
cbe

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

An Overview of Hawk: A Hardware-Tailored Code
Generator for the Heterogeneous Many Core Age

Sebastian Breß1, Henning Funke2, Steffen Zeuch1, Tilmann Rabl1, Volker Markl1

Abstract: Processor manufacturers build increasingly specialized processors to mitigate the effects
of the power wall in order to deliver improved performance. Currently, database engines have to be
manually optimized for each processor which is a costly and error prone process. In this paper, we
provide a summary of our recent VLDB Journal publication, where we propose concepts to adapt
to performance enhancements of modern processors and to exploit their capabilities automatically.
Our key idea is to create processor-specific code variants and to learn a well-performing code variant
for each processor. These code variants leverage various parallelization strategies and apply both
generic and processor-specific code transformations. We observe that performance of code variants
may diverge up to two orders of magnitude. Thus, we need to generate custom code for each processor
for peak performance. Hawk automatically finds efficient code variants for CPUs, GPUs, and MICs.

1 Introduction

Over the last decade, the main memory capacity has reached the terabyte scale. Main
memory databases exploit this trend in order to satisfy the ever-increasing performance
demands. As a result, they store data primarily in main-memory to eliminate disk I/O as
the main bottleneck. As a result, memory access and data processing have become the new
performance bottlenecks for in-memory data management [Ma00].

Current designs of main-memory database systems assume that processors are homogeneous,
i.e., with multiple identical processing cores. However, todays hardware vendors break
with this paradigm in order to circumvent the fixed energy budget per chip [BC11]. This
so-called power wall forces vendors to explore new processor designs to overcome the
energy limitations [Es11]. Hardware vendors integrate heterogeneous processor cores on the
same chip, e.g., combining CPU and GPU cores as in AMD’s Accelerated Processing Units
(APUs). Another trend is specialization: processors are optimized for certain tasks, which
already have become commodity in the form of Graphics Processing Units (GPUs), Multiple
Integrated Cores (MICs), or Field-Programmable Gate Arrays (FPGAs). These accelerators
promise large performance improvements because of their additional computational power
and memory bandwidth. Thus, from a processor design perspective, the homogeneous many
1 TU Berlin and DFKI GmbH, Berlin {sebastian.bress,steffen.zeuch,tilmann.rabl,volker.markl}@dfki.de
2 TU Dortmund, Dortmund, henning.funke@tu-dortmund.de

cba doi:10.18420/btw2019-ws-07

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 87

2 Sebastian Breß, Henning Funke, Steffen Zeuch, Tilmann Rabl, Volker Markl

core age ends [BC11]. The upcoming heterogeneous many core age provides an opportunity
for database systems to embrace processor heterogeneity for peak performance.

Our goal is to empower database systems to automatically generate efficient code for any
processor without any a priori hardware knowledge, thus making database systems fit for
the heterogeneous many-core age. To achieve this goal, we proposed Hawk [Br18], a novel
hardware-tailored code generator, which produces variants of generated code. By executing
code variants of a compiled query, Hawk adapts to a wide range of different processors
without any manual tuning. Hawk achieves low compilation times and executes queries on a
wide range of processors. In this paper, we provide a summary of our recent publication in
the VLDB Journal [Br18]. Hawk’s code is available as open source.3

2 Overview of Hawk

To provide an architectural overview, we describe Hawk’s role in the process of executing
an SQL query. The SQL parser translates queries into relational query plans. After that,
the query optimizer rewrites the query plan by applying common optimizations to obtain
a query execution plan. On the next layer, Hawk provides a code generation back-end to
perform query compilation for efficient query execution. To this end, Hawk compiles query
execution plans just-in-time into machine code of a target processor.

Hawk’s key feature is the generation of efficient code for processors of different architectures.
Our approach follows the principles of query compilation [Ne11] as opposed to vector-at-a-
time processing [Bo05], because query compilation has the largest potential of applying
processor-specific optimizations. Hawk uses a three-step compilation process: 1) query
segmentation, 2) variant optimization, and 3) code generation (see Figure 1). In general,
Hawk receives a query plan as input and outputs optimized code for the underlying
processors. This process centers around pipelines, i.e., non-blocking data flows. In particular,
all operations in a pipeline are fused into one operator. The individual steps are as follows.

Query Segmentation. Hawk first segments query execution plans into pipelines using the
produce/consume model [Ne11] (Step 1 in Figure 1). During this step, Hawk creates
a pipeline program for each pipeline as the intermediate representation for a pipeline. A
pipeline program consists of simple operations such as loop, filter, and hash probe and
establishes the start point for optimization and target code generation.

Variant Optimizer. The initial pipeline program represents a hardware-oblivious blueprint
as a starting point for processor-specific optimizations. Based on that, Hawk produces
hardware-tailored code by applying modifications to the pipeline programs. A modifica-
tion is a change to a pipeline program, which preserves its semantic but changes the
3 https://github.com/TU-Berlin-DIMA/Hawk-VLDBJ

88 Sebastian Breß et al.

An Overview of Hawk: A Hardware-Tailored Code Generator for the Heterogeneous Many Core Age
3

Pipeline
Program

Hawk

Code
Generator

Code Variant

Variant
Optimizer

Query
Plan

Intermediate representation
for pipelines

Select Processor-Optimized
Variant Configuration

Generate code for
pipeline program

Code variant optimized
for target processor

Optimized Pipeline
Program

Query
Segmentation

Segment query plan
in pipeline programs

Pipeline program optimized
for target processor

1

2

3

Fig. 1: Hawk’s compilation process.

generated code (e.g., memory access pattern).
A variant configuration captures all modifica-
tions of a pipeline program and thus provides a
value for each supported modification. The set of
all modifications defines the code generated by
Hawk. The variant optimizer selects an efficient
variant configuration for each pipeline program
on a target processor (Step 2 in Figure 1). Note
that Hawk automatically determines a variant
configuration for each target processor without
the need for manual tuning. In sum, Hawk ap-
plies the modifications specified in the variant
configuration to the input pipeline program and
returns an optimized pipeline program.

