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Lock-free Data Structures for Data Stream Processing

Alexander Baumstark1

Abstract: The ever-growing amounts of data in the digital world require more and more computing
power to meet the requirements. Especially in the area of social media, sensor data processing or
Internet of Things, the data need to be handled on the fly during its creation. A common way to
handle these data, in form of endless data streams, is the data stream processing technology. The key
requirements for data stream processing are high throughput and low latency. These requirements
can be accomplished with the parallelization of operators and multithreading. However, in order to
realize a higher degree of parallelism, the efficient synchronization of threads is a necessity. This
work examines the design principles of lock-free data structures and how this synchronization method
can improve the performance of algorithms in data stream processing. For this purpose, lock-free
data structures are implemented for the data stream processing engine Pipefabric and compared with
current implementations. The result is an improvement for the tuple exchanging between threads and
a significant improvement for the symmetric hash join algorithm based on lock-free hash maps.
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1 Introduction

This work investigates the design principles of lock-free data structures and examines
their potential use for data stream processing. The article from [SÇZ05] provide eight
requirements for (real-time) data stream processing. Three of these requirements are directly
dependent on the system architecture, the effectiveness of the used algorithms and the
performance. Stream processing requires algorithms that produce constant progress as a
minimum. Due to the fact that the data appears mostly in form of unbounded data streams
and high costs for storage operations, the algorithms must be able to process data on the fly.
Other requirements are stable and robust algorithms that are not prone to errors, because
high availability is a must-have within data stream processing. Modern approaches take
advantages of the multithreading paradigm to achieve this requirement, for instance, with
concurrent operations on partitioned streams. The key component of such stream processing
algorithms are concurrent data structures, for example, linked list data structures for the
stream partitioning, where selected elements of the original stream are stored. In order
to obtain consistency and a high degree of parallelism efficient synchronization methods
are needed. Conventional techniques of thread synchronization make use of blocking
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mechanisms like locks and mutual exclusions (lock-based). The major disadvantage of these
methods is that they can suffer from problems like deadlocks, livelocks or priority inversion.
Since the critical sections of shared resources cannot be executed in parallel by multiple
threads, the possible degree of parallelism is decreased.

A different technique is thread synchronization without locks, called non-blocking syn-
chronization. Basically, there are three classes of non-blocking methods: obstruction-free,
lock-free and wait-free. The difference between these classes lies in the guarantee they
provide for the progress. In short, lock-free synchronization guarantees that at least one
thread makes progress, whereas wait-free makes sure that all threads do so. Obstruction-free
synchronization is the weakest class and can only guarantee that an isolated thread makes
progress. None of the mentioned problems of lock-based synchronization can occur with
non-blocking implementations. This can lead to a higher degree of parallelism which
may result in a performance gain. Certain modern database systems already use lock-free
algorithms in order attract with their achieved performance ([Re], [Me17]). The goal of this
work is to examine whether or not the benefits of lock-free synchronization are attainable
in data stream processing. The primary research questions of this work ([Ba18]) can be
summarized as follows: (1) What design principles exist for lock-free data structures? (2) For
which data structures does a lock-free design exist? (3) How does lock-free synchronization
affect the overall performance, especially for the use case data stream processing? Can
this method fulfill the requirement of low latency and high throughput? The data stream
processing engine Pipefabric2 is used for benchmarks, in order to give an answer to the
third research question.

To summarize, we make the following contributions:

1. We improved the tuple exchange algorithm in Pipefabric with lock-free synchroniza-
tion.

2. We proposed a lock-free hashmap design that supports multiple elements with
equivalent key, similar to the C++ unordered multimap structure.

3. We improved the scalability and performance of the symmetric hash join algorithm
in Pipefabric.

2 Design Principles of Lock-free Data Structures

The conventional way to synchronize data structures is to use locks and mutual exclusions.
Lock-free synchronization takes another approach and uses atomic operations, memory
barriers and fences to synchronize and guarantee consistency. Atomic operations are
indivisible and uninterruptible instructions [HP06]. These operations can be compared
with transactions from database systems. Transactions follow the ACID property [HR83],
which can be adapted to atomic operations. The ACID property guarantees that every

