T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 477

Architectural Principles for Database Systems on
Storage-Class Memory'

Ismail Oukid?

Abstract: Storage-Class Memory (SCM) is a novel class of memory technologies that combine the
byte addressability and low latency of DRAM with the density and non-volatility of traditional storage
media. Hence, SCM can serve as persistent main memory, i.e., as main memory and storage at the
same time. In this thesis, we dissect the challenges and pursue the opportunities brought by SCM to
database systems. To solve the identified challenges, we devise necessary building blocks for enabling
SCM-based database systems, namely memory management, data structures, transaction concurrency
control, recovery techniques, and a testing framework against new failure scenarios stemming from
SCM. Thereafter, we leverage these building blocks to build SOFORT, a novel hybrid SCM-DRAM
transactional storage engine that places data, accesses it, and updates it directly in SCM, thereby doing
away with traditional write-ahead logging and achieving near-instant recovery.

Keywords: Non-Volatile Memory, Storage-Class Memory, Indexing, Transaction Processing, Memory
Management, Testing, Recovery.

1 Introduction

Database systems have long been optimized to hide the higher latency of storage media,
yielding complex persistence mechanisms. With the advent of large DRAM capacities,
it became possible to keep a full copy of the data in DRAM. Systems that leverage this
possibility, such as main-memory databases, keep two copies of the data: one in main memory
and the other one in storage. The two copies are kept synchronized using snapshotting and
logging. This main-memory-centric architecture yields orders of magnitude faster analytical
processing than traditional, disk-centric architectures. The rise of Big Data emphasized the
importance of such systems with an ever-increasing need for more main memory. However,
DRAM is hitting its scalability limits: It is intrinsically hard to further increase its density.

Storage-Class Memory (SCM) is a group of novel memory technologies that promise to
alleviate DRAM’s scalability limits. They combine the non-volatility, density, and economic
characteristics of storage media with the byte-addressability and a latency close to that of
DRAM. Therefore, SCM can serve as persistent main memory, thereby bridging the gap
between volatile main memory and persistent storage. In this thesis, we explore the impact

! This paper is a summary of the author’s PhD thesis of the same title.
2TU Dresden & SAP SE, Database Systems Group, Nothnitzer Str. 46, D-01062 Dresden, ismail.oukid @sap.com

@@®®@ doi:10.18420/btw2019-29

478 Ismail Oukid

of SCM as persistent main memory on the design and architecture of database systems.
Assuming a hybrid SCM-DRAM hardware setting, we propose a novel software architecture
for database systems that places primary data in SCM and directly operates on it, eliminating
the need for traditional I/O. This architecture yields many benefits: First, it obviates the
need to reload data from storage to main memory during restart, as data is discovered and
accessed directly in SCM. Second, it allows replacing the traditional logging infrastructure
by fine-grained, cheap micro-logging techniques at data-structure level. Third, secondary
data can be stored in DRAM and efficiently reconstructed during recovery. Fourth, system
runtime information can be stored in SCM to improve recovery time. Finally, the system
may retain and continue in-flight transactions in case of system failures.

Unfortunately, SCM is no panacea as it raises un-

precedented programming challenges. Given its byte-

Legend addressability and low latency, processors can access,

[Twnsient | read, modify, and persist data in SCM using load/store

[Ppessistent | instructions at a CPU cache line granularity. The path

from CPU registers to SCM is long and mostly volatile,

as illustrated in Figure 1, including store buffers and

C SEM Controller) CPU caches, laning thfe programmer with littl.e control

¢ over when data is persisted. Therefore, there is a need

[ScMDeviee | to enforce the order and durability of SCM writes using

persistence primitives, such as cache line flushing instruc-

tions. This in turn creates new failure scenarios, such as
missing or misplaced persistence primitives.

Fig. 1: Volatility chain in x86-like
processors.

