität Innsbruck
2 Department of Computer Science, Universität Innsbruck, michael.tschuggnall@uibk.ac.at
3 Department of Computer Science, Universität Innsbruck, guenther.specht@uibk.ac.at
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to predefined datasets (IRA) or general usability flaws in terms of tool installation/execution
(radb, Relational), editing queries (IRA) or creating, importing and sharing datasets. In
addition, advanced but yet important operators like GROUP BY (γ) are not supported by any
of those tools. Finally, the execution of relational algebra statements is usually done by
transforming queries to SQL and utilizing a relational database system in the background
(IRA, radb, Relational), making results difficult to understand.

2 RelaX

With RelaX4 we created a webbased learning tool for relational algebra, which addresses
the previously mentioned problems by allowing to execute arbitrary relational algebra
statements on predefined or custom datasets, offering a rich set of operators.

Fig. 1: The RelaX editor.

Syntax and Editor

Analogously to SQL the statements are thereby treated as source code, which allows
comfortable editing with syntax highlighting, auto completion and the possibility of stating
comments. For query formulation, it is possible to directly use the mathematical notation as
well as relying on corresponding key words. For example, when using a selection, both the
use of σ as well as sigma is possible. With the proposed editor shown in Figure 1 it is thus
possible to develop step-by-step solutions, while at the same time addressing and avoiding
syntax errors directly during editing. For example, variant B in Figure 1 constructs the final
solution S4 using the three intermediate steps S1 − S3.

With respect to syntax we rely on the definitions given by Kemper and Eickler [KE15] as
well as Garcia-Molina et al. [GMUW08]. During the process of creating RelaX with the aim

4 RelaX stands for Relational Algebra eXecutor and is available at http://dbis-uibk.github.io/relax
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of supporting every possible relational algebra operator/formula, we came across several
ambiguities as well as missing information in literature. For example, even for a simple
operator like the natural join there exist serveral definitions, which either merge attributes
with same names, inherit the corresponding attribute from the left or right table or use both
attributes for the result. Among several other similar problems, the lack of definitions of
proper scoping and precedence of operators had to be solved. With RelaX, we resolved these
issues by folllowing the semantic of SQL whenever possible.

Execution

For the execution, we laid the main focus on transparency and reproducability, i.e., such
that users can reconstruct the final result in a step-by-step manner. Consequently, statements
are not transformed to SQL and executed in an external database system to retrieve results,
but rather interpreted and executed directly in relational algebra. For this, a statement is
transformed to and visualized as an interactive operator tree. For example, the statement of
variant B from Figure 1 results in the operator tree depicted in Figure 2. Thereby, users can
click on every node of the tree to not only inspect the intermediate result up to this node, but
also to verify the corresponding schema and view other information like which attributes
have been used for a natural join.

As we are interested in providing a transparent tool with respect to understandability,
statements are not optimized at all and rather executed as a beginner would except it.
Therefore, all operations are implemented such that they preserve the order of tuples of
the original relation. For joins, a nested loop join is implemented as it is the most intuitive
variant. Finally, also grouping and aggregation is implemented in a comprehensible way.

3 Operators, Datasets and SQL support

RelaX supports all common unary operators like selection (σ), projection (π) or renaming
(ρ,←) and can handle several join variants (e.g., ./, n, ./) as well as set operations (∪, ∩, −)
and division (÷). Besides a grouping operator (γ), also the sorting operator τ as proposed
by Garcia-Molina et al. [GMUW08] has been implemented. To allow users to construct
a step-by-step solution, we introduced variables as can be seen in variant B of Figure 1.
A comprehensive description on all supported operators, their usage as well as syntax in
general is provided in the help section of the tool.

With respect to datasets – where statements can be executed on – we provide several
predefined, commonly used datasets that can be used directly (e.g., the university schema
from Kemper and Eickler [KE15]). Moreover, it is possible to include custom datasets using
Github-Gists5, SQL dumps or by editing them directly in an embedded spreadsheet editor.

5 https://gist.github.com/
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Fig. 2: Automatically computed operator tree, optionally showing intermediate results.

Finally, RelaX also supports the formulation of SQL statements6 that are automatically
transformed to relational algebra, which then can be executed and inspected using the
operator tree. With this functionality, students can more easily learn SQL if the concepts of
relational algebra are understood, but also vice versa.

4 Conclusion

With RelaX we created a webbased learning tool for relational algebra which allows the
execution of arbitrary statements on predefined or custom datasets. Conceptualized for the
use in teaching we integrated several functions and means such as a comprehensive editor
and operator tree visualization, all of which should help students understand relational
algebra better.
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MSDataStream — Connecting a Bruker Mass Spectrometer
to the Internet

Roman Zoun1, Kay Schallert2, David Broneske1, Wolfram Fenske1, Marcus Pinnecke1,
Robert Heyer2, Sven Brehmer3, Dirk Benndorf2, Gunter Saake1

Abstract: Metaproteomics is the biological research of proteins of whole communities comprised of
thousands of species using tandem mass spectrometry. But still it follows a sequential non parallelizable
workflow. Hence, researchers have to wait for hours or even days until the measurement data are
available. In our demo, we show a way to decrease the smallest unit of the workflow to a minimum to
realize a near real time stream processing system on a fast data architecture.

Keywords: Internet of Things; Bioinformatics; Mass Spectrometry; SMACK Stack; Streaming

1 Introduction

Metaproteomics is the biological research of proteins of whole communities with thousands
of species (e.g. from ocean samples or the human gut) [Ma07]. Metaproteomics is very
important for diagnosing diseases, optimizing biogas plants, etc. [Ma07, PF17]. This
research relies on a mass spectrometer, that is figuratively speaking a huge scale for tiny
particles [Ma07]. The mass spectrometer measures the mass of parts (peptides) of a protein
complex. Proteomics and metaproteomics follow a similar workflow, as shown in Figure 1.
The workflow encompasses the following steps: (1) The biological sample gets purified,
in a way that only proteins are left in the sample. (2) The proteins are split into smaller
parts, called peptides. (3) The peptides are measured in the mass spectrometer. (4) The
mass spectrometer transforms all peptides into a digital signal, one peptide is represented as
one spectrum (~2 hours) [Ma07]. (5) Conversion of the digital signal into a readable format,
such as MGF (~1 hours) [Ki10]. (6) Compare the experimental spectra with real-world
proteins to identify the experimental data (~2 hours) [Mi13]. (7) The identified spectra need
a validation to remove false positive results (~2 hours) [El10]. (8) Biological researchers
analyze the experimental results. All these steps are sequentially executed and it takes
hours to complete. The workflow has not changed for years and newer devices increase the
amount of data produced by a mass spectrometer (~20GB per experiment, ~45000 spectra,
1 University of Magdeburg, Working Group Databases and Software Engineering, Germany, {first-

name.lastname@ovgu.de}
2 University of Magdeburg, Chair of Bioprocess Engineering, Germany, {firstname.lastname@ovgu.de}
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Fig. 1: The current (meta-)proteomics research workflow.

~6 spectra/second) and the current file-based workflow is outdated [He17]. Especially in
clinical use cases, the goal is to process the data in real-time, but this is infeasible with
the current approach. The steps 1, 2 and 3 are realized in a laboratory, step 4 is done
by a mass spectrometer, but the other steps are completely digital and can be optimized
using IT. Currently, the smallest parallelizable unit is a whole experiment. Since the mass
spectrometer measurement and digitalization duration (~2 hours) cannot be avoided, we
shrink the smallest unit after the fourth step to a single spectrum instead of a whole
experiment. That means, we connect a mass spectrometer to the cloud for outsourcing the
calculation and overlap mass spectrometer processing (3-4) with data processing (5-8) by
using a streaming-based architecture [Wa16]. We choose a Fast data architecture, since
we need near real time processing of huge amounts of mass spectrometry data [Wa16].
Specifically, we deployed a SMACK Stack4. In this demo, we present a cornerstone of
our architecture, our tool MSDataStream. The tool is responsible for grabbing the single
spectrum data from the mass spectrometer as it arrives, converting it into a readable format
and streaming the data to the cloud for processing. In the cloud each spectrum needs a
comparison to all peptides in our database (~27 millions) and validation of the matched
results using machine learning classification.

2 System Architecture

For our development, we collaborate with Bruker Daltonik GmbH, a mass spectrometer
company from Bremen, Germany. Each of their devices are connected via a digitizer to a
computer. The digital signal is collected in a proprietary RAW file format. Additionally, the
measurement software provides structure and meta data to index spectrum data that belongs
together. Since each manufacturer uses their own RAW file format, Bruker provided us
with a library (DLL file) to access the digital spectrum data. The index data is stored in an
SQLite database and provides the location of spectrum data in the RAW file. The index
structure consists of 16 tables that describe meta-information and the spectrum location

4 pipeline of Big Data technologies: Spark, Mesos, Akka, Cassandra, Kafka
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for each single spectrum. MSDataStream reads the meta-information for a single spectrum
from the SQLite index and extracts the spectrum data from the RAW file via the DLL.
Afterwards, MSDataStream converts the spectrum data into a readable format. Then, several
pre-processing methods increase the quality of the spectrum data. Finally, MSDataStream
sends the data to the cloud via Kafka broker for further processing or to write the data
into a file. Summarized, MSDataStream checks periodically (e.g. every 2 seconds) for new
measured data, collects it and produces messages. The system architecture is shown in
Figure 2. MSDataStream requires several parameters for the execution. We implemented

Fig. 2: The flow of the mass spectrometer data through the MSDataStream software

a JavaFX interface, which queries MSDataStream tasks and helps the user to configure
the parameters. After sending the first data messages, the user waits until the results are
generated from the fast data system and shown in a live updated visualization.

3 Streaming Workflow
The streaming data processes work for each spectrum separately (Figure 3). (1) Each
spectrum, which arrives at the cloud system first gets prepared for the identification step
with several filters on the data. (2) This step requires real-world protein data (sequence
database), which is already in the system [Zo18a]. (3) The comparison of the experimental
spectrum with the real world data produces peptide spectrum matches [Zo18b]. (4) Each of
these matches needs validation, which is based on a machine learning classifier [Zo18c].
(5) Validated matches are stored as results in our database. The database stores all the
experiment data such as validated results, spectra data and the proteins.

4 Demo Walkthrough
Our tool MSDataStream works with live measured data or with already finished measure-
ments. For the demonstration, we will use a laggy version of the second method with time
delays, which simulates live measurement. After a demo of the measurement process on a
model of a mass spectrometer, the user can use the MSDataStream UI to configure and start
a streaming process. During the process, the user will be shown the throughput of the system
in the Apache Spark UI. Furthermore, the user can take a closer look at the components of
the SMACK stack deployment in Marathon and mesos webUI. Afterwards, we show a live
and continuously updated visualization of the experiment results, i.e., protein list.

MSDataStream — Connecting a Bruker Mass Spectrometer to the Internet 509
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Fig. 3: The metaproteomics data analysis workflow on a SMACK stack.
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Database-Supported Video Game Engines:
Data-Driven Map Generation

Daniel O’Grady1

Abstract: Video game engines can benefit greatly from being tightly coupled with database systems.
To make this point and exemplify the similarities in database and game engine technology, we
demonstrate a data-driven approach to generate maps for video games, expressed purely in SQL. The
demonstration will feature such a live database-supported game that is playable on-site.

1 A Marriage of Game and Database Engines

Early video games were conceived as little more than a pastime, but the video game industry
has grown immensely since its beginnings in the mid-twentieth century [Ke01]. Video
games have since seeped into many aspects of our lifes, such as education, simulations, and
serious gaming in our work life. Games further hold a significant economic impact on the
world, grossing billions of dollars every year, and employing thousands of workers [Fa18].
Contrasting the humble beginnings of video games, today’s games are becoming ever more
computationally demanding, with hundreds of players playing the game at once, huge
persistent worlds to explore, and large numbers of objects to interact with.
To avoid implementing common components over and over, numerous video game engines
have been developed throughout the years, which offer commonly required functionality
to game developers. Possible game engine components include, but are not limited to:
(1) Simulation of physics, (2) collision detection, (3) pathfinding, (4) control of non-
player characters (NPCs or “AI”), (5) network communication, (6) video and audio output,
(7) processing input from the player, (8) creating and managing game worlds and objects.
Most of these components have to deal with large amounts of information that has to
be processed rapidly – a true forte of database systems. Unfortunately, databases are
predominantly used as little more than dumbed-down persistent storage in the context of
video games. This strongly contrasts with the database community’s creed to move the
computation closer to the data. Indeed, in this paper we propose a stronger connection
between video games and database systems, by moving parts of a game’s internals to the
database system, to benefit from database system technology: (1) Selecting a subset of
objects is a task where databases excel. This is interesting for finding objects in close
vincinity to a player, visual clipping during rendering (“culling”), or collision detection.
1 University of Tübingen, Department of Computer Science, daniel.ogrady@uni-tuebingen.de
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(2) Updating the state of many game objects in bulk, as proposed by Gehrke et al. [Wh07].
(3) Guaranteeing consistent state through transactions.

As we are aware that implementing algorithms in SQL may seem foreign to many game
developers, we aim to couple the database tightly with the video game engine while not
exposing developers to the intricacies of database internals.
To exemplify our claim, this demo showcases declarative map generation, which is the
automatic generation of a playing field for games. The generation either happens before the
player dives into the game or when they reach the border of the field to create the illusion of
an infinite world. This paper focuses on real-time strategy (RTS) games. In RTS games,
players control multiple game figures (so-called units) on a playing field, the map. Units
are instructed to collect resources, attack enemy units or just move to a new position. This
calls for large open spaces to maneuver units properly, so maps can not just be completely
random but need certain properties to be compelling to the player.

2 Data-Driven Iterative Map Generation

The maps we create are comprised of tiles, arranged in a two-dimensional grid. Each tile
represents a certain type of terrain specific for the game the map is generated for. Such a set
of tiles could be walkable �, wall �, coast ∵, and water ≈. Our approach combines these
into modules, which are predefined clusters of 3 × 3 tiles.2 Fig. 1 shows an example of a
module representing a piece of horizontal shoreline on the left. The map generation starts
with a seed of one module and then joins modules to the outer edges repeatedly. The input
for the algorithm is a tuple (T ,M, C,S) with

1. T : a set of tiles,
2. M: a relational representation of modules3, each consisting of 3 × 3 tiles ∈ T ,
3. a relation C ⊆ T × T describing the compatibility of tiles (explained below) and
4. S ∈ M: an initial seed module.

∵

≈

�

∵ ∵

≈ ≈

� ∵

→
≈

∵

∵

←
≈

∵

�

C
freq tile with
2 � �
1 � �
3 ∵ ∵
1 ≈ ≈
1 ∵ ≈

≈
≈

≈
≈ ≈
≈ ≈

≈ ≈

Fig. 1: Two compatible modules. Each pair of neighbouring tiles in the adjacent edges can be joined
on the compatibility table C after extracting the edges (only shown for two edges of the left module).

2 While those dimensions have turned out to be rather convenient for defining modules, any other rectangular
dimensions work as well.

3 Many tabular module encodings are conceivable and we abstract from these here.
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1 WITH RECURSIVE map(x,y,tile) AS (
2 (SELECT S)
3 UNION ALL
4 (SELECT ...
5 FROM C, map, M
6 WHERE
7 C.tile = edge(map) AND
8 C.with = edge(M) AND
9 NOT(<termination condition>)

10 ))

Fig. 2: Pseudocode for the map generation. It
creates a table map of tiles tile positioned at
coordinates x,y. edge(...) is a function that
produces edges as shown in Fig. 1 on the left.

map
x y tile
1 1 ≈
1 2 ≈
... ... ...

n m ∵

./

properties
tile res_type res_dens . . .
≈ 'water' 100 ...
∵ 'sand' 45 ...
� NULL 0 ...
� 'stone' 100 ...

Fig. 3: Joining a map of size n × m on a table
of properties. Here, each tile type is associated
with a resource type, a resource density, and
possibly other information.

The algorithm selects the edges of all modules in M and of the outermost modules of
the map together with the direction they are facing. An edge is comprised of the three
adjacent tiles of either side on a module. Take Fig. 1, where two of the four edges of the left
module are extracted (denoted by and ). Each edge of the map is then joined with a
compatible module inM. Two modules are said to be compatible if their adjacent edges (the
ones facing opposite directions) are compatible in all neighbouring tiles. Tiles, in turn, are
compatible with each other if they can be joined on C, as is shown in Fig. 1. An additional
value freq per compatibility rule denotes the frequency, which allows us to control how
likely a rule is selected in ambiguous situations where more than one compatibility rule
qualifies. A formulation of this iterative map expansion in pseudo SQL is shown in Fig. 2.
Starting with a small seed S, the intermediate result is gradually expanded by recursively
joining matching modules to it. Usually, the termination condition limits the map size, but
can also be bound to other constraints. This type of iterative map generation is a perfect
match for a recursive common table expression.
The data-driven nature of this algorithm enables game developers to easily control this
process with their own modules and compatibilities. For example, adding a rule (5, ≈, �) to
C in Fig. 1 would allow water to be generated next to walls. In fact, this would occur more
often than, say, water next to water, because of the higher frequency of 5 of the rule.
To finalise the map, it is joined with a tile property table to attach additional semantics that
are required for a particular game. This is shown in Fig. 3, where the result of the recursive
CTE map is joined with a table properties which contains resource information for each
tile type. The map is subsequently converted into a format that is understood by the game
engine. Then, actual gameplay commences.

