
cbe

Vorname Nachname et al. (Hrsg.): BTW 2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Explore FREDDY: Fast Word Embeddings in Database
Systems

Michael Günther1, Zdravko Yanakiev1, Maik Thiele1, Wolfgang Lehner1

Abstract: Word embeddings encode a lot of semantic as well as syntactic features and therefore are
useful in many tasks especially in Natural Language Processing and Information Retrieval. FREDDY
(Fast woRd EmbedDings Database sYstems), an extended PostgreSQL database system, allowing the
user to analyze structured knowledge in the database relations together with unstructured text corpora
encoded as word embedding by introducing novel operations for similarity calculation and analogy
inference. Approximation techniques support these operations to perform fast similarity computations
on high-dimensional vector spaces. This demo allows exploring the powerful query capabilities of
FREDDY on different database schemes and a variety of word embeddings generated on different text
corpora. From a systems perspective, the user is able to examine the impact of multiple approximation
techniques and their parameters for similarity search on query execution time and precision.

Keywords: word embeddings, relational database, k nearest neighbor queries

1 Introduction

Word2vec [Mi13], GloVe [PSM14] and fastText [Bo16], all well-known models to produce
word embeddings, are powerful techniques to study the syntactic and semantic relations
between words by representing them in a low-dimensional vector. By applying algebraic
operations on these vectors semantic relationships such as word analogies, gender-inflections,
or geographical relationships can be easily recovered [LG14]. Word embeddings are useful
in many tasks in Natural Language Processing and Information Retrieval, such as text mining
and classification, sentiment analysis, sentence completion, or dictionary construction. Some
recent papers also showed the potential of word embeddings to enable AI capabilities in
relational databases [BBS17] and data curation tasks [TTO18].
The goal of the demo is to show how word embeddings could be utilized to augment and
enrich the SQL query capabilities, e.g. to compare columns according to their semantic
relation or to group rows according to the similarity. For this purpose, we implemented a
web application for FREDDY [Gü18, GTL19]. We use pre-trained word embedding models
of large text corpora such as Wikipedia but also domain-specific word embeddings that we
trained ourselves. By exploiting this external knowledge during query processing we are
able to apply inductive reasoning on text values stored in database relations. This is done by
1 Technische Universität Dresden, Institute of Systems Architecture, Dresden Database Systems Group, Nöthnitzer

Straße 46, 01187 Dresden, firstname.lastname@tu-dresden.de

cba doi:10.18420/btw2019-38

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 529



2 Michael Günther, Zdravko Yanakiev, Maik Thiele, Wolfgang Lehner

Word vectors and
index data

Initialization 
scripts

Structured data

Query execution

Word embedding 
datasets

Execute 
UDFs

Word Embedding Operations (UDFs)

SELECT m.title, t.term, t.score
FROM movies AS m, kNN(m.title, 3) AS t
ORDER BY m.title ASC, t.score DESC

Query index 
structures (with SPI)

Fig. 1: System Overview

extending the standard SQL syntax of a PostgreSQL database system with novel functions
that utilize the word embedding datasets to perform semantic similarity calculations. In this
way, it is possible to search for the most similar terms, to group them into categories or
to compare semantic relations between terms among each other, e.g. to answer so-called
analogy queries. In the context of the IMDB3, FREDDY enables novel query types such as
shown in Figure 1, a query that returns the top-3 nearest neighbors (3NN) of each movie
in IMDB. Given the movie “Godfather” as input this results in “Scarface”, “Goodfellas”
and “Untouchables”. FREDDY also supports semantical grouping, e.g. assigning movies to
genres such as film noir or road movie.
Since most word embedding operations perform k nearest neighbor search (kNN) they easily
can become a bottleneck for cases where the kNN search is done hundreds of thousands
times within an SQL query. Therefore, FREDDY provides fast approximation techniques
that exploit the trade-off between execution time and precision.

2 FREDDY: System Overview

FREDDY’s system architecture is sketched in Figure 1. For word embeddings datasets,
which should be added, a script creates new relations for the different index structures. For
exact distance computations, an additional relation is created storing terms and the respective
normalized wordvec vector. In order to make use of these word embeddings within SQL we
implemented the User Defined Functions (UDFs) in Figure 2 which operate on the index
relations. Moreover, there are further UDFs which serve as helper functions, e.g. for the
calculation of centroids for calculating exact cosine similarity values. Search functions like
k N N provide the possibility of an exact computation as well, but can also be performed in
an approximated manner to be applied on large input sets and tables. The UDFs for similarity
calculations and search operations are implemented in C whereas interfaces are realized via
the procedural script language PL/pgSQL. By using the PostgreSQL Server Programming
Interface (SPI), the UDFs are able to run SQL commands inside the functions, e.g. to access
the word vectors and index structures. All UDFs are bundled into a PostgreSQL extension.