2 https://github.com/dbis-ilm/pipefabric
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operation must be uninterruptible (atomicity) and that every operation from a consistent
state is followed by a consistent state too (consistency). Operations are executed concurrently
but the effect of these is the same as if the operations would be executed sequentially
(isolation). Each operation remains after it has committed (durability). Due to these
properties, synchronization can be done without the use of locks. There are two classes of
atomic operations: The first is the class of atomic read and write operations. The other class
is for complex atomic read-modify-write operations, like compare-and-swap (CAS)3 or
fetch-and-add.
CAS takes three arguments: a memory location, the expected value of the memory location
and a new value. Only if the value of the memory location matches with the expected
value, the new value will be stored in the memory location. If the compare-and-swap is
successfully executed, it returns true, otherwise false. The failure of a CAS operation means
that a thread changed the value in the interim, so the expected value does not match with
the value of the memory location. A common technique is to execute the CAS operation
(with refreshed expected values) within a loop until it is successful. [He91] has shown that
the consensus number of the CAS operation is unbounded with the consequence that CAS
can implement all other atomic operations.
Similar to the back-off strategies of network protocols that serve to limit the rate of
retransmission, back-off strategies can be used to limit the rate of failed CAS operations.
The reason for using a back-off strategy is that a high rate of successively failed CAS
operation causes unnecessary CPU time, which could be used by other threads to make
progress. Consequently, the use of a correct back-off strategy can increase the performance
of a lock-free data structure [Kh15]. An example is the elimination back-off strategy for a
lock-free stack [HSY04]. It is based on the following observation. If a pop operation follows
a push, the state of the stack does not change. Therefore, a pair of push and pop operations
can meet at a different location to exchange data, without performing actions on the stack.

Another problem in the context of CAS and lock-free synchronization is known as the ABA
problem. It is defined as a false-positive execution of a CAS-based operation through an
unobserved change of a memory location in the interim [DPS10]. A CAS operation cannot
consider a change from the value A to B and back to A. Therefore, the CAS operation
falsely executes its swap and returns a true as a result. It is clear that this behavior, caused
by the ABA problem, can lead to inconsistency and must be prevented. [MS96] described
a efficient solution to the ABA problem with tagged pointers. After each successful CAS
operation the tag of the pointer is incremented and each modification can be considered.
Other approaches use reference counters described by [Va95] or hazard pointers [Mi04].

3 Lock-free Implementations

Stream processing operations rely on concurrent data structures. One of the research
questions of this work is: For which data structures does a lock-free design exist at all? The

3 An equivalent instruction (pair) for Load/Store architectures is load-linked/store-conditional (LL/SC).
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answer is simple: There are no real restrictions. Several thread-safe lock-free data structure
designs exist for almost all data structures. [Tr86] published a simple lock-free stack design.
It is assumed that this is the first published non-blocking implementation. Another classical
lock-free design that is implemented in a variety of libraries and systems, is known as
the (multi-producer, multi-consumer) Michael and Scott queue [MS96]. Single-producer
and single-consumer queues are widely implemented by multi-threading libraries, for
example, Intel’s Threading Building Blocks (TBB)4, Facebook Folly5 or by C++ Boost
Libraries6. These implementations are based on lock-free ringbuffer data structures and
achieve incredible fast execution performance.
Join operations in stream processing use hash maps to probe their entries against others to
find a match. A disadvantage in conventional concurrent implementation is, that the whole
hash map has to be locked to obtain consistency. Several lock-free designs exist for hash
maps, like [FLD13] based on multi-level arrays or [Mi02] based on linked lists, only to name
a few. [BP12] published a lock-free implementation of a B+-tree which is an alternative to
blocking lock-coupling techniques. The next section examines lock-free data structures in
the use case of the data stream processing engine Pipefabric.

4 Use Case: Data Stream Processing

As already mentioned, the key requirements for data stream processing are high throughput
and low latency. The goal of this section is to examine whether or not these requirements are
more attainable with lock-free synchronization. Due to the fact that lock-free synchronization
allows theoretically a higher degree of parallelism, it is expected that algorithms that rely on
this technique achieve better performance results than their equivalent blocking approaches.

4.1 Pipefabric

Pipefabric is a data stream processing engine, developed by the Database and Information
Systems Group at the TU Ilmenau. It is open source, written in C++, supports different
network protocols like ZeroMQ, MQTT or AMQP and can get tuples from Apache Kafka
servers or RabbitMQ. For multi-core machines there are several operations available in
order to enhance the stream processing. A partition operator can split the data streams, so
that each partitioned stream can be processed concurrently. Sub-stream can be merged into a
single-stream again. The supported window operations are the tumbling and sliding window.
Elements of data streams are represented in Pipefabric as a tuple data structure. These
tuples and their components can be processed with several operations. Another component
of Pipefabric is the topology, an interface for the data stream processing pipelines, similar
to the implementation from Apache Spark.