3 Demonstration Setup

The on-site demonstration will showcase the discussed map generation algorithm by tapping
into the OpenRA4 engine, an engine specifically tailored to RTS games. OpenRA is written
4 https://www.openra.net
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in C#, and is still under active development since 2007. The map generation is implemented
in pure SQL and runs on a PostgreSQL 10 database system. The process of generating a
map is triggered from within a game implemented on top of OpenRA by sending a query to
the database and receiving a stream of tuples. Those are then used to create the native data
structure provided by the engine, just as if the map was read from disk.5

Fig. 4: Screenshot of a generated map with pools
of water with shores and enclosed walkable ter-
ritory. The game will be playable on site.

To demonstrate the capabilities of our ap-
proach, we will bring canned tilesets with us.
These tilesets will have realistic size in terms
of modules and compatibilities and will be
used to produce maps of typical dimensions
for OpenRA, between 40 × 40 and 200 × 200
tiles. But the audience is invited to propose
changes to the input data to explore how it
affects the generated maps. The generation
process takes about 60 milliseconds,6 which
allows for rapid re-generation of maps to com-
pare them with each other.7 We will also bring
the source code of the modified OpenRA en-
gine for interested audience members to in-
spect the details of our implementation and
convince themselves that the fingerprint we
left on the engine is rather small.
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Protobase: It’s About Time for Backend/Database Co-Design

A Demo on Rapid Microservice Prototyping for Third-Party Dataset Analytics

Marcus Pinnecke1, Gabriel Campero 1, Roman Zoun1, David Broneske1, Gunter Saake1

Abstract: In this interactive demonstration, we show the current state of Protobase, our main-
memory analytic document store that is designed from scratch to enable rapid prototyping of efficient
microservices that perform analytics and explorations on (third-party) JSON-like documents stored in
a novel columnar binary-encoded format, called the Cabin file format. In contrast to other solutions,
our database system exposes neither a particular query language, nor a fixed REST API to its clients.
Instead, the entire user-defined backend logic, whose user code is written in Python, is placed inside a
sandbox that runs in the systems process. Protobase in turn exposes a user-defined REST API that
the (frontend) application interacts with. Thus, our system acts as a backend server while at the same
time avoids full exposure of its database to the clients. Consequently, a Protobase instance (database
+ user code + REST API) serves as (the entire) microservice - potentially minimizing the number of
systems running in a typical analytic software stack. In terms of execution performance, Protobase
therefore takes the inter-process communication overhead between backend and database system out
of the picture and heavily utilizes columnar binary document storage to scale-up for analytic queries.
Both features lead to a notable performance gain for non-trivial services, potentially minimizing the
number of required nodes in a cloud setting, too. In our demo, we overview Protobases internals,
spot major design decisions, and show how to prototype a scholarly search engine managing the
Microsoft Academic Graph, a real-world scientific paper graph of roughly 154 mio. documents.

Keywords: NoSQL; Document Stores; Analytics; Rapid Prototyping; Backend/Database Co-Design

1 Analytics on Schema-Free and Hierarchical Datasets

There is a common saying that the early bird catches the worm. This popular phrase serves
as an advice on performing an action as soon as possible before competitors are able to do
so to maximize the own fitness. Therefore, it is not surprising that service providers have a
certain need to offer their solutions to the market quickly. Consequently, agile development
methods2 have established themselves as de-facto standard for many developer teams today.
In such a context, tools that help the agile workflow are favored while cumbersome non-agile
tools are typically avoided. Especially for agile microservice development, document stores
rather than relational systems are often the first choice when it comes to large-scale data
management. One reason for choosing document stores is the native support of the first-class
citizen data exchange format for many (web) developers, the JavaScript Object Notation
1 DBSE Working Group, University of Magdeburg, (pinnecke|campero|broneske|zoun|saake)@ovgu.de
2 Manifesto for Agile Software Development: https://agilemanifesto.org
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Fig. 1: Protobase architecture including client request to and interaction with user code

(JSON) format3. Even if agile development is not an argument, it is likely that a team is
confronted with JSON when working with a third-party data source, anyway. Since it is
expressive, flexible, human readable, and easy to parse, JSON (or XML as an alternative)
is a prominent serialization format for data exchange. However, exploring and analyzing
large repositories of such JSON files can quickly become a time-consuming, non-trivial
task [LKC+17, WZS+18].

A third-party provided JSON file (or document) is typically small: only a handful of
properties of potentially incomplete records are contained on each tree level, and the typical
maximum depth of a JSON tree is smallish, too. For example, a request to GitHub’s4a

repository API may return only a single document of approx. 5 KB size. Such a document
contains around 50 (mostly string-typed) properties, and one nested record with around
20 properties providing some information on the repository owner. Naturally, this is not
a good starting point for any analytic system. Therefore, a typical document store is
operational rather than analytical, and will store a single document as a single unit of
information following a key-value pair serialization (maybe binary encoded, such as BSON4b

or UBJSON4c). Since analytics favor columnar storage schemes instead of key-value storage
schemes, it is common practice for analytics on a high number of documents to be based on
several technologies in orchestration. Namely, a state-of-the-art software stack may consists
of Kubernetes4d, Docker4e, MongoDB4f, Elasticsearch4g, Spark4h, and others. Hence, many
systems are needed to fulfill a particular task - which is a challenge by its own [LHB13] -
even if the queries are quite simple.

3 RFC 7159, The JSON Data Interchange Format (Marc 2014): https://tools.ietf.org/html/rfc7159
4

aGitHub: https://github.com, b Binary JSON: http://www.bsonspec.org, c Universal Binary JSON: http://
www.ubjson.org, d Kubernetes: https://www.kubernetes.io, e Docker: https://www.docker.com, f MongoDB:
https://www.mongodb.com, g Elasticsearch: https://www.elastic.co/de, h Spark: https://spark.apache.org

516 Marcus Pinnecke et al.

https://tools.ietf.org/html/rfc7159
https://github.com
http://www.bsonspec.org
http://www.ubjson.org
http://www.ubjson.org
https://www.kubernetes.io
https://www.docker.com
https://www.mongodb.com
https://www.elastic.co/de
https://spark.apache.org


Protobase Demonstration BTW 2019 13

We overcome the limitation that naturally leads to key-value pair serialization: we convert
a set of JSON files into a single file that is formatted columnwise and binary encoded,
a Cabin file. Likewise, we focus on backend/database co-design for development teams
that are issued with a particular task: quickly deploying fast-responding microservices
to create novel value on third-party, schema-free, hierarchical, read-mostly datasets by
providing analysis, aggregation and exploration features. As a case study, we decide for a
scholar search engine motivated by our previous work [CJP+18]. Our experiences call for a
Protobase instance directly deployed as backend for a microservice backing a scholar
search engine frontend (called Pan).

2 The Protobase Document Store

Protobase5 is our open-source document store that executes backend code for analytic
applications in a sandbox inside the database system process (see Figure 1 for its architecture).

Overview Backend code is written in Python, exposes a REST-based user-defined service,
and potentially accesses Protobases query engine and storage engine directly. Backend
code is executed by the runtime engine in Protobase that handles HTTP requests, invokes
user-defined code and manages delegation between components. However, backend code is
primarily used for the user-defined microservice but may be intermixed with pre-defined
components (such as Protobases control panel) or other components. Underneath, the
storage engine operates on a memory resistant database loaded once from a Cabin-formatted
database image. To take advantage of modern processors asynchronous capabilities, the
entire architecture stack is supported by our parallelization framework.

Instances The interaction between a backend and our database system does not require
inter-process communication. This is a good fit for microservice prototypes due to (a) data
marshalling can be kept to a minimum, and (b) less systems are required to get things done.
In a sense, a service backed by Protobase (an instance) acts as a specialized database
system exposing a user-defined, domain-specific interface that frontends interact with.

Cabin Files Our data model is our novel strict document data model which is similar
to the JSON data model (cf. [BRSV17] for a basic theoretical framework) but with two
restrictions: (i) all property values of type array must contain elements of the same type,
and (ii) arrays of arrays are invalid. Both (i) and (ii) allow us to efficiently recursively
transform any strict document into a columnar document re-written to organize its data
in a columnar fashion. In detail, a columnar document (a) stores keys and values in two
separate columns grouped by value type, (b) aggressively performs null compression, and
(c) converts properties mapping to arrays of objects to an equivalent (sparse) columnar
table. Multiple documents are bundled, binary-encoded and lightweight compressed into a
Columnar Binary-Encoded JSON (Cabin) file6.

5 Protobase code repository: https://github.com/protolabs/protobase
6 Cabin file format specification: http://www.cabinspec.org
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3 Demonstration Outline

In our demo, we show an example of (fullstack) prototyping of a (tiny) scientific research
search engine (called Pan) using Protobase and the Microsoft Academic Graph7 as
dataset.

Pan is a web app rendering information fetched from a microservice. For ease of simplicity,
Pan offers four features: (1) displaying publication information given a paper title, (2)
listing publications within a certain time span given a specific author’s name, (3) displaying
quantitative information, and (4) lists publications via the is-cited-by relationship. Finally,
we implement a microservice in Protobase to provide a backend for Pan.

Outline The outline for our demonstration on working with Protobase is as follows:

(i) A brief introduction on fundamentals of Protobase: the systems architecture and
instance model (incl. structure, interaction user code and system, and database I/O).

(ii) Showcasing the database meta information provided by Protobase to get informed
on the dataset at hand (e.g., property names, type conflicts, or schema information).

(iii) Finally, we show several concepts and some code snippets to outline how to query,
aggregate, and how to use the built-in cache and indexing mechanism in Protobase.

The audience is invited to play around with Pan and Protobase.

References
[BRSV17] Pierre Bourhis, Juan L Reutter, Fernando Suárez, and Domagoj Vrgoč. JSON: Data

Model, Query Languages and Schema Specification. In Proceedings of the Symposium
on Principles of Database Systems (ACM PODS), pages 123–135, 2017.

[CJP+18] Gabriel Campero, Anusha Janardhana, Marcus Pinnecke, Yusra Shakeel, Jacob Krüger,
Thomas Leich, and Gunter Saake. Exploring Large Scholarly Networks with Hermes. In
International Conference on Extending Database Technology (EDBT), pages 650–653,
2018.

[LHB13] Harold Lim, Yuzhang Han, and Shivnath Babu. How to Fit when No One Size Fits. In
Conference on Innovative Data Systems Research (CIDR), Online Proceedings, 2013.

[LKC+17] Yinan Li, Nikos R Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein, and Donald
Kossmann. Mison: A Fast JSON Parser for Data Analytics. Proceedings of the VLDB
Endowment (VLDB), pages 1118–1129, 2017.

[WZS+18] JunPing Wang, WenSheng Zhang, YouKang Shi, ShiHui Duan, and Jin Liu. Industrial
Big Data Analytics: Challenges, Methodologies, and Applications. arXiv preprint
arXiv:1807.01016, Online Proceedings, 2018.

7 Microsoft Academic Graph as part of the Open Academic Graph: https://aminer.org/open-academic-graph

518 Marcus Pinnecke et al.

https://aminer.org/open-academic-graph


cba

Herausgeber et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Zuverlässige Verspätungsvorhersagen mithilfe von TAROT

Christoph Stach1, Corinna Giebler1, Simone Schmidt1

Abstract: Bei der Einhaltung von Schadstoffwerten nehmen öffentliche Verkehrsmittel eine immer
entscheidendere Rolle ein. Daher wird vermehrt darauf geachtet, deren Attraktivität zu erhöhen.
Ein wichtiger Punkt hierbei ist die Vorhersagegenauigkeit von Verspätungen zu verbessern, damit
Fahrgäste entsprechend planen können. Die aktuell angewandten Ansätze sind häufig ungenau, da sie
die zur Verfügung stehenden Daten nicht ausreichend nutzen. In diesem Beitrag stellen wir daher mit
TAROT ein System vor, das mittels prädiktiver Analysen die Vorhersagegenauigkeit von Verspätungen
verbessert, indem es in den Modellen Verspätungsfortpflanzungen berücksichtigt. Darüber hinaus ist
es in der Lage, im Fall einer Störung augenblicklich auf ein besseres Vorhersagemodell umzusteigen
und auf sowohl schleichende als auch abrupte Veränderungen automatisch zu reagieren. Die Vorteile
dieser Eigenschaften lassen sich in unserem TAROT-Demonstrator anhand von vier repräsentativen
Anwendungsszenarien zeigen. Auch wenn sich die gezeigten Szenarien alle auf die Verspätungs-
vorhersage von S-Bahnen beziehen, lassen sich die Konzepte von TAROT auch auf viele andere
Anwendungsbereiche (z. B. zur Bestimmung von Produktionszeiten in der Industrie 4.0) anwenden.

Keywords: Verspätungsvorhersage; ÖPNV; deskriptive Analyse; prädiktive Analyse; Concept Drift.

1 Einleitung

Nicht erst seit den ausgesprochenen Dieselfahrverboten sind die Bürger für das Thema
„Luftreinhaltung“ sensibilisiert. Eine Möglichkeit zur Reduktion der Luftbelastung stellen
öffentliche Verkehrsmittel dar. Große Verspätungen und Ausfälle erschweren den Umstieg
allerdings. Auch das Bundesministerium für Verkehr und digitale Infrastruktur hat diese
Problematik erkannt und sucht nach Lösungen, mit deren Hilfe Fahrplanauskünfte genauer
und Reiseplanungen erleichtert werden sollen [BMVI18].

Gegenwärtig werden zwar viele Fahrtdaten erfasst, deren Potential wird bei der Fahrplanung
und der Verspätungsvorhersage jedoch nicht ausgenutzt. Abb. 1(a) stellt vereinfacht dar,
wie die Fahrplanung erfolgt. Fahrtdaten werden in Echtzeit erfasst und historisiert. Wurden
ausreichend Daten gesammelt, werden deskriptive Data-Mining-Techniken darauf angewandt,
um ein Modell zu erstellen, aus dem hervorgeht, wie lange Fahrten abhängig von bestimmten
Einflussfaktoren dauern. Mithilfe dieses Modells kann ein Fahrplan erstellt werden. Dieser
Prozess muss regelmäßig wiederholt werden, um auf veränderte Bedingungen zu reagieren.

Für die Bestimmung einer Verspätung werden die so errechneten Fahrplandaten mit den
aktuellen Fahrtdaten verglichen (siehe Abb. 1(b)). Die Vorhersagequalität ist für den nächsten
1 Universität Stuttgart, Universitätsstraße 38, D-70569 Stuttgart, Vorname.Nachname@ipvs.uni-stuttgart.de
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Abb. 1: Stand der Technik bei der Fahrplanung und Echtzeitvorhersage.

Halt sehr gut, verschlechtert sich aber mit jedem weiteren Halt, da die Verspätung nur
übernommen wird und Verspätungsfortpflanzungen nicht berücksichtigt werden [WN08].
Während die Deutsche Bahn mittlerweile bessere Konzepte für die Verspätungsvorhersage
nutzt, zeigten Gespräche mit lokalen Verkehrsbetrieben, dass beispielsweise für den
S-Bahn-Betrieb weiterhin diese überholten Vorhersagetechniken zum Einsatz kommen.

2 Konzept von TAROT

Um eine bessere Vorhersage zu ermöglichen, führen wir TAROT ein. In TAROT wird unter
Ausnutzung aller zur Verfügung stehenden Daten ein verbessertes Vorhersagemodell errech
net, angewandt und stetig verbessert. TAROT basiert auf der BRAID-Architektur [Gi18].

Abb. 2 zeigt die Architektur von TAROT. Eingehende Daten werden mittels Kafka in zwei
Topics (Fahrt- und Störungsdaten) aufgeteilt. Die Fahrtdaten werden historisiert. Mit Spark
werden daraus Vorhersagemodelle errechnet. Neben einem Modell für den Normalbetrieb
wird für jede Störungsart (z. B., „Weichenstörung“ oder „Unfall“) ein eigenes Modell erstellt
und in einem Modellspeicher abgelegt. Parallel zur Bestimmung der Soll-Daten werden
die Echtzeitfahrtdaten als Ist-Daten an eine Spark-Streaming-Komponente weitergeleitet.
Hierin ruft das Spark-MLlib-Modul das aktuell benötigte Modell ab und erstellt eine
Verspätungsvorhersage. Sollte eine Störung eintreten, wird automatisch ein anderes Modell
geladen. Die eingesetzten Vorhersagealgorithmen sind in der Lage, das Modell an Concept
Drifts anzupassen. Neben der Vorhersage findet in TAROT auch eine Qualitätskontrolle
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Abb. 2: Architektur von TAROT.

der Modelle statt. Sollte die Vorhersagequalität aufgrund einer abrupten Veränderung unter
einen Grenzwert fallen, stößt TAROT automatisch eine vollständige Modellneuberechnung
auf den historischen Daten, die seit der Veränderung gesammelt wurden, an.

