T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 537

NeMeSys — Energy Adaptive Graph Pattern Matching on
NUMA-based Multiprocessor Systems

Alexander Krause! Annett Ungethuem! Thomas Kissinger! Dirk Habich! Wolfgang
Lehner!

Abstract: NEMESys is a NUMA-aware graph pattern processing engine, which leverages intelligent
resource management for energy adaptive processing. With modern server systems incorporating an
increasing amount of main memory, we can store graphs and compute analytical graph algorithms like
graph pattern matching completely in-memory. Such server systems usually contain several powerful
multiprocessors, which come with a high demand for energy. We demonstrate, that graph patterns can
be processed in given performance constraints while saving energy, which would be wasted without
proper controlling.

Keywords: Graph, Pattern Matching, NUMA, Adaptivity, Energy

1 Introduction

Graph pattern matching is an important, declarative, topology-based querying mechanism
and a core primitive in graph analysis. Fundamentally, graph pattern matching is important
to many applications such as analyzing hyper-links in the World Wide Web, fraud detection,
biomolecular engineering, scientific computing, or social network analytics, only to name a
few, as in Krause et al. [Kr17]. The query pattern is usually given as a graph-shaped pattern
and the result is a set of matching subgraphs.

On the one hand, the calculation of graph patterns can get prohibitively expensive, because of
a possibly high number of intermediate results. On the other hand, modern hardware systems
feature main memory capacities of several terabytes, so that we are able to store and process
graphs entirely in main memory. Based on that, we have built NEMESys, a near memory
graph pattern processing system being built upon the Data-Oriented Architecture (DORA)
as used in Kissinger et al. [KHL 18] to satisfy high performance demands in an efficient
way. However, modern scale-up server systems usually contain several multiprocessors
consuming high amounts of energy during data processing. Unfortunately, the energy
efficiency of a graph pattern matching system is often not considered, because of the high
performance demand for the pattern matching process.

I Technische Universitit Dresden, Database Systems Group, Noethnitzer Strale 46, 01187 Dresden,
<firstname>.<lastname> @tu-dresden.de

@@®®@ doi:10.18420/btw2019-40



538 Alexander Krause et al.

To tackle that issue, we want to demonstrate at the BTW conference, that the energy
control findings of Kissinger et al. [KHL 18] for relational systems can be also transferred
to the substantially more complex graph context. In our demo, we want to emphasize the
importance of energy control and the negligible performance impact by using intelligent
energy control loops.

2 System Description

From a hardware perspective, the scale-up approach is mainly characterized by the fact that
separate memory domains per processor are implemented which are remotely accessible
via an interconnect network resulting in a non-uniform memory access (NUMA ) behavior.
To tackle the limiting issues of increased latency and decreased bandwidth when accessing
remote memory domains as shown by Kissinger et al. [KHL18], NEMESys leverages well-
known DORA and near-memory computing (NMC) principles with its basic architecture
as portrayed in Figure 1. NMC means, that we limit the scope of each worker to memory
domains, which are directly connected to their socket (local instead of remote accesses).
Moreover, the DORA approach defines, that only one worker at a time is allowed to touch
a certain data partition. This architectural decision implicates data partitioning, which
we apply following our guidelines from Krause et al. [Kr17]. During query processing,
intermediate states are communicated between the workers with both local and inter-socket
messages via the messaging interface, which fetches the correct receiver from the partition
manager (cf. Figure 1). To tackle the energy adaptivity, NEMESys reuses the Energy
Control Loop approach from Kissinger et al. [KHL18], which constantly monitors system
utilization and applies appropriate core configurations.