Code Generator. The code generator takes the
optimized pipeline program as an input and
produces the target code (Step 3). We refer
to the compilation result as code variant.

3 End-To-End Compilation Example

We exemplify the translation process of Hawk with the query illustrated in Figure 2. We also
show the pipeline programs that are created during the translation. The query contains two

Build
Pipelines

Probe
Pipeline

select x, sum(q)
from T1, T2, T3

where T1.x=5
 and T2.y>1
 and T3.z<3
 and T1.a=T3.b
 and T2.c=T3.d
group by x;

Example
Query

σy>1 σz<3

σx=5

 Γx,
sum(q)

T1

T2 T3

⋈c=d

⋈a=b

Build Pipeline 1 Build Pipeline 2 Probe Pipeline
LOOP(T1, ..) LOOP(T2, ..) LOOP(T3, ..)
FILTER(x=5, ..) FILTER(y>1, ..) FILTER(z<3, ..)
HASH_PUT(a, ..) HASH_PUT(b, ..) HASH_PROBE(a=c, ..)
PROJECT(a, x, ..) PROJECT(b, ..) HASH_PROBE(b=d, ..)

HASH_AGGREGATE(x,
sum(q), ..)

Fig. 2: Segmentation of example query into pipeline
programs.

hash joins, leading to a query plan with
three pipeline programs. The pipeline pro-
grams describe three pipelines. The two
build pipelines iterate over their input ta-
bles (T1 and T2), apply their filters, insert
the matching keys into a hash table, and
materialize their result. The probe pipeline
program iterates over table T3, applies it’s
filter, probes the hash tables, and performs
the aggregation. Next, the variant optimizer
selects a variant configuration, which de-
scribes the customized features for the trans-
lation. Then, the variant optimizer annotates
each pipeline program according to the vari-
ant configuration. Hawk determines variant
configurations by an offline-training work-

load of test queries using a structured experiment [Br18]. For simplicity and space restrictions,
we continue our example for Build Pipeline 1 only.

An Overview of Hawk 89

4 Sebastian Breß, Henning Funke, Steffen Zeuch, Tilmann Rabl, Volker Markl

Build Pipeline 1
number_of_threads=#CPU cores
LOOP(T1, sequential_memory_access)
FILTER(x=5, no_predication)
HASH_PUT(a, linear_probing)
PROJECT(a, x, single_pass_parallelization)

int thread_id = get_thread_id();
start=start_idx(thread_id, num_rows);
end=end_idx(thread_id, num_rows);
for(tid=start;tid<end;tid+=1){
 if(T1_x[id] == 5){
 INSERT_LP_HT(T1_a[tid], T1_x[tid]);
 }
 }

Fig. 3: Compiling an optimized pipeline
program to target code.

Hawk supports several code modifications such as
the memory access pattern (LOOP), branched pred-
icate evaluation or software predication (FILTER),
different hashing schemes (HASH_PUT), and par-
allelization strategies (PROJECT). We show a CPU-
optimized pipeline program in Figure 3. It uses one
thread per core, a sequential memory access pattern, a
linear probing hash table, and single-pass paralleliza-
tion. We illustrate the code generated by Hawk in
Figure 3. On GPUs, we use a different parallelization
approach called multi-pass to avoid high synchro-
nization overhead between threads [Br18]. Finally,
Hawk passes the code to the OpenCL compiler and
executes the final kernel program.

4 Summary of Key Insights
In this paper, we provided an overview of Hawk, a hardware-tailored code generator that
customizes code for a wide range of heterogeneous processors. Through hardware-tailored
implementations, Hawk produces fast code without manual tuning for a specific processor.
Our abstraction of pipeline programs allows us to flexibly produce code variants while
keeping a clean interface and a maintainable code base. Code variants optimized for a
particular processor can result in performance differences of up to two orders of magnitude
on the same processor. Thus, it is crucial to optimize the database system for each processor.
Acknowledgments. This work was funded by EU project E2Data (780245), DFG Priority Program “Scalable Data
Management for Future Hardware” (MA4662-5) and Collaborative Research Center SFB 876, project A2, and the
German Ministry for Education and Research as BBDC I (01IS14013A) and BBDC II (01IS18025A).

References
[BC11] Borkar, Shekhar; Chien, Andrew: The future of microprocessors. Communications of the

ACM, 54(5):67–77, 2011.

[Bo05] Boncz, Peter et al.: MonetDB/X100: Hyper-Pipelining Query Execution. In: CIDR. pp.
225–237, 2005.

[Br18] Breß, Sebastian et al.: Generating Custom Code for Efficient Query Execution on Heteroge-
neous Processors. The VLDB Journal, Jul 2018.

[Es11] Esmaeilzadeh et al.: Dark Silicon and the End of Multicore Scaling. In: ISCA. ACM, pp.
365–376, 2011.

[Ma00] Manegold, Stefan et al.: Optimizing Database Architecture for the new Bottleneck: Memory
Access. The VLDB Journal, 9(3):231–246, 2000.

[Ne11] Neumann, Thomas: Efficiently Compiling Efficient Query Plans for Modern Hardware.
PVLDB, 4(9):539–550, 2011.

90 Sebastian Breß et al.