3 Der TAROT-Demonstrator

Die Funktionsweise von TAROT kann anhand von vier Szenarien veranschaulicht werden.
Die Szenarien verwenden jeweils synthetische Daten. Die zum Einsatz kommenden Daten
modelle orientieren sich an dem realen Datenmodell eines lokalen Verkehrsbetriebs. Es
wurden allerdings irrelevante Attribute entfernt, um die Übersichtlichkeit zu erhöhen.

Demo-Szenario 1: Normalbetrieb. In dem ersten Szenario sollen die Grundfunktionalitäten
von TAROT demonstriert werden. Hierfür wird auf historischen Daten ein Vorhersage
modell errechnet. Dieses Modell wird anschließend im Modellspeicher abgelegt und der
Streaming-Komponente zur Verfügung gestellt. Diese ruft das Modell ab und wendet es auf
eingehende Fahrtdaten an. Dadurch lassen sich Verspätungsvorhersagen treffen.

In diesem Szenario wird davon ausgegangen, dass es zu keinen außergewöhnlichen Stö
rungen kommt. Es wird zunächst lediglich der Normalbetrieb simuliert. Das heißt, es
ergeben sich ausschließlich kleinere, betriebsbedingte Verzögerungen. Im Gegensatz zu der
aktuell genutzten Technik zur Bestimmung der zu erwartenden Verspätung, wird in TAROT
allerdings die Verspätungsfortpflanzung berücksichtigt. Hierdurch wird die Vorhersagege
nauigkeit wesentlich verbessert, was sich insbesondere dann auswirkt, wenn zwischen der
aktuellen Position und dem Ziel mehrere Haltestellen liegen.

Demo-Szenario 2: Reaktion auf Störungen. Wird über den Streckeninformationsdienst
eine Störung gemeldet, ändert sich das Fahrverhalten aller Züge schlagartig. Dies wirkt sich
augenblicklich auf den Betriebsablauf aus und verändert alle Fahrzeiten. TAROT adressiert
dieses Problem dadurch, dass es für jede Störungsart ein eigenes Modell gibt.
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In dem zweiten Szenario wird eine dieser Störungsarten gemeldet. Die Streaming-Kompo
nente ruft daraufhin automatisch das passende Vorhersagemodell aus dem Modellspeicher
ab und wendet das neue Modell an. Dadurch sind augenblicklich alle Vorhersagen an die
veränderte Situation angepasst. In dem Demonstrator wird gezeigt, welche Verspätung mit
dem alten Modell vorhergesagt worden wäre, und diese wird der des angepassten Modells
gegenübergestellt. Dadurch wird der Vorteil des TAROT-Vorgehens verdeutlicht.

Demo-Szenario 3: Reaktion auf schleichende Veränderungen. Neben Störungen, die
augenblicklich einen Effekt auf den Betriebsablauf haben, gibt es allerdings auch kleinere
Veränderungen, die sich langsam, aber stetig auf die Fahrzeiten auswirken. So kann sich
beispielsweise ein Defekt an der Stecke mit der Zeit verschlechtern, was dazu führt, dass
Züge diesen Streckenabschnitt immer langsamer durchfahren müssen.

In dem dritten Szenario wird ein Datenstrom-basierter Vorhersagealgorithmus in der Stre
aming-Komponente eingesetzt, der Concept Drifts erkennen und das Vorhersagemodell
daraufhin anpassen kann. Das angepasste Modell wird nicht nur in der Streaming-Kompo
nente verwendet, sondern ebenfalls im Modellspeicher abgelegt. In dem Demonstrator wird
gezeigt, wie diese kleineren Anpassungen die Vorhersagequalität langfristig verbessern.

Demo-Szenario 4: Reaktion auf schlechte Genauigkeit. Trotz dieser dauerhaften Anpas
sungen an den Vorhersagemodellen kann es dazu kommen, dass die Vorhersagequalität zu
schlecht wird, z. B. wenn ein Concept Drift abrupt sehr große Veränderungen herbeiführt.
Eine Anpassung, wie sie in Demo-Szenario 3 beschrieben ist, würde zu lange zu falschen
Vorhersagen führen und wäre im Fall einer abrupten Veränderung daher zu langsam.

Die Akkuratesse der Modelle kann von der Streaming-Komponente automatisch überprüft
werden, sobald ein Zug am Zielbahnhof eintrifft. Ist diese zu gering, wird eine Neuberechnung
des Modells angestoßen. Hierbei werden nur historische Daten berücksichtigt, die seit dem
Auftreten des Concept Drifts angefallen sind. Dies wird im vierten Szenario demonstriert.

Danksagung. Die in diesem Beitrag vorgestellte Forschungsarbeit entstand aus dem
PATRON-Forschungsauftrag, der von der Baden-Württemberg Stiftung finanziert wurde.
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Twoogle: Searching Twitter With MongoDB Queries

Wolfram Wingerath1, Felix Gessert2, Norbert Ritter3

Abstract: Modern real-time databases follow the same collection-based querying semantics as
traditional database systems. Targeting interactive workloads, real-time databases do not only deliver a
query’s result upon request, but also produce a continuous stream of informational updates thereafter.
In theory, building interactive, reactive, or collaborative applications should thus be simple with
collection-based real-time queries as they bridge the gap between traditional database queries over
static collections and continuous queries over dynamic data streams. In practice, though, building
real-time applications is still considered challenging, since most real-time databases today provide
only poor scalability, confusing interfaces for real-time data access, and reduced query expressiveness
in comparison to their pull-based counterparts. In this demo, we illustrate that scalability, query
expressiveness, and simplicity can go hand-in-hand for modern real-time databases. To this end, we
present the social media search app Twoogle which is built on top of Baqend’s real-time query API.

Keywords: Real-Time Databases, NoSQL, Scalability, Query Expressiveness, Real-Time Queries,
Push-Based Data Access, Self-Maintaining Queries, Event Stream Queries, Search

1 Introduction

Traditional databases are optimized for pull-based queries that make information available
only as a response to an explicit client request. While this access pattern is adequate for
mostly static domains, it requires inefficient and slow workarounds (e.g. periodic polling)
when data is in flow and clients need to stay up-to-date at all times. Real-time databases
such as Firebase, Meteor, RethinkDB, and Parse address interactive and reactive applications
by proactively pushing new information to their clients in realtime, i.e. as soon as new
data has been committed to storage. But current implementations are either unscalable
or avoid the complex queries that make them so appealing in theory: For example, the
original Firebase only supports sorting by a single attribute, while Parse does not support
sorted real-time queries at all and RethinkDB only supports sorted real-time queries with
limit, but not with an offset clause [WGW+18]. In consequence, developers often find
themselves evaluating complex performance trade-offs or compensating for missing query
expressiveness when building reactive applications on top of a state-of-the-art real-time
database.
1 Baqend, Stresemannstraße 23, 22769 Hamburg, ww@baqend.com
2 Baqend, Stresemannstraße 23, 22769 Hamburg, fg@baqend.com
3 Universität Hamburg, DBIS, Vogt-Kölln-Straße 30, 22527 Hamburg, ritter@informatik.uni-hamburg.de
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In this demo, we illustrate how the real-time database in production at Baqend4 [Win18]
combines the query expressiveness of a common NoSQL document store [GWFR16], a
great ease-of-development, and push-based data delivery. To this end, we present Twoogle,
an interactive real-time social media application.

2 Collection-Based Real-Time Queries

There are two distinct types of real-time database queries that differ in the way they expose
data to the application: Event stream queries simply present the raw change events to the
application, so that it can maintain an up-to-date copy of the result or apply custom business
logic. Self-maintaining queries are more abstract as they do the result maintenance in
a transparent manner and provide the client with the complete (updated) query result on
every change. Using the latter, reactive behavior can be implemented without any notion
of data streams or change events built into the business logic. Some static applications
can be transformed into real-time applications simply by switching the underlying query
mechanism – without even touching application code.

For query interfaces based on callback functions, the transition between static and real-time
behavior is particularly smooth. When a query is executed asynchronously, the main thread
of execution does not wait for the result to return. Instead, a callback function is provided at
query time to specify how the result should be processed. When it is received, the callback
function is invoked with the result as an argument.
If the query is executed as a static ad hoc query (see Figure 1a), the callback function will
only be called once. If the query is executed as a self-maintaining real-time query (see
Figure 1b), on the other hand, the callback function will be invoked once when the initial
result is returned and then again every time when the underlying data has changed; thus,
the application effectively behaves as though a new static query was executed whenever it
would return a different result than the last invocation. As the only application requirement,
every callback function has to be implemented in idempotent fashion, so that an invocation
overrides all effects of the previous invocation. For illustration, consider a search app or
website where a callback function renders the result of a user-defined query. If the callback
function is executed in the context of a self-maintaining query, it has to remove any result
representations that were generated earlier or else the search result might grow indefinitely
or might otherwise reflect the real-time updates incorrectly.

3 Demo Outline

As a showcase application, we implemented a social media search app named Twoogle5
[Win17] that provides an interface for searching a database of Twitter messages that is

4 Baqend: https://www.baqend.com.
5 To see a running version of Twoogle, visit https://twoogle.info.
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}{

(a) A static ad hoc query produces a single result
that represents database state at query time.

}{

(b) A self-maintaining query yields a sequence of
results, each reflecting the latest update.

Fig. 1: While a static ad hoc query is pull-based, a self-maintaining (real-time) query pushes updates
to the client and presents a new result on every change.

permanently updated. A continuous process running on the Baqend application server
receives live tweet messages as they are created by users anywhere on the world, each of
which is inserted into the Tweet database collection. Twoogle users can then search all
tweets in the continuously evolving database collection by typing a filter expression into the
web interface. The currently active real-time search is canceled whenever the search query
is updated.

The Twoogle user interface (UI) is depicted in Figure 2. Similar to other search engines,
Twoogle displays the result of a user-defined filter query, newest matches first. The result
is structured in pages, so that users can retrieve older messages by selecting a later page.
A feature that is probably unique to Twoogle is the ability to toggle the mode of query
execution: Users can choose between push-based real-time queries and pull-based static
queries by clicking the corresponding button. When the query is executed in pull-based
fashion, the search result is generated on page load and whenever the user modifies the
query, for example by typing into the search field or navigating to another page. With a
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query mode

pagina�on

query

query result

Fig. 2: Twoogle is a social media application that enables user-defined real-time queries over live
Twitter messages.

self-maintaining query, in contrast, the user-defined result also refreshes itself whenever
a new matching tweet is inserted into the Tweet collection or when a matching tweet is
updated or leaves the result.

As part of the demonstration, we will show how self-maintaining queries turn a static version
of Twoogle into a real-time version with only three simple lines of code. We will further
demonstrate that event stream queries impose additional complexity as they require the
developer to handle individual change events, but at the same time also enable more complex
query patterns (e.g. real-time aggregations) and sophisticated notification mechanisms.

4 Future Directions

Baqend’s real-time query engine currently supports MongoDB semantics for sorted filter
queries with limit and offset, including query operators for content-based filtering through
regular expressions ($regex), comparisons (e.g. $eq, $ne, $gt, $gte), logical combination
of filter expressions (e.g. $and, $or, $not), evaluating matching conditions over array values
(e.g. $in, $elemMatch, $all, $size), and various others (e.g. $exists, $mod). The current
real-time query engine does not support aggregations or joins; prototypical implementations
of full-text search and geo queries are being evaluated, but have not been rolled out into
production at the time of writing. Extending the Baqend real-time query engine to these
query types is work in progress and may therefore be addressed in future publications.
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Explore FREDDY: Fast Word Embeddings in Database
Systems

Michael Günther1, Zdravko Yanakiev1, Maik Thiele1, Wolfgang Lehner1

Abstract: Word embeddings encode a lot of semantic as well as syntactic features and therefore are
useful in many tasks especially in Natural Language Processing and Information Retrieval. FREDDY
(Fast woRd EmbedDings Database sYstems), an extended PostgreSQL database system, allowing the
user to analyze structured knowledge in the database relations together with unstructured text corpora
encoded as word embedding by introducing novel operations for similarity calculation and analogy
inference. Approximation techniques support these operations to perform fast similarity computations
on high-dimensional vector spaces. This demo allows exploring the powerful query capabilities of
FREDDY on different database schemes and a variety of word embeddings generated on different text
corpora. From a systems perspective, the user is able to examine the impact of multiple approximation
techniques and their parameters for similarity search on query execution time and precision.

Keywords: word embeddings, relational database, k nearest neighbor queries

1 Introduction

Word2vec [Mi13], GloVe [PSM14] and fastText [Bo16], all well-known models to produce
word embeddings, are powerful techniques to study the syntactic and semantic relations
between words by representing them in a low-dimensional vector. By applying algebraic
operations on these vectors semantic relationships such as word analogies, gender-inflections,
or geographical relationships can be easily recovered [LG14]. Word embeddings are useful
in many tasks in Natural Language Processing and Information Retrieval, such as text mining
and classification, sentiment analysis, sentence completion, or dictionary construction. Some
recent papers also showed the potential of word embeddings to enable AI capabilities in
relational databases [BBS17] and data curation tasks [TTO18].
The goal of the demo is to show how word embeddings could be utilized to augment and
enrich the SQL query capabilities, e.g. to compare columns according to their semantic
relation or to group rows according to the similarity. For this purpose, we implemented a
web application for FREDDY [Gü18, GTL19]. We use pre-trained word embedding models
of large text corpora such as Wikipedia but also domain-specific word embeddings that we
trained ourselves. By exploiting this external knowledge during query processing we are
able to apply inductive reasoning on text values stored in database relations. This is done by
1 Technische Universität Dresden, Institute of Systems Architecture, Dresden Database Systems Group, Nöthnitzer

Straße 46, 01187 Dresden, firstname.lastname@tu-dresden.de
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Word vectors and
index data

Initialization 
scripts

Structured data

Query execution

Word embedding 
datasets

Execute 
UDFs

Word Embedding Operations (UDFs)

SELECT m.title, t.term, t.score
FROM movies AS m, kNN(m.title, 3) AS t
ORDER BY m.title ASC, t.score DESC

Query index 
structures (with SPI)

Fig. 1: System Overview

extending the standard SQL syntax of a PostgreSQL database system with novel functions
that utilize the word embedding datasets to perform semantic similarity calculations. In this
way, it is possible to search for the most similar terms, to group them into categories or
to compare semantic relations between terms among each other, e.g. to answer so-called
analogy queries. In the context of the IMDB3, FREDDY enables novel query types such as
shown in Figure 1, a query that returns the top-3 nearest neighbors (3NN) of each movie
in IMDB. Given the movie “Godfather” as input this results in “Scarface”, “Goodfellas”
and “Untouchables”. FREDDY also supports semantical grouping, e.g. assigning movies to
genres such as film noir or road movie.
Since most word embedding operations perform k nearest neighbor search (kNN) they easily
can become a bottleneck for cases where the kNN search is done hundreds of thousands
times within an SQL query. Therefore, FREDDY provides fast approximation techniques
that exploit the trade-off between execution time and precision.

2 FREDDY: System Overview

FREDDY’s system architecture is sketched in Figure 1. For word embeddings datasets,
which should be added, a script creates new relations for the different index structures. For
exact distance computations, an additional relation is created storing terms and the respective
normalized wordvec vector. In order to make use of these word embeddings within SQL we
implemented the User Defined Functions (UDFs) in Figure 2 which operate on the index
relations. Moreover, there are further UDFs which serve as helper functions, e.g. for the
calculation of centroids for calculating exact cosine similarity values. Search functions like
k N N provide the possibility of an exact computation as well, but can also be performed in
an approximated manner to be applied on large input sets and tables. The UDFs for similarity
calculations and search operations are implemented in C whereas interfaces are realized via
the procedural script language PL/pgSQL. By using the PostgreSQL Server Programming
Interface (SPI), the UDFs are able to run SQL commands inside the functions, e.g. to access
the word vectors and index structures. All UDFs are bundled into a PostgreSQL extension.