In NEMESys, graph queries can be entered through a user interface, which are then parsed
by a query compiler. Every query consists of a chained set of operators, which are derived
from the given query pattern. When the query gets executed, every worker in the system

=> .. Interaction L. CPU Core ... Data Partition I . Software Component
/" NeMesvs I
- Infrastructure
Command: Global ECL

; Load graph ‘ H ‘ Adapt

—/ j‘> F OO . S F S S
1] l l l Processing i 1] l
ks

Socket 1 D D Socket N D
c 0o0ol-|lg O
T T
}

2 - SRS SRS P

- /
Fig. 1: NEMESys system design

Monitor

oo

Memory
Memory




NeMeSys 539

Fig. 2: Operating system governed processing

Fig. 3: Full Demo UI with energy controlled processing

can fork the same operator code and apply it to any data partition on its socket to achieve
maximal parallelism. Therefore high data locality is important for minimal inter-socket
messages and thus less energy overhead for the network communication. An operator will
forward its intermediate matching state to the next operator in the chain, until all messages
in the system have been processed.

3 Demo Booth

We show the adaptivity of NEMESys based on Wikidata?, Wikipedias underlying knowledge
graph. In contrast to Ungethiim et al. [Un17], our use case imposes increased complexity
because of the NP hardness of graph pattern matching and thus demands for more
sophisticated execution and adaption mechanisms. Our dataset is based on a filtered truthy
statement dump?3 with roughly 224 M edges. We generated our query set based on the
anonymized Wikidata SPARQL query logs*. From these logs, we created three different
workload profiles for daily, hourly and minute wise query load fluctuation. The used query

2 https://www.wikidata.org/
3 https://dumps.wikimedia.org/wikidatawiki/entities/
4 https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en



540 Alexander Krause et al.

set contains approximately 1.2 M different graph pattern and arbitrarily length path queries
with sizes ranging between 1 and 52 edges per query.

During the demo, the user can change the load profile and switch between using our energy
control loop or letting the operating system take over with the controls at (1) in Figure 3.
Our front end shows the arriving queries per second (2) and the graph at (3) displays the
systems power draw over time. Switching between the operating system and our controlling
mechanisms yields different energy consumption as shown in Figures 2 compared to Figure 3.
One of the core components is the chart at (4). It displays the number of active cores per
socket and color codes the currently configured frequency per core and socket, where grey
means a sleeping CPU, green means a low frequency, yellow medium scaled frequency
and red resides in the highest frequencies for that core or socket. The four charts at (5) the
Work-Energy Profiles of Ungethiim et al. [Un17] are used to allow for a fine grained system
configuration. The system chooses one configuration, such that the queued tasks do not
exceed a performance threshold, which we defined as 1 s for this experiment, as shown at
(6) with the task counter and speedometer.

Return Return

/—v
External View Internal View Socket Local View
Platform Interaction Socket Interaction

Fig. 4: Virtual Reality interaction guide

Our Ul is able to display the most interesting information, however, it lacks the support of
understanding the actual underlying hardware architecture. Thus, we visualize the system
in an abstracted Virtual Reality (VR) environment, which the user can explore using VR
glasses. Demo visitors can interact with the objects in the scene, e.g. dive into the server
and select a specific component to display relevant related information. Figure 4 shows the
possible user interactions to change scenes. The external view show meta information about
the current experiment. Interacting with the shown platform leads the user to a new scene
with visualized sockets and interconnects, where the user can choose to display statistics
about the elements. The socket local can be reached via interacting with the sockets and
yields per-core information.

References

[KHL18] Kissinger, T.; Habich, D.; Lehner, W.: Adaptive Energy-Control for In-Memory Database
Systems. In: SIGMOD. Pp. 351-364, 2018.

[Kr17] Krause, A.; Kissinger, T.; Habich, D.; Voigt, H.; Lehner, W.: Partitioning Strategy Selection
for In-Memory Graph Pattern Matching on Multiprocessor Systems. In: Euro-Par. Pp. 149—
163, 2017.



NeMeSys 541

[Unl7] Ungethiim, A.; Kissinger, T.; Mentzel, W.; Mier, E.; Habich, D.; Lehner, W.: Energy
Elasticity on Heterogeneous Hardware using Adaptive Resource Reconfiguration. In:
BTW. P. 615, 2017.