4 https://www.threadingbuildingblocks.org/

5 https://github.com/facebook/folly

6 https://www.boost.org/doc/libs/1_63_0/doc/html/lockfree.html
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4.2 Benchmark System

For the benchmarks that are to be done in this section, an Intel Xeon Phi KNL 7210
processor is used with 64 cores and four threads for each core. The base frequency runs
on 1.3 GHz and can boost up to 1.5 GHz (turbo). Each core owns an L1 cache of 32kB.
This hardware setup allows to run a benchmark for high scalability and concurrency at
the same time. The Intel compiler version 17.0.6 is used because it offers better results
in benchmark scenarios, compared with gcc. Additionally, the code is compiled with the
supported AVX-512 instruction set, but without further code optimization that would take
full advantage of these instructions.

4.3 Tuple Exchanging

Sometimes data needs to be exchanged between two threads, for example, in exchanging
information of the status or tuples for partitioning. An approach to realize this is to implement
it with a buffer, with a single reader and writer. The underlying data structure of the current
implementation is the STL queue, protected with locks and condition variables. In the
first benchmark, the current queue data structure for tuple exchanging is compared with
equivalent lock-free variants from the C++ Boost libraries, Intel’s TBB and Facebook Folly.

For the first scenario, the producer and consumer has to process five million tuples/elements
in order to simulate an unbounded situation. In the second scenario, the maximum size
of the lock-free queues is reduced to the size 1024, in order to show results with realistic
parameters. A naive waiting back-off strategy is used in case of a full or empty queue.

Figure 1: SPSC queue benchmark: execution time, unbounded and bounded

The results in Figure 1 show clearly that the non-blocking queues outperform the lock-based
implementation from Pipefabric. Each thread in the blocking technique is executing its
operation alternately in a way that no real parallel execution is possible and the amount of
time that a thread waits for an unlock of the critical section is unused. The non-blocking
implementations use fast atomic load and store instructions, the Boost and Facebook Folly
implementations are even wait-free. Intel TBB’s fine-grained lock queue is in the medium
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range in this benchmark. A slow consumer, like in the bounded situation, can decrease the
overall performance but is still faster than the blocking approach. It is recommended to
implement the Boost queue for the tuple exchange, because of its speed and the reason that
the Boost library is already used in Pipefabric. This benchmark shows clearly that lock-free
queues can improve the tuple exchanging procedure significantly. The next benchmark
examines in which way it is attainable in complex stream processing algorithms like the
symmetric hash join.

4.4 Symmetric Hash Join

A commonly used join algorithm in data stream processing is the symmetric hash join,
which is also available on relational database systems. The symmetric hash join algorithm
for stream processing continuously generates results while tuples from the streams arrive.
Figure 2 shows the idea of a symmetric hash join algorithm with two data streams sliced
into windows and joined after the algorithm into a single stream.

Figure 2: Symmetric hash join operation.

The symmetric hash join algorithm processes two input streams, denoted as left and right
input. After each arrival of a tuple, either on the left or the right input, it is inserted in the
corresponding hash map. In a next step the hash maps probe their entries against the others
for a match. Entries with no match are removed from the hash map. The gained entries with
a match are forwarded to the following operator as a single data stream.

For a symmetric hash join algorithm, two hash tables are mandatory for the left and right
stream elements. Another requirement is that multiple stream elements are mapped to the
same key. Therefore, the buckets of the hash map must be able to contain multiple elements,
and the probing must also iterate through all available elements in the bucket. The algorithm
is organized in three steps: (1) Insert the tuples in the corresponding hash table, or remove
them if they are outdated, (2) probe for possible join partner in the other hash table and (3)
the actual join of the tuples.
The implementation of the symmetric hash join algorithm in Pipefabric is based on the
STL data structure unordered_multimap. This structure is an STL container, that contains
key-value pairs, similar to the unordered_map structure but with the addition that elements
can have equivalent keys. The internal structure of the multimap is a hash map which
supports forward iterators with an average constant-time complexity. In order to guarantee
thread-safety in a concurrent execution, each operation of the data structure is protected
with a lock. The lock-free symmetric hash join is more challenging to realize. This relies on
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the bucket structure, which allows that multiple values have the same hash key. A lock-free
hash map with this bucket property needs combined data structures for the hash map and
bucket structure. The following lock-free hash map and bucket implementation is based on
the lock-free linked list structure by [Ha01].

Figure 3: Lock-free hashmap supporting same key elements
A node in the hashmap list contains a key (k), pointer to the next node (n) and a pointer to the bucket

as value (b). The bucket node contains the actual value (Bval).