3 https://www.imdb.com
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cosine_similarity(token varchar, token
varchar): Quantifies the similarity between two tokens
analogy(token_1 varchar, token_2 varchar,
token_3 varchar): Solves analogy queries using the
PairDirection, 3CosADD or 3CosMul method [LG14]
analogy_in(token_1 varchar, token_2 varchar,
token_3 varchar, output_set varchar[]): Analogy
queries with restricted result set
kNN(token varchar, k int): Searches for the k most
similar tokens according to the input

kNN_in(token varchar, k int, output_set
varchar[]): like kNN but restricting the result to a
defined set of output tokens (e.g. to obtain results
corresponding to a column in a database relation)
knn_batch(query_set varchar[], k integer): kNN
function that runs multiple queries in batches (e.g. for
JOIN operations based on similarity)
groups(tokens varchar[], groups varchar[]):
Assigns input tokens to groups specified by other
tokens according to their similarity

Fig. 2: Word Embedding Operations

3 Demonstration Outline

For this demonstration, we provide a web-client, different database schemas, various word
embeddings and a selection of pre-defined queries4. Participants are also able to create
their own queries. To gain detailed insights on how the different index structures and search
functions perform and how their parameters affect result quality and query performance, we
provide several widgets to select and adjust them.
Query Interface View The user can choose between different database schemes (1): IMDB,
DBLP5 and Discogs6 music data. In addition, there is a drop-down menu to select different
word embedding datasets from a selection including word2vec vectors trained on Goole
News articles and Wikipedia as well as vectors trained with GloVe[PSM14] on Common
Crawl7 data. Executing the same query multiple times using different word embeddings
leads to different result sets. In general, it is recommended to choose a word embedding
dataset which is trained on a related topic according to the database schema. In the text field
at (2), the query can be created manually or the users get inspired by one of the pre-defined
example queries provided by the drop-down menu above. If a query is executed its result
and the response time appears at (3). The demonstrator also keeps track of the previous
query and its result. They can be retrieved and compared with the current ones using the tab
menu above the result table. In a sidebar (see Figure 3b) the users can choose between the
different index structures for similarity search and different analogy query types.
Performance View In a second view illustrated in Figure 3c, the demo user can perform time
and precision measurements for kNN and analogy queries using different configurations and
compare the results by employing different plots (1). Different visual features (e.g. color,
size, ...) encode the index and search parameters. The notations are declared in the legend
at (2). To obtain reliable measurements the queries are executed multiple times and the
average values for the response time and the precision are obtained. At (3) the number of
queries that should be executed and the neighborhood k are specified. The configuration of
the search function is defined in the sidebar (Figure 3b) just as in the query view.

4 Screencast on our FREDDY website https://wwwdb.inf.tu-dresden.de/research-projects/freddy/
5 https://dblp.uni-trier.de

6 https://www.discogs.com

7 http://commoncrawl.org/
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(a) Query Interface (b) Configuration (c) Search Analysis View

Fig. 3: The web-interface of FREDDY

Acknowledgments

This work is funded by the German Research Foundation (DFG) within the Research
Training Group “Role-based Software Infrastructures for continuous-context-sensitive
Systems” (GRK 1907) and by the Intel® AI Research.

References
[BBS17] Bordawekar, Rajesh; Bandyopadhyay, Bortik; Shmueli, Oded: Cognitive Database: A Step

towards Endowing Relational Databases with Artificial Intelligence Capabilities. CoRR,
abs/1712.07199, 2017.

[Bo16] Bojanowski, Piotr; Grave, Edouard; Joulin, Armand; Mikolov, Tomas: Enriching Word
Vectors with Subword Information. CoRR, abs/1607.04606, 2016.

[GTL19] Günther, Michael; Thiele, Maik; Lehner, Wolfgang: Fast Approximated Nearest Neighbor
Joins For Relational Database Systems. Datenbanksysteme für Business, Technologie und
Web (BTW 2019), 2019.

[Gü18] Günther, Michael: FREDDY: Fast Word Embeddings in Database Systems. In: Proc. of the
2018 International Conference on Management of Data. ACM, pp. 1817–1819, 2018.

[LG14] Levy, Omer; Goldberg, Yoav: Linguistic regularities in sparse and explicit word represen-
tations. In: Proc. of the 18th conference on computational natural language learning. pp.
171–180, 2014.

[Mi13] Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S; Dean, Jeff: Distributed
Representations of Words and Phrases and their Compositionality. In: Advances in Neural
Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc., 2013.

[PSM14] Pennington, Jeffrey; Socher, Richard; Manning, Christopher D.: GloVe: Global Vectors for
Word Representation. In: Empirical Methods in Natural Language Processing (EMNLP).
pp. 1532–1543, 2014.

[TTO18] Thirumuruganathan, Saravanan; Tang, Nan; Ouzzani, Mourad: Data Curation with Deep
Learning [Vision]: Towards Self Driving Data Curation. CoRR, abs/1803.01384, 2018.

532 Michael Günther, Maik Thiele, Wolfgang Lehner



cbe

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Information Retrieval for Precision Oncology

Jurica Ševa1, Julian Götze2, Mario Lamping3, Damian Tobias Rieke3,4, Reinhold Schäfer5,
Ulf Leser1,*

Abstract: Diagnosis and treatment decisions in cancer increasingly depend on a detailed analysis of
the mutational status of a patient’s genome. This analysis relies on previously published information
regarding the association of variations to disease progression and possible interventions. Clinicians to
a large degree use biomedical search engines to obtain such information; however, the vast majority of
search results in the common search engines focuses on basic science and is clinically irrelevant. We
developed the Variant-Information Search Tool, a search engine designed for the targeted search of
clinically relevant publications given a mutation profile. VIST indexes all PubMed abstracts, applies
advanced text mining to identify mentions of genes and variants and uses machine-learning based
scoring to judge the relevancy of documents. Its functionality is available through a fast and intuitive
web interface. We also performed a comparative evaluation, showing that VIST’s ranking is superior
to that of PubMed or vector space models.

1 Introduction

Precision oncology denotes treatment schemes in cancer in which medical decisions
depend on the individual molecular status of a patient [Ga13]. The most relevant molecular
information is the set of variations (mutations) each individual carries. When faced with
the variant profile of a patient, clinicians critically depend on accurate, up-to-date, and
detailed information regarding the clinical relevance of the present variations. Finding such
information is highly laborious and time-consuming, often taking hours or even days [Do17].
We demonstrate Variant-Information Search Tool (VIST), a search engine specifically
developed to aid clinicians in precision oncology in their search for clinically relevant
information for a (set of) variations or mutated genes. The core of VIST is its ranking function
which, given a (set of) variation or a (set of) gene and a cancer entity, ranks those documents
of its corpus highest which contain clinically relevant information. The main difficulty when
developing a ranking function for such a novel and quickly emerging field are (a) the lack of
gold standard data and (b) the complexity of the concept "clinical relevance", encompassing,
among other, information about gene-mutation-drug associations, frequencies of variations
within populations, mode of action of drugs and molecular functions.VIST copes with this

1Department for Computer Science, Humboldt-Universität zu Berlin; 2University Hospital Tübingen;
3Charité – Universitätsmedizin Berlin; 4Berlin Institute of Health (BIH); 5Deutsches Krebsforschungszen-
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complexity by using: (1) advanced information extraction to pre-filter documents based on
the genes and variations they mention, and (2) machine learning (ML) document classifiers
trained on a silver-standard corpus of clinically related documents. VIST furthermore
offers several metadata filters (journal, year of publication), highlights key phrases (i.e.,
the clinically most important sentences) and mentions of query entities when displaying
documents, links out to external databases, and allows mixing of entity and classical
keyword search. VIST was developed inn close interaction with medical experts and is freely
available at https://triage.informatik.hu-berlin.de:8080/. It is the first search engine directly
targeting clinical relevance of documents which required the integration of ML methods
into the ranking. This discerns it technically from other biomedical IR systems, such as
GeneView [Th12] or DigSee [Ki13]. The algorithmic problem of finding clinically relevant
documents for variation data was also studied in the recent TREC Precision Medicine
evaluation [Ro17]. However, the precise task was different from what we target in VIST, as
also general medical data and comorbidities of patients were included, which would be very
sensitive to implement in a public search engine like VIST.

2 VIST

VIST is a document retrieval system which ranks PubMed abstracts according to their
clinical relevance for (a set of) queried variation(s) and/or gene(s) and a cancer entity.
When inserted into the index, documents undergo a comprehensive processing pipeline
including textual preprocessing, metadata extraction, named entity recognition, classification
regarding cancer-relatedness, cancer type, and clinical relevance, and keyphrase detection
[Še18]. We detect gene mentions using GNormPlus, variations using tmVar, and drugs
using tmChem. All documents and annotations are indexed using Solr. To rank documents
against a query, we pre-rank all documents according to two scores: one for their relatedness
to cancer in general, and one for clinical relevance. In both cases, we use supervised
document classification trained on CIViC [Gr17] and OncoKB [Ch17] with tf-idf weighting.
Results are computed by first retrieving all documents containing any of the given variants /
genes and filtering for cancer type. Remaining documents are ranked according to a linear
combination of "keyword score"(cosine similarity to query), "cancer score"(confidence of
the cancer-relatedness classifier), and "clinic score"(confidence of the classifier for clinical
relevance).

3 Evaluation

VIST was extensively evaluated to assess and optimize its performance. First, we used a
prototype version of VIST to curate a new corpus of clinically (ir-)relevant documents
for performing evaluation, resulting in 188 individual scores., of which 119 are used for
evaluation; the others were removed due to inconsistent ratings. We assessed the accuracy
of the clinical-relevance classifier on this data set using cross-validation. Finally, we used
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Fig. 1: Precision/Recall @ k averaged over all queries. k denotes the k’th document in the result set
that is also contained in the test set.

this set to compare the ranking performance of VIST with that of PubMed and a pure
VSM. Due to lack of space, we here only report on the third evaluation. In this comparison
we cannot compare absolute ranks of results as VIST performs result filtering, leading to
different result sizes. Instead, we use two metrics which are robust to different result set
sizes. Regarding the ratio of the average rank of all relevant documents from our test data
to the average rank of all irrelevant documents, VIST performs best in 11 out of the 16
queries and very close to the best in 5 out of 16 queries. Second, Figure 1 shows average
precision@k and recall@k for all three systems; therein, k denotes the k’th document in the
ranked result that is also contained in the test set. Clearly, VIST outperforms VSM-ranking
and PubMed in both regards.

4 Web Interface and Demonstration

The VIST web interface allows users to define queries and inspect matching documents.
Additionally, it offers entity highlighting, various document filters, and a help page. The
query shown below is taken from the evaluation queries, also available in the user interface
as example query.

Starting a New Search. The initial query is of the format Q: [keyword(s), gene(s), variant(s)].
At least one item has to be specified. Matching abstracts are presented in a ranked order
based on VIST relevance score. For each document, its title, PMID, publication year and
ranking score are shown. The basic interface is shown in Figure 2.
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Fig. 2: VIST web interface: Left: Search interface and result overview. Right: Detailed search result
with entity and keyphrase highlighting.

Filtering and highlighting of retrieved documents. Enabled as soon as a search yields
a non-empty result. VIST allows narrowing returned results by (a) journals, (b) year of
publication, and (c) cancer type.

Viewing Document Details. Key sentences and annotated entities are visually highlighted.
Key sentences are represented with yellow background with varying transparency levels
corresponding to confidence of the detection method. Found genes and drugs are linked to
relevant databases (NCBI Genes and DrugBank, respectively). The interface also shows
MeSH keywords and a link to the original publication.
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NeMeSys — Energy Adaptive Graph Pattern Matching on
NUMA-based Multiprocessor Systems

Alexander Krause1, Annett Ungethuem1, Thomas Kissinger1, Dirk Habich1, Wolfgang
Lehner1

Abstract: NeMeSys is a NUMA-aware graph pattern processing engine, which leverages intelligent
resource management for energy adaptive processing. With modern server systems incorporating an
increasing amount of main memory, we can store graphs and compute analytical graph algorithms like
graph pattern matching completely in-memory. Such server systems usually contain several powerful
multiprocessors, which come with a high demand for energy. We demonstrate, that graph patterns can
be processed in given performance constraints while saving energy, which would be wasted without
proper controlling.

Keywords: Graph, Pattern Matching, NUMA, Adaptivity, Energy

1 Introduction

Graph pattern matching is an important, declarative, topology-based querying mechanism
and a core primitive in graph analysis. Fundamentally, graph pattern matching is important
to many applications such as analyzing hyper-links in the World Wide Web, fraud detection,
biomolecular engineering, scientific computing, or social network analytics, only to name a
few, as in Krause et al. [Kr17]. The query pattern is usually given as a graph-shaped pattern
and the result is a set of matching subgraphs.

On the one hand, the calculation of graph patterns can get prohibitively expensive, because of
a possibly high number of intermediate results. On the other hand, modern hardware systems
feature main memory capacities of several terabytes, so that we are able to store and process
graphs entirely in main memory. Based on that, we have built NeMeSys, a near memory
graph pattern processing system being built upon the Data-Oriented Architecture (DORA)
as used in Kissinger et al. [KHL18] to satisfy high performance demands in an efficient
way. However, modern scale-up server systems usually contain several multiprocessors
consuming high amounts of energy during data processing. Unfortunately, the energy
efficiency of a graph pattern matching system is often not considered, because of the high
performance demand for the pattern matching process.
1 Technische Universität Dresden, Database Systems Group, Noethnitzer Straße 46, 01187 Dresden,
<firstname>.<lastname>@tu-dresden.de
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To tackle that issue, we want to demonstrate at the BTW conference, that the energy
control findings of Kissinger et al. [KHL18] for relational systems can be also transferred
to the substantially more complex graph context. In our demo, we want to emphasize the
importance of energy control and the negligible performance impact by using intelligent
energy control loops.

2 System Description

From a hardware perspective, the scale-up approach is mainly characterized by the fact that
separate memory domains per processor are implemented which are remotely accessible
via an interconnect network resulting in a non-uniform memory access (NUMA) behavior.
To tackle the limiting issues of increased latency and decreased bandwidth when accessing
remote memory domains as shown by Kissinger et al. [KHL18], NeMeSys leverages well-
known DORA and near-memory computing (NMC) principles with its basic architecture
as portrayed in Figure 1. NMC means, that we limit the scope of each worker to memory
domains, which are directly connected to their socket (local instead of remote accesses).
Moreover, the DORA approach defines, that only one worker at a time is allowed to touch
a certain data partition. This architectural decision implicates data partitioning, which
we apply following our guidelines from Krause et al. [Kr17]. During query processing,
intermediate states are communicated between the workers with both local and inter-socket
messages via the messaging interface, which fetches the correct receiver from the partition
manager (cf. Figure 1). To tackle the energy adaptivity, NeMeSys reuses the Energy
Control Loop approach from Kissinger et al. [KHL18], which constantly monitors system
utilization and applies appropriate core configurations.

In NeMeSys, graph queries can be entered through a user interface, which are then parsed
by a query compiler. Every query consists of a chained set of operators, which are derived
from the given query pattern. When the query gets executed, every worker in the system

Fig. 1: NeMeSys system design
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Fig. 2: Operating system governed processing

Fig. 3: Full Demo UI with energy controlled processing

can fork the same operator code and apply it to any data partition on its socket to achieve
maximal parallelism. Therefore high data locality is important for minimal inter-socket
messages and thus less energy overhead for the network communication. An operator will
forward its intermediate matching state to the next operator in the chain, until all messages
in the system have been processed.

3 Demo Booth

We show the adaptivity of NeMeSys based on Wikidata2, Wikipedias underlying knowledge
graph. In contrast to Ungethüm et al. [Un17], our use case imposes increased complexity
because of the NP hardness of graph pattern matching and thus demands for more
sophisticated execution and adaption mechanisms. Our dataset is based on a filtered truthy
statement dump3 with roughly 224 M edges. We generated our query set based on the
anonymized Wikidata SPARQL query logs4. From these logs, we created three different
workload profiles for daily, hourly and minute wise query load fluctuation. The used query

2 https://www.wikidata.org/

3 https://dumps.wikimedia.org/wikidatawiki/entities/

4 https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
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set contains approximately 1.2 M different graph pattern and arbitrarily length path queries
with sizes ranging between 1 and 52 edges per query.

During the demo, the user can change the load profile and switch between using our energy
control loop or letting the operating system take over with the controls at (1) in Figure 3.
Our front end shows the arriving queries per second (2) and the graph at (3) displays the
systems power draw over time. Switching between the operating system and our controlling
mechanisms yields different energy consumption as shown in Figures 2 compared to Figure 3.
One of the core components is the chart at (4). It displays the number of active cores per
socket and color codes the currently configured frequency per core and socket, where grey
means a sleeping CPU, green means a low frequency, yellow medium scaled frequency
and red resides in the highest frequencies for that core or socket. The four charts at (5) the
Work-Energy Profiles of Ungethüm et al. [Un17] are used to allow for a fine grained system
configuration. The system chooses one configuration, such that the queued tasks do not
exceed a performance threshold, which we defined as 1 s for this experiment, as shown at
(6) with the task counter and speedometer.