Within this thesis, we devise several building blocks to overcome these challenges [OL17].
First, we tackle memory management, as the first required building block to build a database
system, by designing a highly scalable SCM allocator, named PAllocator [Oul7a], that
fulfills the versatile needs of database systems (Section 2). Thereafter, we propose the
FPTree [Oul6b], a highly scalable hybrid SCM-DRAM persistent B*-Tree that bridges the
gap between the performance of transient and persistent B*-Trees (Section 3). Using these
building blocks, we realize our envisioned database architecture in SOFORT [Oul4, Oul5],
a hybrid SCM-DRAM columnar transactional engine. We propose an SCM-optimized
MVCC scheme that eliminates write-ahead logging from the critical path of transactions
(Section 4). Since SCM-resident data is near-instantly available upon recovery, the new
recovery bottleneck is rebuilding DRAM-based data. To alleviate this bottleneck, we propose
a novel recovery technique that achieves nearly instant responsiveness of the database by
accepting queries right after recovering SCM-based data, while rebuilding DRAM-based
data in the background [Oul7b] (Section 5). Additionally, SCM brings new failure scenarios
that existing testing tools cannot detect. Hence, we propose an online testing framework that
is able to automatically simulate power failures and detect missing or misplaced persistence
primitives [Oul6a] (Section 6). In summary, our proposed building blocks can serve to
devise more complex systems, paving the way for future database systems on SCM.

Architectural Principles for Database Systems on Storage-Class Memory 479

Program root at known offset

Start address
Offset

Root

Virtual
Address Space

Object
Segment

PPtr: {File ID, Offset} : (mmap) i

Volatile pointer = Root .
Start address + Offset SCM
Object
File

Fig. 2: Data recovery using persistent pointers consisting of a file ID and an offset within that file.

2 Persistent Memory Management

The rise of SCM might spur a major change in the architecture of database systems, as it
invalidates long-standing architectural assumptions. In this incoming era of SCM-based
database systems, everything is yet to be done, starting from persistent memory management
as a fundamental building block. In general, SCM is handled using a file system. User space
access to SCM is granted via memory mapping using mmap(). The mapping behaves like
mmap() for traditional files, except that the persistent data is directly mapped to the virtual
address space, instead of to a DRAM-cached copy. When a program crashes, its pointers
become invalid since the program gets a new address space when it restarts. This implies
that these pointers cannot be used to recover persistent data structures.

To solve this problem, we propose a new pointer type, denoted Persistent Pointer (PPtr), that
remains valid across restarts. It consists of a base, which is a file ID, and an offset within that
file that indicates the start of the block pointed to. Persistent pointers can easily be translated
into regular pointers by adding the offset to the start address of the memory-mapped file, as
illustrated in Figure 2. To perform recovery, we need to keep track of an entry point. One
entry point is sufficient for the whole storage engine since every structure is encapsulated
into a larger structure up to the full engine.

To manage SCM, we propose PAllocator [Oul7a], a highly scalable, fail-safe, and persistent
allocator for SCM, specifically designed for databases that require very large main memory
capacities. PAllocator uses internally two different allocators: SmallPAllocator, a small
block persistent allocator that implements a segregated-fit strategy; and BigPAllocator, a big
block persistent allocator that implements a best-fit strategy and uses hybrid SCM-DRAM
trees to persist and index its metadata. The use of hybrid trees enables PAllocator to also
offer a fast recovery mechanism. PAllocator uses big SCM files that are cut into smaller
blocks for allocation. It maps these files to virtual memory to enable the conversion of PPtrs
to regular pointers. At restart time, a new mapping to virtual memory is created, allowing to
re-convert PPtrs to new valid regular pointers.

Moreover, PAllocator addresses fragmentation in persistent memory, which we argue is an
important challenge, and implements an efficient defragmentation algorithm that is able to
reclaim the memory of fragmented blocks by leveraging the hole punching feature of sparse

480 Ismail Oukid

I Volatile (DRAM) |

: 2 57 |
Inner nodesin | |
DRAM for better | ,/l\ |
performance | 12 345 6 7 :

|

b e\ __ N e — _*_____!
Leaves in SCM to I e BN _ SN _ SN . |
ensure durability | |

'LPersistent(SCM) L

Fig. 3: Selective persistence for a B*-Tree: Inner nodes are in DRAM while leaf nodes are in SCM.

files. To the best of our knowledge, PAllocator is the first SCM allocator that proposes a
transparent defragmentation algorithm as a core component for SCM-based database systems.
Our evaluation shows that PAllocator improves on state-of-the-art persistent allocators
by up to two orders of magnitude in operation throughput, and by up to three orders of
magnitude in recovery time. Furthermore, we integrate PAllocator and a state-of-the-art
persistent allocator in a persistent B*-Tree, and show that PAllocator enables up to 2.39x
better operation throughput than its counterpart.