Each node of the list consists of a key, a value and a pointer to the next node. A key makes it
possible to distinguish between entries located at the same index. The hash map itself is an
array of n lists, where n is the size of the hash map with the hash function h(x) = x mod n.
In order to insert a new element, the insert operation computes the hash of the key to find
the corresponding list within the array. Then, the new element is inserted into the bucket
structure of the node with the corresponding key. Find hashes the key, iterates through the
corresponding list, compares each key and returns a pointer to the bucket if the key is found.
Additionally, the bucket structure is based on the same lock-free linked list structure with
the addition of an atomic size counter, that increments on each insertion with an atomic
fetch-and-add operation. A new element is inserted into the list with the current value of the
size counter as its key (see Figure 3).

Head and Tail pointers are used to iterate through all elements, by swinging to the next
element of the node. The general behavior of this lock-free design (named Lock-free/Linked
List in Figure 4) corresponds to the STL unordered multimap structure. Equivalent
implementations based on lock-free skip lists (named Lock-free/Skip List in Figure 4) and a
blocking implementation based on the unordered multimap from Intel TBB are used for
reference in the benchmark.

In the benchmark of Figure 4, two tuple generators publish tuples into the left and right
sliding window. The benchmark measures the execution time of the concurrent symmetric
hash join (with up to 256 threads) with constant distributed 10.000 tuples in total. The
buckets are preallocated in order to measure the relevant parts of the symmetric hash join.

The benchmark result given in Figure 4 shows clearly that these two approaches differ in
performance. When applying the execution with two threads, the blocking hash map is
slightly faster than the lock-free one. The reason for this lies in the implementation of the
lock-free hash map. A lock-free insert operation generally needs more instructions than
an equivalent lock-based implementation, because it operates within a loop with a CAS
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Figure 4: Symmetric Hash Join Benchmark: Execution Time

instruction. An insert operation of a lock-free data structure needs possibly more attempts
to add an element into the lists, because CAS may fail, unlike the lock-based approach.

With the increasing number of threads the performance of the lock-based approach decreases
drastically. This observation is based on the fact that only one thread can access a critical
section. However, the lock-free implementation can guarantee that at least one thread
makes progress resulting in a higher degree of parallelism and throughput. A benefit of the
implementation based on singly linked lists is, that a constant number of stream elements is
processed in an approximately constant time. Another observation of this benchmark is,
that an optimized solution with fine-grained locks achieves the same or, in some situations,
even better performance results than a lock-free implementation. Due to the reason that this
design uses small critical sections, it achieves a similar degree of parallelism and throughput.
It should be mentioned that the lock-free implementations are not further optimized. With
additional lock-free techniques, back-off strategies and other optimizations even better
results are possible.
The reason for the poor performance of the skip list-based structure lies in the probabilistic
behavior: higher levels (express lanes) are created randomly. Consequently, the threads
can not take full advantage of these in the worst case. At higher thread numbers, this
implementation scales similar to the linked list structure, because the additional layers are
created by multiple threads. This approach is not recommended for practical usage and just
shown for reference, due to additional overhead for the higher layers.

5 Conclusion

The results of the benchmarks show that lock-free implementations can achieve similar
results and at higher thread numbers even better results than the lock-based implementations.
Pipefabric uses a blocking implementation of a concurrent queue in order to exchange tuples
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between threads. Every modification on that queue can only be executed by one thread at a
time, which is the major disadvantage of blocking implementations. An equivalent lock-free
implementation allows that every thread can access the data structure simultaneously. This
can boost the tuple exchanging process up to a a tenth, compared to the blocking variant,
if the consumer is as fast as the producer. In case of a slow consumer, where the queue
is frequently full, the lock-free implementations are still significantly faster. The stream
processing can benefit from the higher degree of parallelism at the tuple exchanging, which
lead to a higher throughput for stream operations, for instance, window operations or joins.

Another significant performance boost can be achieved with a lock-free symmetric hash join
operation. The benchmark results have shown that the lock-free implementations are slower
at lower thread numbers but faster and scale very well at higher thread numbers. Reasons
for the results at lower thread numbers are the additional consistency checks before an
actual stream processing operation takes place. The implemented lock-free data structures
can also be used for other stream processing operations in order to improve the degree of
parallelism, for example, the scale join or for the window operations. However, another
observation is that optimized fine-grained locking methods achieve better results at lower
thread numbers, due to small critical sections and consequently more parallelism. Hence,
lock-free synchronization is not the so-called silver bullet in thread synchronization.

To summarize it all, lock-free designs can improve the performance of concurrent operations
and deliver scalable and robust algorithms, which are free from problems like deadlocks
and priority inversion. Thanks to these properties it is possible to achieve reliable latency
and throughput in data stream processing and exceed the performance of blocking designs.
This work has shown that lock-free implementation can fulfill the demands of data stream
processing algorithms.
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