Fig. 4: Virtual Reality interaction guide

Our UI is able to display the most interesting information, however, it lacks the support of
understanding the actual underlying hardware architecture. Thus, we visualize the system
in an abstracted Virtual Reality (VR) environment, which the user can explore using VR
glasses. Demo visitors can interact with the objects in the scene, e.g. dive into the server
and select a specific component to display relevant related information. Figure 4 shows the
possible user interactions to change scenes. The external view show meta information about
the current experiment. Interacting with the shown platform leads the user to a new scene
with visualized sockets and interconnects, where the user can choose to display statistics
about the elements. The socket local can be reached via interacting with the sockets and
yields per-core information.
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MAGPIE: A Scalable Data Storage System for Efficient High
Volume Data Queries

Thomas Lindemann1, Patrick Brinkmann2, Fadi Dalbah2, Christian Hakert2, Philipp-Jan
Honysz2, Daniel Matuszczyk2, Nikolas Müller2, Alexander Schmulbach2, Stefan Petyov
Todorinski2, Oliver Tüselmann2, Shimon Wonsak2, Jens Teubner1

Abstract: Modern challenges in huge sized data storage and querying require new approaches in
the field of data storage systems. With MAGPIE, we are introducing a hardware-software-co-design,
which is efficient in querying data by distributed storage with storage-near pre-processing and designed
to be scalable up to large dimensions.

Keywords: data analysis, big data, database, distributed computing, modern hardware

1 Introduction

Beyond the “Big Data” age, data is keeping on growing further year after year in all areas
such as business, science and social media. Especially in the scientific field, the data sizes
have exceeded all previous data sizes and are therefore often referred to as high-volume
data.

The challenge is to develop new storage solutions which can store big amounts of data
and make it accessible for fast analyses. With MAGPIE, we present our approach to aim
the goals of scalable storing huge amounts of partitioned data and allowing efficient
parallel distributed pre-processing. Figure 1 shows a comparison between classic database
configuration and the approach that MAGPIE is based on. To achieve this, we have created
a distributed hardware-software-co-design, which consists of SSD storage devices with
storage-near embedded systems on the hardware side and a software framework, which
allows to pass all operators that are able to process independently on the partitioned data
in form of predicates to the storage nodes. Thus, we got a system that is scalable because
of arbitrary partitioning on independent storage nodes and allows efficient querying on
distributed storages through lightweight embedded systems in the storage layer.

1 TU Dortmund University, Databases and Information Systems Group, {firstname.lastname}@cs.tu-dortmund.de
2 TU Dortmund University, Student Project Group PG614, {firstname.lastname}@tu-dortmund.de
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Fig. 1: Differences between the classical configuration and intelligent storage approach of MAGPIE

2 Hardware Construction Test Platform

To test our approach, we created a hardware platform in shape of a 2U 19"Blade with
integrated embedded systems, SSD storage devices and power supplies with a custom
designed integrated power control and energy consumption measurement. The system is by
design scalable by just adding more similar blades through a fast network backend. We have
used power efficient embedded systems for our evaluation system, because we expect that
high performance processors have no advantage for the scans and filter operations. Figure 3
shows the test platform which has been created to make our experiments with the MAGPIE
Framework on modern embedded hardware.

• AAEON UP2 Embedded Nodes:

◦ 32 (8x 4) Cores N4200◦ 8x 2 MB L2 Cache◦ Base Clock: 1.1 GHz◦ Boost Clock: 2.4 GHz◦ 8x GPU Intel HD505◦ 64GB (8x 8GB) LPDDR4◦ Inter-Network: 8x 2 Gbit/s◦ Uplink to Client: 2x 10 GBit◦ Storage: 16x SATA

• SSD Storage:

◦ 8 TB (16x 500 GB) SSD◦ Read speed: 16x 550 MB/s◦ Write speed: 16x 520 MB/s◦ Cache: 16x 512MB LPDDR4

Fig. 2: MAGPIE System Specifications Fig. 3: MAGPIE Hardware Construction
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3 Storage-sided Distributed Data Pre-processing with MAGPIE

There’s already a lot of research on distributed storage near data processing done my
commercial companies, one of the most popular examples is IBM’s PureData System for
Analytics, which is based one the rebranded Netezza Architecture. It all comes down to the
AMPP (Asymmetrical Massive Parallel Processing) engine. [IB14] A similar approach is
shown by Oracle in their Oracle Exadata Database Machines, which has been engineered to
be the highest performing and most available platform for running Oracle Database. [Or16]
The disadvantage is that these systems are of a commercial nature and not open for research
on different processing strategies. An energy-aware approach is shown in [LWA13], the
authors introduce IBEX, an FPGA accelerator that allows a number of more complex
operators to be pushed down into the storage engine of a database. The result of this is
increased performance for certain queries and reduced power consumption. Compared to
the FPGA approach of IBEX, MAGPIE is much more flexible but still energy-aware.

Figure 4 shows a schematic of the MAGPIE Framework. The software concept is designed
of three main components, the user node (client), the master worker node (master) and the
worker nodes (slaves). The client is supposed to run on the workstation, it is the interface
between the user/application querying the database and the MAGPIE cluster and receives
the query result from the user. Selected operations which are possible to run distributed
on all worker nodes are forwarded to the master node. The master is also a worker node
itself but keeps track of the tables in a catalog, after doing the lookup which workers have
partitions of the tables involved in the sub-queries, it forwards the queries to the respective
worker node. It is also possible to maintain the catalog redundantly to avoid having a single
point of failure. In theory, every worker node can be a master node in case of a malfunction
of the current active master. To avoid the master worker to become a bottleneck, the results
of the queries of all worker slaves are sent directly to the user client.

After the worker have completed the scans and filters on all their partitions for the
current query id, they send an acknowledge to the master, the master worker collects all
the acknowledge messages and forwards one commit to the user client when all slaves
completed their tasks for this id. We implemented the scans algorithms, the predicate
filter, the buffer manager, the catalogs and the TCP communication from scratch, due to
performance optimization.

4 Comparison to state-of-the-art Hardware and Software

To evaluate the performance of the Hardware-Software-Co-Design of MAGPIE, we have
run similar test workloads on state-of-the-art hardware and common used software. Thus,
we executed different test scenarios with a generated 100GB TPC-H dataset on a dual-socket
AMD EPYC 7501 32-Core Server with two CPUs, 32 cores each, one thread per core and
stored the input data on a ramdisk to avoid a bottleneck with the hard drives.
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The comparison software of choice was PostgreSQL 9.6.10 on x86_64-pc-linux-gnu,
compiled by gcc (Debian 6.3.0-18+deb9u1) 6.3.0 20170516, 64-bit. We tested different
filters and aggregations, as well as a modified TPC-H Q6 scan query. The plots in Figure 5
show the results on MAGPIE and the comparison system.
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5 Demo Outline

For our demo, we are planning to bring along our MAGPIE test system as an exhibition
piece. In our demo we want to show how MAGPIE processes different queries. We can also
query a schema listing of the distributed TPC-H data which is stored on the system nodes.
Moreover, we created a graphical interface for our demo that allows to execute queries on
the MAGPIE system interactively and makes an output of the results. For a running query,
we will log the system’s execution time and power consumption. Furthermore, we want to
observe the system load during execution.

References
[IB14] IBM PureData System for Analytics Architecture, https://www.redbooks.ibm.com/

redpapers/pdfs/redp4725.pdf.

[LWA13] Louis Woods, Jens Teubner; Alonso, Gustavo: Less Watts, More Performance: An Intelligent
Storage Engine for Data Appliances. Proceedings of the 2013 ACM SIGMOD Conference
on Management of Data, April 2013.

[Or16] Oracle Exadata Database Machine, https://www.oracle.com/technetwork/database/
exadata/exadatatechnicaldeepdive-3518309.pdf.

546 Thomas Lindemann et al.

https://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
https://www.oracle.com/technetwork/database/exadata/exadatatechnicaldeepdive-3518309.pdf
https://www.oracle.com/technetwork/database/exadata/exadatatechnicaldeepdive-3518309.pdf


cba

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

DICE: Density-based Interactive Clustering and Exploration

Daniyal Kazempour1, Maksim Kazakov, Peer Kröger1, Thomas Seidl1

Abstract: Clustering algorithms are mostly following the pipeline to provide input data, and
hyperparameter values. Then the algorithms are executed and the output files are generated or
visualized. We provide in our work an early prototype of an interactive density-based clustering tool
named DICE in which the users can change the hyperparameter settings and immediately observe
the resulting clusters. Further the users can browse through each of the single detected clusters and
get statistics regarding as well as a convex hull profile for each cluster. Further DICE keeps track of
the chosen settings, enabling the user to review which hyperparameter values have been previously
chosen. DICE can not only be used in scientific context of analyzing data, but also in didactic settings
in which students can learn in an exploratory fashion how a density-based clustering algorithm like
e.g. DBSCAN behaves.

Keywords: Density-based clustering. Interactive. Exploration. Hyperparameters.

1 Introduction

The density based clustering algorithm DBSCAN [Es96] enables the detection of arbi-
trarily shaped clusters which are density connected. The density is regulated through two
hyperparameters, one which represents the neighborhood range of data points, denoted
with ε-range and another one which states how many points have to be located within this
ε-range, namely minPts. With both of the hyperparameters the users can control how dense
the clusters shall be which are detected. However, finding a good hyperparameter setting is
a tedious task. With a classic DBSCAN implementation one would re-run the algorithm
with different parameters, visualize the output and repeat the whole procedure. It may be
facilitated by utilizing a method like OPTICS [An99] which generates a plot making it
easier to identify suitable hyperparameter settings. A data mining framework like e.g. ELKI
[Sc15] provides besides a rich selection of data mining algorithms and index structures, and
a high scale of configurability, visualizations and additional information to the discovered
clusters. With DICE we aim to deliver a system which gives immediate feedback on which
the users can intervene, based on provided information, inspecting like e.g. single clusters,
or keeping track of changes made. Such interactive tools have been developed like e.g. VISA
[As07] in context of subspace clustering. In one of our previous works [Ka18] we presented
an interactive tool which makes it possible not only to set one hyperparameter setting for
1 Ludwig-Maximilians-Universität München, Lehrstuhl für Datenbanksystem und Data Mining, Oettingenstraße
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the clustering algorithm in the beginning but also set different parameter values at different
iteration steps, going back and forth, exploring different outcomes. We aim to target in
this work with DICE the interactive clustering in context of density based methods. Our
major contributions are: (1) An interactive version of a density-based clustering method, (2)
Inspecting single clusters getting statistics and additional information such as convex hulls
of a clusters and (3) Keeping track of hyperparameter changes made.

2 DICE - Interaction scheme

DICE abides to the following interaction scheme as seen in Figure 1. First data and initial ε
and minPts parameters are provided and the algorithm is executed. To provide a glimpse of
what happens behind the interactive user interface, in a initial step all pairwise distances
among all points in the data set are computed. This follows the YOCDO-principle: You
Only Compute Distances Once. Based on this distance matrix, filters are applied returning a
new matrix where all pairwise entries which have a distance above ε threshold are set to
zero, while those being below are set to one, yielding an adjacency matrix. On this matrix
the connected components are computed. The users see on the main screen the clusters
and outliers with the initially provided parameters. As a reaction the users can now change
either one or both of the parameters and are provided with an immediate visualization. This
visualization-(re)action cycle can be pursued indefinitely.

Fig. 1: Interaction scheme of DICE.

On this occasion it may happen that the users loose track of which hyperparameter settings
have been explored so far. For this purpose track-records are provided enabling the users
to see which e.g. ε and which minPts parameters have been chosen in the previous steps,
further it is shown how many clusters emerged at which parameter settings. If the users wish,
they can slide through each of the detected clusters being displayed in the main window
separately. Here histograms are provided, one which represents on the vertical axis the
number of data points and on the horizontal axis, specific distances to other data points.
The intention is to show users the distribution of pairwise distances within a cluster. In
a much simpler fashion (compared to e.g. OPTICS) it enables to detect further clusters
within a cluster, by looking for hills and valleys within the histogram. Besides zooming into
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single areas within a cluster, which is provided natively by matplotlib, we thought of another
concept to focus on a cluster. In the single-cluster view, users can apply “convex hull“ and
are provided first with a plot showing all layers of convex hulls of the inspected cluster.
Then, by each time clicking on that button, one convex hull and the points belonging to it is
removed from the view of that cluster, enabling users to inspect a cluster layer-by-layer. The
entire described process scheme can be repeated until a desired clustering of the data is
found.

3 Demonstration outline

In this section we elaborate on the “screenplay“ of the demo. We first start DICE with a
given data set and initial hyperparameter settings. This will open the main window first as
seen in Figure 2 (center). Since DICE is an interactive tool, we will make the demo session
interactive and strongly encourage the attendants to interact with the tool or to suggest e.g.
which hyperparameters to choose. Since we may try out many different hyperparameter
settings we will highlight the issue of loosing-track which hyperparameters have been
chosen. In a second step we reveal the hyperparameter tracking capabilities of DICE as seen
in Figure 2 (left and right).

Fig. 2: Main window of DICE (center) with the track record for different ε hyperparameter settings
(left) and different minPts hyperparameter settings (right).

In a third step we go deeper into the analysis process by inspecting single clusters more in
detail as it can be seen in Figure 3 (left). Choosing a cluster, we inspect it by first looking at
the clusters histogram highlighting which information can be obtained (Figure 3 (right).
Further we show that even on single cluster level, we can change the hyperparameters to
observe in how far they affect the currently observed cluster. In the fourth and last step we
demonstrate how DICE determines the convex hull layers being represented in a separate
plot (Figure 3 (center)). By clicking repeatedly on the “Convex Hull“ button the participants
can observe how like the layers of an onion the convex hulls are removed.

4 Concluding remarks and Outlook

Being aware that DICE is in an early prototype stage, it provides various points of interaction
and visualization. DICE enables to inspect single clusters being supported with histograms
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Fig. 3: Visualization of a single cluster (left) with its convex hull layer plot (center) and with a distance
plot (right).

on frequencies of pairwise distances. In its current stage it is not suitable for high-volume
or high-dimensional data sets. For such further research on the computation schemes are
necessary regarding the high-volume aspect. For the high-dimensionality aspect a careful
choice of visualization techniques and histograms is required. Beyond the two mentioned
aspects different approaches such as minimum spanning trees (MST) for each cluster may
be added, since they are (compared to convex hulls) applicable in high-dimensional data. In
context of didactic means, DICE is a tool which enables students to analyze data as well as
to learn and understand how density based methods work.
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Processing Large Raster and Vector Data in Apache Spark
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Abstract: Spatial data processing frameworks in many cases are limited to vector data only. However,
an important type of spatial data is raster data which is produced by sensors on satellites but also by
high resolution cameras taking pictures of nano structures, such as chips on wafers. Often the raster
data sets become large and need to be processed in parallel on a cluster environment. In this paper
we demonstrate our STARK framework with its support for raster data and functionality to combine
raster and vector data in filter and join operations. To save engineers from the burden of learning a
programming language, queries can be formulated in SQL in a web interface. In the demonstration,
users can use this web interface to inspect examples of raster data using our extended SQL queries on
a Apache Spark cluster.

1 Introduction

An enormous number of spatial and spatio-temporal data objects is produced every second
by thousands or even millions of sources. This data is represented as vector objects (i. e. a
single point, a sequence of points that form a line string or polygon) or raster data. Raster
data sets are created, e. g. by sensors and cameras where each pixel of the camera sensor is
stored as a value in the data set.

Large raster data sets are produced by satellites observing the Earth and by high resolution
cameras taking pictures of nano-sized structures – as performed in the Nano Positioning
and Measurement Machines (NPMM)3[Ba14; Ha02]. Depending on camera resolution and
magnification, the NPMM200 at TU Ilmenau produces data sets up to 17 TB per object,
which cannot be handled by single node DBMSs anymore.

For managing and processing raster data special purpose DBMSs have been proposed in the
past, e. g. SciDB [Br10] or RasDaMan [Ba98]. Popular platforms for very large data sets are
Hadoop MapReduce and Apache Spark. However, since their generic data model is not able
to utilize characteristics of spatial objects (neighborhood, distances, etc. ), extensions that
add spatial vector-only data support have been proposed [EM15; YWS16]. Rasterframes4
is the only system that supports raster data. The combination of raster and vector data,
however, is limited to range queries only.
1 Technische Universität Ilmenau, Databases & Information Systems, Ilmenau, first.last@tu-ilmenau.de
2 Technische Universität Ilmenau, PMS, Ilmenau, first.last@tu-ilmenau.de
3 https://www.tu-ilmenau.de/cc-npmm/

4 http://rasterframes.io/
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Fig. 1: STARK’s architecture. All components
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Typically, engineers need to transform, filter, and join their raster data sets with additional
data. In the scenario of precision measurement at nano scale, a use case is to inspect
the values (e. g. depth images of chips on a wafer, micromechanical structures, optical
assemblies) to find defects in the components. This requires to apply transformations to
the original raster tiles to correct skews. Furthermore, engineers need to manually navigate
through the images by selecting areas (rectangles and polygons) of special interest to overlap
them with other (reference) images and use it for further processing. Analysis on the images
include measurements of geometries and inspection of material properties (white light
interferometry or spectroscopic measurements). For this, appropriate functions need to be
implemented.

