
cba

Thomas Lindemann et al. (Hrsg.): BTW 2019 Demo-Programm,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

MAGPIE: A Scalable Data Storage System for Efficient High
Volume Data Queries

Thomas Lindemann1, Patrick Brinkmann2, Fadi Dalbah2, Christian Hakert2, Philipp-Jan
Honysz2, Daniel Matuszczyk2, Nikolas Müller2, Alexander Schmulbach2, Stefan Petyov
Todorinski2, Oliver Tüselmann2, Shimon Wonsak2, Jens Teubner1

Abstract: Modern challenges in huge sized data storage and querying require new approaches in
the field of data storage systems. With MAGPIE, we are introducing a hardware-software-co-design,
which is efficient in querying data by distributed storage with storage-near pre-processing and designed
to be scalable up to large dimensions.

Keywords: data analysis, big data, database, distributed computing, modern hardware

1 Introduction

Beyond the “Big Data” age, data is keeping on growing further year after year in all areas
such as business, science and social media. Especially in the scientific field, the data sizes
have exceeded all previous data sizes and are therefore often referred to as high-volume
data.

The challenge is to develop new storage solutions which can store big amounts of data
and make it accessible for fast analyses. With MAGPIE, we present our approach to aim
the goals of scalable storing huge amounts of partitioned data and allowing efficient
parallel distributed pre-processing. Figure 1 shows a comparison between classic database
configuration and the approach that MAGPIE is based on. To achieve this, we have created
a distributed hardware-software-co-design, which consists of SSD storage devices with
storage-near embedded systems on the hardware side and a software framework, which
allows to pass all operators that are able to process independently on the partitioned data
in form of predicates to the storage nodes. Thus, we got a system that is scalable because
of arbitrary partitioning on independent storage nodes and allows efficient querying on
distributed storages through lightweight embedded systems in the storage layer.

1 TU Dortmund University, Databases and Information Systems Group, {firstname.lastname}@cs.tu-dortmund.de
2 TU Dortmund University, Student Project Group PG614, {firstname.lastname}@tu-dortmund.de

cba doi:10.18420/btw2019-41

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 543



2 Thomas Lindemann and Jens Teubner

Fig. 1: Differences between the classical configuration and intelligent storage approach of MAGPIE

2 Hardware Construction Test Platform

To test our approach, we created a hardware platform in shape of a 2U 19"Blade with
integrated embedded systems, SSD storage devices and power supplies with a custom
designed integrated power control and energy consumption measurement. The system is by
design scalable by just adding more similar blades through a fast network backend. We have
used power efficient embedded systems for our evaluation system, because we expect that
high performance processors have no advantage for the scans and filter operations. Figure 3
shows the test platform which has been created to make our experiments with the MAGPIE
Framework on modern embedded hardware.

• AAEON UP2 Embedded Nodes:

◦ 32 (8x 4) Cores N4200◦ 8x 2 MB L2 Cache◦ Base Clock: 1.1 GHz◦ Boost Clock: 2.4 GHz◦ 8x GPU Intel HD505◦ 64GB (8x 8GB) LPDDR4◦ Inter-Network: 8x 2 Gbit/s◦ Uplink to Client: 2x 10 GBit◦ Storage: 16x SATA

• SSD Storage:

◦ 8 TB (16x 500 GB) SSD◦ Read speed: 16x 550 MB/s◦ Write speed: 16x 520 MB/s◦ Cache: 16x 512MB LPDDR4

Fig. 2: MAGPIE System Specifications Fig. 3: MAGPIE Hardware Construction

544 Thomas Lindemann et al.



Einreichung BTW 2018 Demo-Programm: MAGPIE: A Scalable Data Storage System 3

3 Storage-sided Distributed Data Pre-processing with MAGPIE

There’s already a lot of research on distributed storage near data processing done my
commercial companies, one of the most popular examples is IBM’s PureData System for
Analytics, which is based one the rebranded Netezza Architecture. It all comes down to the
AMPP (Asymmetrical Massive Parallel Processing) engine. [IB14] A similar approach is
shown by Oracle in their Oracle Exadata Database Machines, which has been engineered to
be the highest performing and most available platform for running Oracle Database. [Or16]
The disadvantage is that these systems are of a commercial nature and not open for research
on different processing strategies. An energy-aware approach is shown in [LWA13], the
authors introduce IBEX, an FPGA accelerator that allows a number of more complex
operators to be pushed down into the storage engine of a database. The result of this is
increased performance for certain queries and reduced power consumption. Compared to
the FPGA approach of IBEX, MAGPIE is much more flexible but still energy-aware.