3 https://www.imdb.com

530 Michael Günther, Maik Thiele, Wolfgang Lehner



Explore FREDDY: Fast Word Embeddings in Database Systems 3

cosine_similarity(token varchar, token
varchar): Quantifies the similarity between two tokens
analogy(token_1 varchar, token_2 varchar,
token_3 varchar): Solves analogy queries using the
PairDirection, 3CosADD or 3CosMul method [LG14]
analogy_in(token_1 varchar, token_2 varchar,
token_3 varchar, output_set varchar[]): Analogy
queries with restricted result set
kNN(token varchar, k int): Searches for the k most
similar tokens according to the input

kNN_in(token varchar, k int, output_set
varchar[]): like kNN but restricting the result to a
defined set of output tokens (e.g. to obtain results
corresponding to a column in a database relation)
knn_batch(query_set varchar[], k integer): kNN
function that runs multiple queries in batches (e.g. for
JOIN operations based on similarity)
groups(tokens varchar[], groups varchar[]):
Assigns input tokens to groups specified by other
tokens according to their similarity

Fig. 2: Word Embedding Operations

3 Demonstration Outline

For this demonstration, we provide a web-client, different database schemas, various word
embeddings and a selection of pre-defined queries4. Participants are also able to create
their own queries. To gain detailed insights on how the different index structures and search
functions perform and how their parameters affect result quality and query performance, we
provide several widgets to select and adjust them.
Query Interface View The user can choose between different database schemes (1): IMDB,
DBLP5 and Discogs6 music data. In addition, there is a drop-down menu to select different
word embedding datasets from a selection including word2vec vectors trained on Goole
News articles and Wikipedia as well as vectors trained with GloVe[PSM14] on Common
Crawl7 data. Executing the same query multiple times using different word embeddings
leads to different result sets. In general, it is recommended to choose a word embedding
dataset which is trained on a related topic according to the database schema. In the text field
at (2), the query can be created manually or the users get inspired by one of the pre-defined
example queries provided by the drop-down menu above. If a query is executed its result
and the response time appears at (3). The demonstrator also keeps track of the previous
query and its result. They can be retrieved and compared with the current ones using the tab
menu above the result table. In a sidebar (see Figure 3b) the users can choose between the
different index structures for similarity search and different analogy query types.
Performance View In a second view illustrated in Figure 3c, the demo user can perform time
and precision measurements for kNN and analogy queries using different configurations and
compare the results by employing different plots (1). Different visual features (e.g. color,
size, ...) encode the index and search parameters. The notations are declared in the legend
at (2). To obtain reliable measurements the queries are executed multiple times and the
average values for the response time and the precision are obtained. At (3) the number of
queries that should be executed and the neighborhood k are specified. The configuration of
the search function is defined in the sidebar (Figure 3b) just as in the query view.

4 Screencast on our FREDDY website https://wwwdb.inf.tu-dresden.de/research-projects/freddy/
5 https://dblp.uni-trier.de

6 https://www.discogs.com

7 http://commoncrawl.org/

Explore FREDDY: Fast Word Embeddings in Database Systems 531



4 Michael Günther, Zdravko Yanakiev, Maik Thiele, Wolfgang Lehner

(a) Query Interface (b) Configuration (c) Search Analysis View

Fig. 3: The web-interface of FREDDY

Acknowledgments

This work is funded by the German Research Foundation (DFG) within the Research
Training Group “Role-based Software Infrastructures for continuous-context-sensitive
Systems” (GRK 1907) and by the Intel® AI Research.

References
[BBS17] Bordawekar, Rajesh; Bandyopadhyay, Bortik; Shmueli, Oded: Cognitive Database: A Step

towards Endowing Relational Databases with Artificial Intelligence Capabilities. CoRR,
abs/1712.07199, 2017.

[Bo16] Bojanowski, Piotr; Grave, Edouard; Joulin, Armand; Mikolov, Tomas: Enriching Word
Vectors with Subword Information. CoRR, abs/1607.04606, 2016.

[GTL19] Günther, Michael; Thiele, Maik; Lehner, Wolfgang: Fast Approximated Nearest Neighbor
Joins For Relational Database Systems. Datenbanksysteme für Business, Technologie und
Web (BTW 2019), 2019.

[Gü18] Günther, Michael: FREDDY: Fast Word Embeddings in Database Systems. In: Proc. of the
2018 International Conference on Management of Data. ACM, pp. 1817–1819, 2018.

[LG14] Levy, Omer; Goldberg, Yoav: Linguistic regularities in sparse and explicit word represen-
tations. In: Proc. of the 18th conference on computational natural language learning. pp.
171–180, 2014.

[Mi13] Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S; Dean, Jeff: Distributed
Representations of Words and Phrases and their Compositionality. In: Advances in Neural
Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc., 2013.

[PSM14] Pennington, Jeffrey; Socher, Richard; Manning, Christopher D.: GloVe: Global Vectors for
Word Representation. In: Empirical Methods in Natural Language Processing (EMNLP).
pp. 1532–1543, 2014.

[TTO18] Thirumuruganathan, Saravanan; Tang, Nan; Ouzzani, Mourad: Data Curation with Deep
Learning [Vision]: Towards Self Driving Data Curation. CoRR, abs/1803.01384, 2018.

532 Michael Günther, Maik Thiele, Wolfgang Lehner


