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DPI: The Data Processing Interface for Modern Networks
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Extended Abstract

The computer networks available in data centers and clusters are evolving rapidly, increasingly
providing sophisticated capabilities such as RDMA (Remote Direct Memory Access), in-
network processing, and customizable communication protocols. Once the province of
specialized, expensive networks, the new functionality is becoming available in off-the-
shelf networks as well. An example of how these advances can help with data intensive
applications is RDMA, the ability to directly read or write the memory of remote machines
without involving the remote CPU. RDMA makes data transfer more efficient, and it frees
up computing capacity, which can lead to substantial performance gains [Ka16, Dr15,
Dr14, Lo15, Za17, Ou11, Mi13, Ka14, Yo18, De05, Co17]. Unfortunately, using RDMA is
complicated because it lacks higher-level abstractions [Dr17]. Recent work on using RDMA
in relational databases has shown that the design involves many low-level, yet significant,
decisions around connection management, memory allocation, and the choice of which
RDMA operations to use [Bi16, Ba15].

This fragile dependency on low-level design aspects and lack of portability across networks
is not unique to RDMA; it affects other technologies like smart NICs (Network Interface
Cards) and programmable switches as well [Fi18]. This is concerning because modern
networks are increasingly software-defined, and there is a growing need to tailor them to
data processing, e.g., through load balancing and skew detection at the switch level, data
partitioning on the NIC, and content based routing. Although recent results [Bl18, Sa17]
have shown that smart NICs and programmable switches can improve the performance of
distributed data processing systems, the hand-tuning of low level details remains a problem.
Not only is the programming of the devices complex, it also creates resource management
problems such as deciding when to offload computation into the network.

In this talk, I present the Data Processing Interface (DPI) as a way to address these problems.
DPI’s goal is to make it easier for applications to exploit these emerging capabilities of
modern networks. Accordingly, DPI defines abstractions and interfaces suited to a broad
class of data-intensive applications, yet simple enough for practical implementation with
predictable performance and low overhead relative to “hand-tuned”, ad hoc alternatives. In
designing an interface tailored to data processing, we adopt the approach taken by other
high-level interfaces, such as MPI (Message Passing Interface) [Gr14], which have been
designed for other application domains and which, consequently, have seen only limited
adoption for data processing [Ba17]. A detailed paper about DPI has recently been presented
at the CIDR’19 conference [Al19].
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