Figure 4 shows a schematic of the MAGPIE Framework. The software concept is designed
of three main components, the user node (client), the master worker node (master) and the
worker nodes (slaves). The client is supposed to run on the workstation, it is the interface
between the user/application querying the database and the MAGPIE cluster and receives
the query result from the user. Selected operations which are possible to run distributed
on all worker nodes are forwarded to the master node. The master is also a worker node
itself but keeps track of the tables in a catalog, after doing the lookup which workers have
partitions of the tables involved in the sub-queries, it forwards the queries to the respective
worker node. It is also possible to maintain the catalog redundantly to avoid having a single
point of failure. In theory, every worker node can be a master node in case of a malfunction
of the current active master. To avoid the master worker to become a bottleneck, the results
of the queries of all worker slaves are sent directly to the user client.

After the worker have completed the scans and filters on all their partitions for the
current query id, they send an acknowledge to the master, the master worker collects all
the acknowledge messages and forwards one commit to the user client when all slaves
completed their tasks for this id. We implemented the scans algorithms, the predicate
filter, the buffer manager, the catalogs and the TCP communication from scratch, due to
performance optimization.

4 Comparison to state-of-the-art Hardware and Software

To evaluate the performance of the Hardware-Software-Co-Design of MAGPIE, we have
run similar test workloads on state-of-the-art hardware and common used software. Thus,
we executed different test scenarios with a generated 100GB TPC-H dataset on a dual-socket
AMD EPYC 7501 32-Core Server with two CPUs, 32 cores each, one thread per core and
stored the input data on a ramdisk to avoid a bottleneck with the hard drives.

MAGPIE 545



4 Thomas Lindemann and Jens Teubner

The comparison software of choice was PostgreSQL 9.6.10 on x86_64-pc-linux-gnu,
compiled by gcc (Debian 6.3.0-18+deb9u1) 6.3.0 20170516, 64-bit. We tested different
filters and aggregations, as well as a modified TPC-H Q6 scan query. The plots in Figure 5
show the results on MAGPIE and the comparison system.

 User

Master
Worker

Worker 0

Worker 1

Worker 2 Worker 4

Worker 5

Worker n

Query Result Acknowledge

Magpie
Cluster

1. 2. 3.

Worker 3

Fig. 4: MAGPIE Software Architecture

TPC
-H

6

Agg
reg

ati
on

Fil
ter

0

5

10

15

Se
co

nd
s

Fig. 5: Execution Time of Queries
Comparison on Magpie vs. Refer-
ence Server w/ PostgreSQL

5 Demo Outline

For our demo, we are planning to bring along our MAGPIE test system as an exhibition
piece. In our demo we want to show how MAGPIE processes different queries. We can also
query a schema listing of the distributed TPC-H data which is stored on the system nodes.
Moreover, we created a graphical interface for our demo that allows to execute queries on
the MAGPIE system interactively and makes an output of the results. For a running query,
we will log the system’s execution time and power consumption. Furthermore, we want to
observe the system load during execution.

References
[IB14] IBM PureData System for Analytics Architecture, https://www.redbooks.ibm.com/

redpapers/pdfs/redp4725.pdf.

[LWA13] Louis Woods, Jens Teubner; Alonso, Gustavo: Less Watts, More Performance: An Intelligent
Storage Engine for Data Appliances. Proceedings of the 2013 ACM SIGMOD Conference
on Management of Data, April 2013.

[Or16] Oracle Exadata Database Machine, https://www.oracle.com/technetwork/database/
exadata/exadatatechnicaldeepdive-3518309.pdf.

546 Thomas Lindemann et al.