In an example Earth observation use case, a raster data set with temperature measurements
has to be joined with the vector data set of country borders, to calculate the average
temperature value per country.

In this paper we demonstrate our STARK5 framework [HGS17] along with a web interface
to interactively explore raster and vector data using SQL and to visualize query results.

2 The STARK Framework

STARK is tightly integrated with Apache Spark by leveraging Scala language features
so that users who are familiar with the RDD API can intuitively use STARK’s functions.
Besides the Scala API based on the core RDDs, STARK is integrated into SparkSQL
and implements SQL functions to filter, join, and aggregate vector and raster data. The
overall architecture is shown in Fig. 1. In its core STARK implements two specialized
classes that extend Spark’s RDD: SpatialRDD and RasterRDD. A SpatialRDD is used to store
spatio-temporal vector data sets, while a RasterRDD represents a raster data set consisting of
a set of tiles. A Tile type is a rectangle that stores the actual payload data, the pixels of the
raster, in a generic array. In addition to the payload data, a Tile stores some meta data: the
coordiantes of the upper left corner point as well as the width and height (number of pixels)

5 https://github.com/dbis-ilm/stark/
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of the represented rectangle and the resolution. Vector data objects are represented using a
STObject class that stores the geometric object (point, polygon, etc. ) as well as a temporal
component.

A filter operator on a raster data set expects a STObject (or a plain rectangle) as query range.
As a result, the operator finds all tiles that match the query range according to the provided
predicate (intersects, contains, etc. ) and returns them as a new RasterRDD. The explicit
storage of the meta information (position, width, height) in each tile allows for a independent
data parallel processing of all tiles. As shown in Fig. 2, a tile may only partially intersect
with a polygonal query range and hence, the resulting tiles may be of different extents. This
new information is saved into the resulting tiles T ′1,T

′
2 etc. The rectangular result tiles of

the filter operation represent the minimum bounding rectangle of the intersection with the
query range and the input tile. Pixel values in the result tile that do not match the predicate,
are set to NULL or a NODATA constant.

Besides the filter, RasterRDDs and SpatialRDDs can be joined with another SpatialRDD.
Similar to the filter, the join operation finds all tiles (or STObjects) from the left input that
have a join partner in the right input. In STARK, tiles are vectorized into rectangles using
their stored meta information when their relation with instances of STObject has to be
computed in filters and joins.

Operators are supported by spatial and temporal partitioners to assign data objects to worker
nodes respecting their spatial and temporal neighborhood. Operators additionally benefit
from a partition-local spatial or temporal indexing.

The web frontend is specifially designed to let users explore the raster and vector data sets
with SQL. Users can define their relations by providing the path in the file system and the
schema. The formulation of the spatial filter conditions is aided by a graphical selection
tool that displays the spatial component (raster or vector) and lets users draw their region
of interest . The SQL query is executed on a Spark cluster using our STARK framework.
Results of the query can either be displayed in tabular form or as pictures (from raster tiles),
on maps (vector objects), or charts. Users can select what and how attributes from the result
should be visualized. Image rendering is performed by STARK (rather than by the browser)
to account for large data sets.

3 Demonstration

We present our prototype designed to support scientists and engineers working with large
spatial raster and vector data sets. A screenshot of the web frontend is shown in Fig. 3.
During the demonstration users can interact with the web application: We will prepare
real high resolution raster data sets caputered by the NPMM as well as satellites images.
Users can run queries (our predefined or their own ones) that show the various features of
the STARK framework itself as well as the capabilities of the web interface. The queries
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Fig. 3: The user interface for querying raster data with SQL. With Geo Select users can use a graphical
tool to select a region of interest, referred to in the $refgeo variable.

demonstrate STARK’s unique feature of combined processing of raster and vector data on
the Spark platform whereas the web interface lowers the entrace barrier of creating and
submitting jobs to a cluster. Furthermore, users can choose from a list of available charts
how results should be visualized and dynamically add them to the web page.
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jHound: Large-Scale Profiling of Open JSON Data

Mark Lukas Möller1, Nicolas Berton2, Meike Klettke1, Stefanie Scherzinger3, Uta Störl4

Abstract: We present jHound, a tool for profiling large collections of JSON data, and apply it to
thousands of data sets holding open government data. jHound reports key characteristics of JSON
documents, such as their nesting depth. As we show, jHound can help detect structural outliers, and
most importantly, badly encoded documents: jHound can pinpoint certain cases of documents that use
string-typed values where other native JSON datatypes would have been a better match. Moreover,
we can detect certain cases of maladaptively structured JSON documents, which obviously do not
comply with good data modeling practices. By interactively exploring particular example documents,
we hope to inspire discussions in the community about what makes a good JSON encoding.

1 Introduction

In an effort towards facilitating government transparency, the German government passed
the e-government law in 2013. In particular, this law regulates the provision of machine
readable data by government institutions. However, a W3C working draft on publishing open
government data5 recommends to use human-readable data formats instead. In this demo,
we focus on the data exchange format JSON, since it is both machine and human-readable,
and becoming increasingly popular: At the time of writing, the site www.data.gov alone is
hosting over 14,000 JSON documents6, capturing just about anything from census data to
consumer complaints. However, the documents come without a proper schema declaration
(such as a JSON Schema description). Many documents even come without any meta-data
regarding the utmost basics, such as the semantics of property names. For data consumers
who intend to programmatically process this data, this poses a serious challenge.

To understand the document structure and to detect bad encoding (more on this later), we
introduce jHound, a profiler for large collections of JSON data. While our main motivation
is to analyze open government data, our tool is not restricted to this use case.
1 University of Rostock, mark.moeller2|meike.klettke@uni-rostock.de
2 ENSEIRB-MATMECA, Bordeaux, France
3 OTH Regensburg, stefanie.scherzinger@oth-regensburg.de
4 University of Applied Sciences Darmstadt, uta.stoerl@h-da.de
5 Publishing Open Data, https://www.w3.org/TR/gov-data/, W3C Working Draft September 2009.
6 According to our experience, open government data changes frequently on the hosting sites, due to additions and

removals of files. We have noticed that statements regarding the total number of files hosted come with a short
expiration date. The number reported here dates back to December 6th, 2018.
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Fig. 1: The web frontend of jHound, showing the analysis results page.

Related Work. Profiling relational data is an established research area (cf. [Ab18] for an
overview), and there is a range of established commercial tools. However, tooling for JSON
data has not yet matured to the same extent. One active direction of research is schema
extraction for JSON document collections (cf. [FSS18]). While this is certainly related, a
profiler additionally extracts descriptive statistics such as distributions and outliers.

Contributions and Structure. We next describe the jHound workflow. We highlight some
key findings of jHound in real-world data, and conclude with an outline of our demo.

2 Analyzing Open Government Data

To analyze JSON data with jHound, we point the tool to a CKAN repository, catalog.data.gov
for instance. As seen in the top left of the screenshot in Figure 1, jHound identifies over 14
thousand documents. We used jHound to download a sample with over 1.5 thousand JSON
documents. An additional 202 documents could not be downloaded, causing warnings due
to timeouts or broken links. We then exclude any documents that have been miscategorized,
i.e., they have been labeled as JSON, but do not comply to the format (49 in this scenario).

The results of the analysis are shown in the lower half of Figure 1: (1) jHound reports the
distribution of file sizes in a histogram. Exploring the extremes reveals peculiar cases. For
instance, among the very small files are documents that merely consist of an empty JSON
array. Also, there are files in the gigabyte range. This is a vital information for anybody
planning to programmatically process this data, since they need to allocate enough main
memory, or choose streaming algorithms. In fact, in our explorations of open government
data, we have encountered JSON documents with 60GB in size. (2) A pie chart visualizes
the overall distribution of data types among the property values. These types are derived
from the encoding syntax, so the value "3.14" is categorized as type string, even though it
encodes a numerical value. jHound does not yet derive types based on semantic analysis.
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(a) 1,565 documents from
https://www.data.gov/.

(b) 3,882 documents from
https://data.europa.eu/.

Fig. 2: The maximum document depth versus the level where most of the nodes resides.

1 [ { "indicator": {

2 "id": "SH.DTH.IMRT",

3 "value": "Number of infant deaths" },

4 "country": {

5 "id": "ZW",

6 "value": "Zimbabwe" },

7 "value": "19375",

8 "decimal": "0",

9 "date": "2017" },

10 ...]

[ [ "organization", 1
"interaction_intervention_id", 2
"org_intervention_id", 3
"project_tags", 4
"project_name", ... ], ... 5

[ "PROJECT C.U.R.E.", 6
"59-21401", 7
"11711", 8
"", 9
"Panama In Kind Donations ", ... ], ... ] 10

(a) Infant deaths in Zimbabwe. (b) Activities in Panama.

Fig. 3: Excerpts of open data documents provided at https://data.humdata.org/.

(3) A bubble chart relates the maximal nesting depth of documents and the tree level at
which most of the nodes resides. Figure 2(a) shows the chart in isolation. For instance, there
are 24 documents that are not nested, among them structural anomalies, like the documents
that merely contain an empty JSON array, and therefore no payload data.

In Figure 2, we compare data from different hosting sites. In Fig. 2(b), the majority of
documents has a nesting depth of one. These documents are not nested, but encode flat
tuples via key-value pairs. Thus, these documents might have just as well been stored as
relational tuples. It is a mere conjecture at this point, but we suspect that these JSON
documents were generated from relational data.

Figure 3 shows excerpts of JSON documents with maladaptive structure that we have
discovered with jHound: In the left document, all property values are encoded as strings,
even though the values in lines 7 through 9 would be more naturally encoded using JSON
type number. Similar with the document to the right. Structurally, both documents are unusual.
For the left document, we could not find any documentation on the nesting strategy, or on the
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meaning of the decimal-property in line 8. This problem of piecing together information is
even more striking in the right document, which seems to be a blunt line-by-line translation
of CSV data into JSON format. By matching positions in the nested arrays (lines 3 and 8),
we painstakingly extract that the intervention id is 11711. It is possible to detect malformed
documents by inspecting their structure and property values.

3 Demo Outline
Our demo shows the interactive workflow of analyzing open government data with jHound:

1. We start with documents downloaded from CKAN repositories (e.g. from https:
//data.humdata.org/, https://www.data.gov/, and https://www.govdata.de/).

2. In dialogue with our audience, we drill down into the analysis results, starting with
the analysis results page, as shown in Figure 1:
• We configure filters for the pie chart showing the type distribution, e.g.

considering only JSON documents with over 90% string-typed values.
• Having identified interesting bubbles in the bubble chart, we can further identify

and inspect the raw JSON datasets. In doing so, we come across maladaptive
encodings, like those shown in Figure 3.

• For individual datasets, we can extract a schema description, using an imple-
mentation from our earlier work [Kl17].

4 Conclusion
jHound is a tool for scraping, downloading, and analyzing JSON documents. jHound
compiles descriptive statistics, allowing us to systematically explore large collections of
JSON documents. We plan to open-source our python-implementation of jHound.

Acknowledgements: The article is published in the scope of the project "NoSQL Schema
Evolution und Big Data Migration at Scale" which is funded by the Deutsche Forschungs-
gemeinschaft (DFG) under the number 385808805.

References
[Ab18] Abedjan, Ziawasch; Golab, Lukasz; Naumann, Felix; Papenbrock, Thorsten: Data

Profiling. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2018.

[FSS18] Frozza, Angelo Augusto; dos Santos Mello, Ronaldo; de Souza da Costa, Felipe:
An Approach for Schema Extraction of JSON and Extended JSON Document
Collections. In: Proc. IEEE IRI’18. 2018.

[Kl17] Klettke, Meike; Awolin, Hannes; Störl, Uta; Müller, Daniel; Scherzinger, Stefanie:
Uncovering the evolution history of data lakes. In: Proc. SCDM’07. 2017.

558 Mark Lukas Möller et al.

https://data.humdata.org/
https://data.humdata.org/
https://www.data.gov/
https://www.govdata.de/


cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Big graph analysis by visually created workflows

M. Ali Rostami1, Eric Peukert1, Moritz Wilke1, Erhard Rahm1

Abstract: The analysis of large graphs has received considerable attention recently but current
solutions are typically hard to use. In this demonstration paper, we report on an effort to improve
the usability of the open-source system Gradoop for processing and analyzing large graphs. This is
achieved by integrating Gradoop into the popular open-source software KNIME to visually create
graph analysis workflows, without the need for coding. We outline the integration approach and
discuss what will be demonstrated.

Keywords: Graph analysis; Workflow; Gradoop; KNIME; Visualization

1 Introduction

The analysis of big (graph) data becomes increasingly relevant for a variety of fields
from bioinformatics to business intelligence. Big data processing frameworks make the
computational part of this task possible but mostly require advanced software development
and data engineering skills, which many data analysts and scientists lack. Workflow-oriented
tools with graphical interfaces promise an easier usage for this group of users but often
lack the ability to tackle large amounts of data. Therefore it is important to combine both
approaches: user-friendly creation of data analysis workflows with the scalability of a big
data processing framework in the background.

Gradoop [Ju15; Ju18] is an open-source framework for the analysis of large graphs that is
developed by the Database Group of the University Leipzig and the Competence Center
for Scalable Data Services and Solutions (ScaDS) Leipzig. It uses an extension of the
flexible property graph model and provides a variety of graph operators and graph mining
algorithms. It is build on top of Apache Flink for parallel processing and scalability to large
data volumes. KNIME [Ba07], on the other hand, is a well-known open source software
for data analysis for the creation and deployment of analytical workflows and applications.
KNIME allows users with minimal experience in writing code to select a large set of
different operators as nodes from a graphical interface and to combine them on a virtual
canvas to define executable workflows.

To achieve both scalability and usability, we developed a KNIME integration for Gradoop
operators within the BIGGR project [Ro19]. The aim of this demonstration paper is to show
1 University of Leipzig, ScaDS Dresden Leipzig, Augustusplatz 10, 04109 Leipzig, Germany, {rostami, peukert,

wilke, rahm}@informatik.uni-leipzig.de
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how the tools KNIME and Gradoop can be used in combination to load, transform and
analyze large graph data and to visualize the results.

2 Gradoop Integration in KNIME

The integration approach makes the Gradoop operators available as nodes within Knime
and allows either the local or the remote execution of the Gradoop operators and workflows
[Ro19]. The majority of real-word data is still stored in column based or unstructured
formats, not in a property graph format which is directly readable with Gradoop. Hence
the first task in a graph-based analysis is to transfer given data in a graph format, e.g. to
specify which rows in a table are regarded as vertices and which relations qualify as edges.
Knime supports various ways of reading and processing data and is build around a tabular
data representation, so the data preparation step can be tackled with it. However, it requires
knowledge about the internal data format of Gradoop which is a hurdle.

Fig. 1: CSV import: a graph of patent citations is read from a file containing the vertices and a file
which contains the source and target id of a citation.

To overcome this, data transformation nodes between Gradoop and Knime are necessary.
As a first working solution, we provide a Knime node for importing CSV data and
transforming into a property graph to start an analysis workflow. Fig. 1 shows the CSV
import functionality: multiple files can be chosen and configured to be transformed into sets
of vertices or edges. Further efforts will deal with supporting recently proposed operators
for graph transformation [KPR19] and to exchange data between the local machine running
KNIME and a cluster which stores graph data in a distributed manner.
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3 Demonstration

In our demonstration, we show workflows of large graph analytics using KNIME and
Gradoop. We consider two datasets: the medium-sized citation networks of research papers
and authors as well as a large patent citation graph consisting of 6.6 million US patents and
94.7 million citations between them.2

We build several workflows for the analysis of these large graphs. First, we see how a
summary of graphs can be generated as a starting point for further operators. The patent
graph needs several steps of preprocessing to obtain a handy set of data. For example, we can
first determine connected components and apply further operators on selected components.
The resulting graphs from different processes are visualized either completely if possible or
in a clustered way. We see how the visualizations give us a first insight into data and help to
decide on further analysis steps.

3.1 Research Papers

In this workflow, we first read a publication graph from a JSON data source. After a
reduction, the connected components are computed and one of them is visualized. There
are two visualization nodes, called Big Graph View. For an interactive visualization, large
graphs are written out to some format (like CSV) and the path will be given to the view
nodes.

Fig. 2: A Gradoop workflow in KNIME.

3.2 US Patent - Citation Network

Goal of the analysis is to find and collapse so-called patent families. This structure reflects
the patent holders not to claim a single patent for a new invention, but to submit several

2 http://www.patentsview.org
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slightly modified patents in order to prevent rivals from adopting the invention easily. These
patent families clutter the space of patents, hence clustering them makes further analysis
easier because it reduces the size and complexity of the graph.

The workflow uses a Gradoop matching operator which uses the Cypher[Ju17]
query (listing 1) language to detect pairs of patents from the same assignee
that have been claimed in the same year and are connected with a citation.

MATCH (p1:PATENT)<-[e1:citation]-(p2:PATENT)

(p1)-[:assignedBy]->(a1:ASSIGNEE)<-[:assignedBy]-(p2)

WHERE e1.years_difference = 0

List. 1: Cypher-query to identify citations between patents from the same assignee in the same
year.

Afterwards the connected components algorithm is used to combine the pairs into stars that
are assumed to be a patent family. Finally the families can be fused in the original graph
resulting in only a single vertex representing what was a star before. both graphs (patent
families and reduced graph) are stored for further analysis and processing afterwards.
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When is Harry Potters Birthday? — Question Answering on
Linked Data

Nadine Steinmetz1, Ann-Katrin Arning1, Kai-Uwe Sattler1

Abstract: Question Answering (QA) systems provide a user-friendly way to access any type of
knowledge base and especially for Linked Data sources to get insight into semantic information. But
understanding natural language, transferring it to a formal query and finding the correct answer is a
complex task. The challenge is even harder when the QA system aims to be easily adaptable regarding
the underlying information. This goal can be achieved by an approach that is independent from the
knowledge base. Thereby, the respective data can be replaced or updated without changes on the
system itself. With this paper we present our QA approach and the demonstrator which is able to
consume natural language questions of general knowledge (not specific to a topic or domain).

1 Motivation

Question answering (QA) is a research discipline at the intersection of natural language
processing (NLP), information retrieval, and database processing aiming at answering
questions formulated in natural languages. Though, early QA approaches dating back to the
sixties, this field has gotten great attention and research made a significant progress over the
last few years. Most well-known examples are personal assistants with voice recognition
such as Apple Siri, Amazon Alexa or Microsoft Cortana. These systems are able not only
to execute spoken commands but also to answer (simple) questions in natural language.
However, answering complex questions beyond asking for facts as well as dealing with
ambiguities are still challenging problems.

QA systems work usually in a sequence of the following steps: (1) question parsing and
focus detection, (2) question classification, (3) query generation, (4) answer candidate
generation (query execution), and (5) result ranking. Furthermore, QA systems make use
of structured databases / knowledge bases as sources for answers. Here, particularly RDF
databases are useful by allowing a schema-agnostic approach where the schema has not to
be known for query generation because all facts are represented by triples. In addition, RDF
allows to exploit more advanced semantic concepts such as semantic equivalence, similarity
or inference mechanisms. Finally, large collections of Linked Data based on a core set such
as DBpedia, Wikidata or YAGO represent a great source for answering a wide range of (not
only) factoid questions.
1 TU Ilmenau, Databases & Information Systems Group, Ilmenau, Germany, first.last@tu-ilmenau.de
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2 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

In our work, we focus on the steps of query generation and answer generation by using a
generic approach. Compared to existing works our query generation approach is independent
from the underlying knowledge base. This is done by representing queries through basic
graph patterns whose mapping to knowledge base-specific properties or labels are determined
at runtime.

In this paper we demonstrate a prototype implementation of our QA system which is able to
answer common (but also complex) natural language questions (in English language) on
DBpedia as an example knowledge base.

2 System Architecture

Fig. 1: Overall process of Question Answering

Our approach for question answering consists of seven consecutive steps. Within our
algorithm two tasks are dependent on the underlying knowledge base as the concrete
properties, entities and ontology classes or categories are requested – as shown in Figure 1.
All other steps are independent from the knowledge base.

Question parsing and focus detection. The natural language phrase is analyzed for
part-of-speech (POS) and subsequently the question type and the resulting focus are
identified.

Generation of general queries with the phrases of the natural language question
according to pre-defined patterns. General queries are generated using the extracted
phrases from the question and adding the required variables as detected by the previous step.

Mapping subject/predicate/object of the general question. The natural language phrases
used for the queries are mapped to the underlying knowledge base to retrieve the actual
entities, properties and classes/categories required for the SPARQL query. The general
queries are then replaced by executable SPARQL queries using the retrieved resources.

Query execution All generated queries are executed on the underlying knowledge bases
and results are retrieved.

Result ranking Each result is scored according to plausibility compared to the identified
question type and the expected result type.
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Output of the highest ranked SPARQL query and the corresponding result The result
of the highest ranked query is provided as assumed correct answer for the question. Our
demonstrator also provides all executed queries and the retrieved results together with the
computed scores.

Please see [SAS19] for further details on our approach and system architecture.

3 Demonstration

Fig. 2: The system frontend showing the question, the extracted key words and the respective answer.

Fig. 3: The system frontend showing all generated SPARQL queries.

For the demonstration of our system the frontend allows a natural language input and
provides the result of the most relevant query including more details about the generated
queries and the respective answers. Our demonstrator is able to handle different types of
questions, such as “How many”, “Who”, “When”, “Where”, “List all”, “Show me”, etc.

When is Harry Potters birthday? — Question Answering on Linked Data 567



4 Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler

The underlying knowledge base is DBpedia. This allows questions on many different topics
without restriction on a specific domain.

Figure 2 shows the frontend when asked for “How many children does Jane Fonda have?”
and the respective correct answer. The demonstrator also presents the extracted key words
resulting from the first step of analyzing the question.

Next, all generated queries for the input question are shown to the user. In this way the user
can comprehend the different mapping results for the extracted key words as well as different
operators (e.g. COUNT for the given example of questions asking for “How many“). For
the given example, each query returns a result from the knowledge base. Figure 4 shows
the frontend presenting all retrieved results and the respective score for each result. For
the given example the demonstrator shows that the results with the correct answer type (a
number for the question “How many”) received the highest overall score.

Fig. 4: The system frontend showing all retrieved results and their scores.

References
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The 4th International Conference on Grid 
Service Engineering and Management 
GSEM 2007

P-118 Andreas Hein, Wilfried Thoben, Hans-
Jürgen Appelrath, Peter Jensch (Eds.) 
European Conference on ehealth 2007

P-119 Manfred Reichert, Stefan Strecker, Klaus 
Turowski (Eds.) 
Enterprise Modelling and Information 
Systems Architectures 
Concepts and Applications

P-120 Adam Pawlak, Kurt Sandkuhl,  
Wojciech Cholewa,  
Leandro Soares Indrusiak (Eds.) 
Coordination of Collaborative 
Engineering - State of the Art and Future 
Challenges 

P-121 Korbinian Herrmann, Bernd Bruegge (Hrsg.)  
Software Engineering 2008 
Fachtagung des GI-Fachbereichs 
Softwaretechnik 

P-122 Walid Maalej, Bernd Bruegge (Hrsg.) 
Software Engineering 2008 - 
Workshopband 
Fachtagung des GI-Fachbereichs 
Softwaretechnik



P-123 Michael H. Breitner, Martin Breunig, Elgar 
Fleisch, Ley Pousttchi, Klaus Turowski 
(Hrsg.)  
Mobile und Ubiquitäre 
Informationssysteme – Technologien, 
Prozesse, Marktfähigkeit 
Proceedings zur 3. Konferenz Mobile und 
Ubiquitäre Informationssysteme  
(MMS 2008) 

P-124 Wolfgang E. Nagel, Rolf Hoffmann,  
Andreas Koch (Eds.)  
9th Workshop on Parallel Systems and 
Algorithms (PASA) 
Workshop  of the GI/ITG Speciel Interest 
Groups PARS and PARVA 

P-125 Rolf A.E. Müller, Hans-H. Sundermeier,  
Ludwig Theuvsen, Stephanie Schütze,  
Marlies Morgenstern (Hrsg.)  
Unternehmens-IT: 
Führungsinstrument oder 
Verwaltungsbürde 
Referate der 28. GIL Jahrestagung  

P-126 Rainer Gimnich, Uwe Kaiser, Jochen 
Quante, Andreas Winter (Hrsg.)  
10th Workshop Software Reengineering 
(WSR 2008)

P-127 Thomas Kühne, Wolfgang Reisig, 
Friedrich Steimann (Hrsg.)  
Modellierung 2008

P-128 Ammar Alkassar, Jörg Siekmann (Hrsg.) 
Sicherheit 2008 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 4. Jahrestagung des 
Fachbereichs Sicherheit der Gesellschaft 
für Informatik e.V. (GI) 
2.-4. April 2008 
Saarbrücken, Germany

P-129 Wolfgang Hesse, Andreas Oberweis (Eds.) 
Sigsand-Europe 2008 
Proceedings of the Third AIS SIGSAND 
European Symposium on Analysis, 
Design, Use and Societal Impact of 
Information Systems

P-130 Paul Müller, Bernhard Neumair, 
Gabi Dreo Rodosek (Hrsg.)  
1. DFN-Forum Kommunikations-
technologien Beiträge der Fachtagung

P-131 Robert Krimmer, Rüdiger Grimm (Eds.)  
3rd International Conference on Electronic 
Voting 2008 
Co-organized by Council of Europe, 
Gesellschaft für Informatik and E-Voting.
CC

P-132 Silke Seehusen, Ulrike Lucke,  
Stefan Fischer (Hrsg.)  
DeLFI 2008: 
Die 6. e-Learning Fachtagung Informatik

P-133 Heinz-Gerd Hegering, Axel Lehmann, 
Hans Jürgen Ohlbach, Christian 
Scheideler (Hrsg.)  
INFORMATIK 2008 
Beherrschbare Systeme – dank Informatik 
Band 1

P-134 Heinz-Gerd Hegering, Axel Lehmann, 
Hans Jürgen Ohlbach, Christian 
Scheideler (Hrsg.)  
INFORMATIK 2008 
Beherrschbare Systeme – dank Informatik 
Band 2

P-135 Torsten Brinda, Michael Fothe, 
Peter Hubwieser, Kirsten Schlüter (Hrsg.) 
Didaktik der Informatik – 
Aktuelle Forschungsergebnisse

P-136 Andreas Beyer, Michael Schroeder (Eds.)  
German Conference on Bioinformatics 
GCB 2008

P-137 Arslan Brömme, Christoph Busch, Detlef 
Hühnlein (Eds.) 
BIOSIG 2008: Biometrics and Electronic 
Signatures

P-138 Barbara Dinter, Robert Winter, Peter 
Chamoni, Norbert Gronau, Klaus 
Turowski (Hrsg.) 
Synergien durch Integration und 
Informationslogistik 
Proceedings zur DW2008

P-139 Georg Herzwurm, Martin Mikusz (Hrsg.) 
Industrialisierung des Software-
Managements 
Fachtagung des GI-Fachausschusses 
Management der Anwendungs entwick-
lung und -wartung im Fachbereich 
Wirtschaftsinformatik

P-140 Oliver Göbel, Sandra Frings, Detlef 
Günther, Jens Nedon, Dirk Schadt (Eds.) 
IMF 2008 - IT Incident Management & 
IT Forensics

P-141 Peter Loos, Markus Nüttgens,  
Klaus Turowski, Dirk Werth (Hrsg.) 
Modellierung betrieblicher Informations-
systeme (MobIS 2008) 
Modellierung zwischen SOA und 
Compliance Management

P-142 R. Bill, P. Korduan,  L. Theuvsen,  
M. Morgenstern (Hrsg.) 
Anforderungen an die Agrarinformatik 
durch Globalisierung und 
Klimaveränderung

P-143 Peter Liggesmeyer, Gregor Engels,  
Jürgen Münch, Jörg Dörr,  
Norman Riegel  (Hrsg.) 
Software Engineering 2009 
Fachtagung des GI-Fachbereichs 
Softwaretechnik



P-144 Johann-Christoph Freytag, Thomas Ruf, 
Wolfgang Lehner, Gottfried Vossen  
(Hrsg.) 
Datenbanksysteme in Business, 
Technologie und Web (BTW)

P-145 Knut Hinkelmann, Holger Wache (Eds.) 
WM2009: 5th Conference on Professional 
Knowledge Management

P-146 Markus Bick, Martin Breunig, 
Hagen Höpfner (Hrsg.) 
Mobile und Ubiquitäre 
Informationssysteme – Entwicklung, 
Implementierung und Anwendung 
4. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2009)

P-147 Witold Abramowicz, Leszek Maciaszek, 
Ryszard Kowalczyk, Andreas Speck (Eds.)  
Business Process, Services Computing 
and Intelligent Service Management 
BPSC 2009 · ISM 2009 · YRW-MBP 
2009

P-148 Christian Erfurth, Gerald Eichler, 
Volkmar Schau (Eds.) 
9th International Conference on Innovative 
Internet Community Systems 
I2CS 2009

P-149 Paul Müller, Bernhard Neumair,  
Gabi Dreo Rodosek (Hrsg.) 
2. DFN-Forum 
Kommunikationstechnologien  
Beiträge der Fachtagung

P-150 Jürgen Münch, Peter Liggesmeyer (Hrsg.) 
Software Engineering  
2009 - Workshopband

P-151 Armin Heinzl, Peter Dadam, Stefan Kirn,  
Peter Lockemann (Eds.) 
PRIMIUM  
Process Innovation for  
Enterprise Software

P-152 Jan Mendling, Stefanie Rinderle-Ma, 
 Werner Esswein (Eds.)
 Enterprise Modelling and Information 

Systems Architectures
 Proceedings of the 3rd Int‘l Workshop 

EMISA 2009

P-153 Andreas Schwill,  
Nicolas Apostolopoulos (Hrsg.) 
Lernen im Digitalen Zeitalter  
DeLFI 2009 – Die 7. E-Learning 
Fachtagung Informatik

P-154 Stefan Fischer, Erik Maehle  
Rüdiger Reischuk (Hrsg.) 
INFORMATIK 2009 
Im Focus das Leben

P-155 Arslan Brömme, Christoph Busch, 
Detlef Hühnlein (Eds.)  
BIOSIG 2009:  
Biometrics and Electronic Signatures 
Proceedings of the Special Interest Group 
on Biometrics and Electronic Signatures

P-156 Bernhard Koerber (Hrsg.) 
Zukunft braucht Herkunft  
25 Jahre »INFOS – Informatik und 
Schule«

P-157 Ivo Grosse, Steffen Neumann,  
Stefan Posch, Falk Schreiber,  
Peter Stadler (Eds.) 
German Conference on Bioinformatics 
2009

P-158 W. Claupein, L. Theuvsen, A. Kämpf, 
M. Morgenstern (Hrsg.) 
Precision Agriculture 
Reloaded – Informationsgestützte 
Landwirtschaft

P-159 Gregor Engels, Markus Luckey, 
Wilhelm Schäfer (Hrsg.) 
Software Engineering 2010

P-160 Gregor Engels, Markus Luckey, 
Alexander Pretschner, Ralf Reussner 
(Hrsg.) 
Software Engineering 2010 – 
Workshopband 
(inkl. Doktorandensymposium)

P-161 Gregor Engels, Dimitris Karagiannis 
Heinrich C. Mayr (Hrsg.) 
Modellierung 2010

P-162 Maria A. Wimmer, Uwe Brinkhoff, 
Siegfried Kaiser, Dagmar Lück-
Schneider, Erich Schweighofer,  
Andreas Wiebe (Hrsg.) 
Vernetzte IT für einen effektiven Staat 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und  
Fachtagung Rechtsinformatik (FTRI) 2010

P-163 Markus Bick, Stefan Eulgem,  
Elgar Fleisch, J. Felix Hampe,  
Birgitta König-Ries, Franz Lehner,  
Key Pousttchi, Kai Rannenberg (Hrsg.) 
Mobile und Ubiquitäre 
Informationssysteme 
Technologien, Anwendungen und 
Dienste zur Unterstützung von mobiler 
Kollaboration

P-164 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2010: Biometrics and Electronic 
Signatures Proceedings of the Special 
Interest Group on Biometrics and 
Electronic Signatures



P-165 Gerald Eichler, Peter Kropf,  
Ulrike Lechner, Phayung Meesad,  
Herwig Unger (Eds.) 
10th International Conference on 
Innovative Internet Community Systems 
(I2CS) – Jubilee Edition 2010 –

P-166 Paul Müller, Bernhard Neumair,  
Gabi Dreo Rodosek (Hrsg.) 
3. DFN-Forum Kommunikationstechnologien 
Beiträge der Fachtagung

P-167 Robert Krimmer, Rüdiger Grimm (Eds.) 
4th International Conference on  
Electronic Voting 2010 
co-organized by the Council of Europe,  
Gesellschaft für Informatik and  
E-Voting.CC

P-168 Ira Diethelm, Christina Dörge, 
Claudia Hildebrandt,  
Carsten Schulte (Hrsg.) 
Didaktik der Informatik 
Möglichkeiten empirischer 
Forschungsmethoden und Perspektiven 
der Fachdidaktik

P-169 Michael Kerres, Nadine Ojstersek 
Ulrik Schroeder, Ulrich Hoppe (Hrsg.) 
DeLFI 2010 - 8. Tagung  
der Fachgruppe E-Learning  
der Gesellschaft für Informatik e.V.

P-170 Felix C. Freiling (Hrsg.) 
Sicherheit 2010 
Sicherheit, Schutz und Zuverlässigkeit

P-171 Werner Esswein, Klaus Turowski,  
Martin Juhrisch (Hrsg.) 
Modellierung betrieblicher 
Informationssysteme (MobIS 2010) 
Modellgestütztes Management

P-172 Stefan Klink, Agnes Koschmider 
Marco Mevius, Andreas Oberweis (Hrsg.) 
EMISA 2010 
Einflussfaktoren auf die Entwicklung 
flexibler, integrierter Informationssysteme 
Beiträge des Workshops 
der GI-Fachgruppe EMISA 
(Entwicklungsmethoden für Infor- 
mationssysteme und deren Anwendung) 

P-173 Dietmar Schomburg,  
Andreas Grote (Eds.) 
German Conference on Bioinformatics 
2010

P-174 Arslan Brömme, Torsten Eymann, 
Detlef Hühnlein,  Heiko Roßnagel, 
Paul Schmücker (Hrsg.) 
perspeGKtive 2010  
Workshop „Innovative und sichere 
Informationstechnologie für das 
Gesundheitswesen von morgen“

P-175 Klaus-Peter Fähnrich,  
Bogdan Franczyk (Hrsg.) 
INFORMATIK  2010 
Service Science – Neue Perspektiven für 
die Informatik  
Band 1

P-176 Klaus-Peter Fähnrich,  
Bogdan Franczyk (Hrsg.) 
INFORMATIK  2010 
Service Science – Neue Perspektiven für 
die Informatik  
Band 2

P-177 Witold Abramowicz, Rainer Alt,  
Klaus-Peter Fähnrich, Bogdan Franczyk, 
Leszek A. Maciaszek (Eds.) 
INFORMATIK  2010 
Business Process and Service Science – 
Proceedings of ISSS and BPSC

P-178 Wolfram Pietsch, Benedikt Krams (Hrsg.)
 Vom Projekt zum Produkt
 Fachtagung des GI-

Fachausschusses Management der 
Anwendungsentwicklung und -wartung 
im Fachbereich Wirtschafts-informatik 
(WI-MAW), Aachen, 2010

P-179 Stefan Gruner, Bernhard Rumpe (Eds.) 
FM+AM`2010 
Second International Workshop on 
Formal Methods and Agile Methods

P-180 Theo Härder, Wolfgang Lehner,  
Bernhard Mitschang, Harald Schöning,  
Holger Schwarz (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 
14. Fachtagung des GI-Fachbereichs 
„Datenbanken und Informationssysteme“ 
(DBIS)

P-181 Michael Clasen, Otto Schätzel,  
Brigitte Theuvsen (Hrsg.) 
Qualität und Effizienz durch 
informationsgestützte Landwirtschaft,  
Fokus: Moderne Weinwirtschaft

P-182 Ronald Maier (Hrsg.) 
6th Conference on Professional 
Knowledge Management 
From Knowledge to Action

P-183 Ralf Reussner, Matthias Grund, Andreas 
Oberweis, Walter Tichy (Hrsg.) 
Software Engineering 2011  
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-184 Ralf Reussner, Alexander Pretschner, 
Stefan Jähnichen (Hrsg.) 
Software Engineering 2011 
Workshopband 
(inkl. Doktorandensymposium)



P-185 Hagen Höpfner, Günther Specht, 
Thomas Ritz, Christian Bunse (Hrsg.) 
MMS 2011: Mobile und ubiquitäre 
Informationssysteme Proceedings zur  
6. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2011) 

P-186 Gerald Eichler, Axel Küpper,  
Volkmar Schau, Hacène Fouchal,  
Herwig Unger (Eds.) 
11th International Conference on 
Innovative Internet Community Systems 
(I2CS)

P-187 Paul Müller, Bernhard Neumair, 
Gabi Dreo Rodosek (Hrsg.) 
4. DFN-Forum Kommunikations- 
technologien, Beiträge der Fachtagung 
20. Juni bis 21. Juni 2011 Bonn

P-188 Holger Rohland, Andrea Kienle, 
Steffen Friedrich (Hrsg.) 
DeLFI 2011 – Die 9. e-Learning 
Fachtagung Informatik 
der Gesellschaft für Informatik e.V. 
5.–8. September 2011, Dresden

P-189 Thomas, Marco (Hrsg.) 
Informatik in Bildung und Beruf 
INFOS 2011 
14. GI-Fachtagung Informatik und Schule

P-190 Markus Nüttgens, Oliver Thomas,  
Barbara Weber (Eds.) 
Enterprise Modelling and Information 
Systems Architectures (EMISA 2011)

P-191 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2011  
International Conference of the 
Biometrics Special Interest Group

P-192 Hans-Ulrich Heiß, Peter Pepper, Holger 
Schlingloff, Jörg Schneider (Hrsg.) 
INFORMATIK 2011 
Informatik schafft Communities

P-193 Wolfgang Lehner, Gunther Piller (Hrsg.) 
IMDM 2011

P-194 M. Clasen, G. Fröhlich, H. Bernhardt,  
K. Hildebrand, B. Theuvsen (Hrsg.) 
Informationstechnologie für eine 
nachhaltige Landbewirtschaftung 
Fokus Forstwirtschaft

P-195 Neeraj Suri, Michael Waidner (Hrsg.) 
Sicherheit 2012 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 6. Jahrestagung des 
Fachbereichs Sicherheit der  
Gesellschaft für Informatik e.V. (GI)

P-196 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2012 
Proceedings of the 11th International 
Conference of the Biometrics Special 
Interest Group

P-197 Jörn von Lucke, Christian P. Geiger, 
Siegfried Kaiser, Erich Schweighofer, 
Maria A. Wimmer (Hrsg.) 
Auf dem Weg zu einer offenen, smarten 
und vernetzten Verwaltungskultur 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und 
Fachtagung Rechtsinformatik (FTRI) 
2012

P-198 Stefan Jähnichen, Axel Küpper,  
Sahin Albayrak (Hrsg.) 
Software Engineering 2012 
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-199 Stefan Jähnichen, Bernhard Rumpe,  
Holger Schlingloff (Hrsg.) 
Software Engineering 2012 
Workshopband

P-200 Gero Mühl, Jan Richling, Andreas 
Herkersdorf (Hrsg.) 
ARCS 2012 Workshops

P-201 Elmar J. Sinz Andy Schürr (Hrsg.) 
Modellierung 2012

P-202 Andrea Back, Markus Bick,  
Martin Breunig, Key Pousttchi,  
Frédéric Thiesse (Hrsg.) 
MMS 2012:Mobile und Ubiquitäre 
Informationssysteme

P-203 Paul Müller, Bernhard Neumair, 
Helmut Reiser, Gabi Dreo Rodosek (Hrsg.) 
5. DFN-Forum Kommunikations-
technologien 
Beiträge der Fachtagung

P-204 Gerald Eichler, Leendert W. M. 
Wienhofen, Anders Kofod-Petersen, 
Herwig Unger (Eds.) 
12th International Conference on 
Innovative Internet Community Systems 
(I2CS 2012)

P-205 Manuel J. Kripp, Melanie Volkamer, 
Rüdiger Grimm (Eds.) 
5th International Conference on Electronic 
Voting 2012 (EVOTE2012) 
Co-organized by the Council of Europe, 
Gesellschaft für Informatik and E-Voting.CC

P-206 Stefanie Rinderle-Ma,  
Mathias Weske (Hrsg.) 
EMISA 2012  
Der Mensch im Zentrum der Modellierung

P-207 Jörg Desel, Jörg M. Haake,  
Christian Spannagel (Hrsg.) 
DeLFI 2012: Die 10. e-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. 
24.–26. September 2012



P-208 Ursula Goltz, Marcus Magnor, 
Hans-Jürgen Appelrath, Herbert Matthies, 
Wolf-Tilo Balke, Lars Wolf (Hrsg.) 
INFORMATIK 2012

P-209 Hans Brandt-Pook, André Fleer, Thorsten 
Spitta, Malte Wattenberg (Hrsg.) 
Nachhaltiges Software Management

P-210 Erhard Plödereder, Peter Dencker, 
Herbert Klenk, Hubert B. Keller,  
Silke Spitzer (Hrsg.) 
Automotive – Safety & Security 2012 
Sicherheit und Zuverlässigkeit für 
automobile Informationstechnik

P-211 M. Clasen, K. C. Kersebaum, A. 
Meyer-Aurich, B. Theuvsen (Hrsg.)
Massendatenmanagement in der  
Agrar- und Ernährungswirtschaft 
Erhebung - Verarbeitung - Nutzung 
Referate der 33. GIL-Jahrestagung 
20. – 21. Februar 2013, Potsdam

P-212 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2013 
Proceedings of the 12th International 
Conference of the Biometrics                   
Special Interest Group 
04.–06. September 2013 
Darmstadt, Germany

P-213 Stefan Kowalewski, 
Bernhard Rumpe (Hrsg.) 
Software Engineering 2013 
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-214 Volker Markl, Gunter Saake, Kai-Uwe 
Sattler, Gregor Hackenbroich, Bernhard Mit  
schang, Theo Härder, Veit Köppen (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 2013 
13. – 15. März 2013, Magdeburg

P-215 Stefan Wagner, Horst Lichter (Hrsg.)
Software Engineering 2013 
Workshopband 
(inkl. Doktorandensymposium) 
26. Februar – 1. März 2013, Aachen

P-216 Gunter Saake, Andreas Henrich, 
Wolfgang Lehner, Thomas Neumann, 
Veit Köppen (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 2013 –
Workshopband 
11. – 12. März 2013, Magdeburg

P-217 Paul Müller, Bernhard Neumair, Helmut 
Reiser, Gabi Dreo Rodosek (Hrsg.) 
6. DFN-Forum Kommunikations- 
technologien 
Beiträge der Fachtagung 
03.–04. Juni 2013, Erlangen

P-218 Andreas Breiter, Christoph Rensing (Hrsg.) 
DeLFI 2013: Die 11 e-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. (GI) 
8. – 11. September 2013, Bremen

P-219 Norbert Breier, Peer Stechert,  
Thomas Wilke (Hrsg.) 
Informatik erweitert Horizonte 
INFOS 2013 
15. GI-Fachtagung Informatik und Schule 
26. – 28. September 2013

P-220 Matthias Horbach (Hrsg.) 
INFORMATIK 2013 
Informatik angepasst an Mensch, 
Organisation und Umwelt 
16. – 20. September 2013, Koblenz

P-221 Maria A. Wimmer, Marijn Janssen, 
Ann Macintosh, Hans Jochen Scholl,  
Efthimios Tambouris (Eds.) 
Electronic Government and  
Electronic Participation 
Joint Proceedings of Ongoing Research of 
IFIP EGOV and IFIP ePart 2013 
16. – 19. September 2013, Koblenz

P-222 Reinhard Jung, Manfred Reichert (Eds.)
 Enterprise Modelling 

and Information Systems Architectures  
(EMISA 2013)

 St. Gallen, Switzerland  
September 5. – 6. 2013

P-223 Detlef Hühnlein, Heiko Roßnagel (Hrsg.) 
Open Identity Summit 2013 
10. – 11. September 2013 
Kloster Banz, Germany

P-224 Eckhart Hanser, Martin Mikusz, Masud 
Fazal-Baqaie (Hrsg.) 
Vorgehensmodelle 2013 
Vorgehensmodelle – Anspruch und 
Wirklichkeit 
20. Tagung der Fachgruppe 
Vorgehensmodelle im Fachgebiet 
Wirtschaftsinformatik (WI-VM) der 
Gesellschaft für Informatik e.V.  
Lörrach, 2013

P-225 Hans-Georg Fill, Dimitris Karagiannis, 
Ulrich Reimer (Hrsg.) 
Modellierung 2014 
19. – 21. März 2014, Wien

P-226 M. Clasen, M. Hamer, S. Lehnert,  
B. Petersen, B. Theuvsen (Hrsg.) 
IT-Standards in der Agrar- und 
Ernährungswirtschaft Fokus: Risiko- und 
Krisenmanagement 
Referate der 34. GIL-Jahrestagung 
24. – 25. Februar 2014, Bonn



P-227 Wilhelm Hasselbring, 
Nils Christian Ehmke (Hrsg.) 
Software Engineering 2014 
Fachtagung des GI-Fachbereichs 
Softwaretechnik 
25. – 28. Februar 2014 
Kiel, Deutschland

P-228 Stefan Katzenbeisser, Volkmar Lotz,  
Edgar Weippl (Hrsg.) 
Sicherheit 2014 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 7. Jahrestagung des 
Fachbereichs Sicherheit der 
Gesellschaft für Informatik e.V. (GI) 
19. – 21. März 2014, Wien

P-229 Dagmar Lück-Schneider, Thomas 
Gordon, Siegfried Kaiser, Jörn von 
Lucke,Erich Schweighofer, Maria 
A.Wimmer, Martin G. Löhe (Hrsg.) 
Gemeinsam Electronic Government 
ziel(gruppen)gerecht gestalten und 
organisieren 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und 
Fachtagung Rechtsinformatik (FTRI) 
2014, 20.-21. März 2014 in Berlin

P-230 Arslan Brömme, Christoph Busch (Eds.)
 BIOSIG 2014
 Proceedings of the 13th International 

Conference of the Biometrics Special 
Interest Group

 10. – 12. September 2014 in
 Darmstadt, Germany

P-231 Paul Müller, Bernhard Neumair, 
Helmut Reiser, Gabi Dreo Rodosek 
(Hrsg.) 
7. DFN-Forum  
Kommunikationstechnologien 
16. – 17. Juni 2014 
Fulda

P-232 E. Plödereder, L. Grunske, E. Schneider,  
D. Ull (Hrsg.)

 INFORMATIK 2014
 Big Data – Komplexität meistern
 22. – 26. September 2014
 Stuttgart

P-233 Stephan Trahasch, Rolf Plötzner, Gerhard 
Schneider, Claudia Gayer, Daniel Sassiat, 
Nicole Wöhrle (Hrsg.)

 DeLFI 2014 – Die 12. e-Learning
 Fachtagung Informatik
 der Gesellschaft für Informatik e.V.
 15. – 17. September 2014
 Freiburg

P-234 Fernand Feltz, Bela Mutschler, Benoît 
Otjacques (Eds.)

 Enterprise Modelling and Information 
Systems Architectures

 (EMISA 2014)
 Luxembourg, September 25-26, 2014

P-235 Robert Giegerich,  
Ralf Hofestädt, 

 Tim W. Nattkemper (Eds.)
 German Conference on
 Bioinformatics 2014
 September 28 – October 1
 Bielefeld, Germany

P-236 Martin Engstler, Eckhart Hanser, 
Martin Mikusz, Georg Herzwurm (Hrsg.)

 Projektmanagement und 
Vorgehensmodelle 2014 

 Soziale Aspekte und Standardisierung
 Gemeinsame Tagung der Fachgruppen 

Projektmanagement (WI-PM) und 
Vorgehensmodelle (WI-VM) im 
Fachgebiet Wirtschaftsinformatik der 
Gesellschaft für Informatik e.V., Stuttgart 
2014

P-237 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
 Open Identity Summit 2014
 4.–6. November 2014
 Stuttgart, Germany

P-238 Arno Ruckelshausen, Hans-Peter 
Schwarz, Brigitte Theuvsen (Hrsg.) 
Informatik in der Land-, Forst- und 
Ernährungswirtschaft 
Referate der 35. GIL-Jahrestagung 
23. – 24. Februar 2015, Geisenheim

P-239 Uwe Aßmann, Birgit Demuth, Thorsten 
Spitta, Georg Püschel, Ronny Kaiser 
(Hrsg.)  
Software Engineering & Management 
2015 
17.-20. März 2015, Dresden

P-240 Herbert Klenk, Hubert B. Keller, Erhard 
Plödereder, Peter Dencker (Hrsg.) 
Automotive – Safety & Security 2015 
Sicherheit und Zuverlässigkeit für 
automobile Informationstechnik 
21.–22. April 2015, Stuttgart

P-241 Thomas Seidl, Norbert Ritter,  
Harald Schöning, Kai-Uwe Sattler, 
Theo Härder, Steffen Friedrich,  
Wolfram Wingerath (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2015) 
04. – 06. März 2015, Hamburg



P-242 Norbert Ritter, Andreas Henrich,  
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