3 Persistent Data Structures

In this section we investigate the design of persistent index structures as one of the core
database structures, motivated by the observation that traditional main memory B*-Tree
implementations do not fulfill the consistency requirements needed for such a use case.
Furthermore, while expected in the range of DRAM, SCM latencies are higher and
asymmetric with writes noticeably slower than reads. We argue that these performance
differences between SCM and DRAM imply that the design assumptions made for previous
well-established main memory B*-Tree implementations might not hold anymore. Therefore,
we see the need to design a novel, persistent B*-Tree that leverages the capabilities of SCM
while exhibiting performance similar to a traditional transient B*-Tree.

To lift this shortcoming, we propose the Fingerprinting Persistent Tree (FPTree) [Oul6b]
that is based on the following design principles to achieve near-DRAM performance:

1. Fingerprinting. Fingerprints are one-byte hashes of in-leaf keys, placed contiguously
in the first cache-line-sized piece of the leaf. The FPTree uses unsorted leaves with
in-leaf bitmaps — originally proposed in [CGN11] — such that a search iterates linearly
over all valid keys in a leaf. By scanning the fingerprints first, we are able to limit the
number of in-leaf probed keys to one in the average case, which leads to a significant
performance improvement.

2. Selective Persistence. The idea is based on the well-known distinction between
primary data, whose loss infers an irreversible loss of information, and non-primary
data that can be rebuilt from the former. Selective persistence consists in storing

Architectural Principles for Database Systems on Storage-Class Memory 481

Must be persistent MVCC Entry
Transient, persistent, or hybrid
SOFORT Column
TX Column MVCC Dict .
Array Index(es) Tables Array Columns Index Dict 5 . ay

Fig. 4: Data layout overview in SOFORT.

primary data in SCM and non-primary data in DRAM. Applied to the FPTree
(illustrated in Figure 3), this corresponds to storing the leaf nodes in SCM and the
inner nodes in DRAM. Hence, only leaf accesses are more expensive during a tree
traversal compared to a fully transient counterpart.

3. Selective Concurrency. This concept consists in using different concurrency schemes
for the transient and persistent parts: The FPTree uses Hardware Transactional Memory
(HTM) to handle the concurrency of inner nodes, and fine-grained locks to handle that
of leaf nodes. Selective Concurrency elegantly solves the apparent incompatibility
of HTM and persistence primitives required by SCM such as cache line flushing
instructions which cause HTM transactions to abort.

We implemented the FPTree and two state-of-the-art persistent trees, namely the NV-
Tree [Yal6] and the wBTree [CJ15]. Using microbenchmarks, we show that the FPTree
outperforms the two competitors by up to 4.8x for an SCM latency of 90ns (DRAM’s
latency), and by up to 8.2 for an SCM latency of 650 ns. The FPTree achieves these results
while keeping less than 3% of its data in DRAM. Additionally, we demonstrate how the
FPTree scales on a machine with 88 logical cores. Moreover, we show that the FPTree
recovery time is 76.96x and 29.62x faster than a full rebuild for SCM latencies of 90 ns
and 650 ns, respectively.

4 SOFORT: A Hybrid SCM-DRAM Storage Engine

After having outlined the core building blocks, namely memory management and data
structures for the design and implementation of SCM-based data-management systems, we
demonstrate such a system and present SOFORT, a hybrid SCM-DRAM dictionary-encoded
columnar transactional engine tailored for hybrid transactional and analytical workloads
and fast data recovery [Oul4, Oul5]. SOFORT is a single-level store, i.e., the working
copy of the data is the same as the durable copy of the data. To achieve this, SOFORT
leverages the byte-addressability of SCM to persist data in small increments at cache-line
granularity. Since the database state is always up-to-date, SOFORT does not need a redo
log. SOFORT implements serializable multi-version concurrency control (MVCC) coupled
with cooperative garbage collection.

482 Ismail Oukid

SOFORT is architected as a twin-store columnar main-memory database, with a larger
static immutable read-optimized store and a smaller dynamic read/write store. The dynamic
store is periodically merged into the static store to do compaction. This keeps the size of the
dynamic store small and therefore results in good performance for reads and writes. Andrei
et al. [An17] showed that the static store can be entirely kept in SCM at a negligible cost
for query execution, and instantly recovered after failure. Therefore, we focus only on the
dynamic part in this thesis.

Figure 4 gives an overview of the data organization in SOFORT. Tables are stored as a
collection of append-only columns. Each column consists of an unsorted dictionary stored
as an array of the column’s unique data values, and an array of value IDs, where a value
ID corresponds to a dictionary index (position). These two arrays are sufficient to provide
data durability and constitute the primary data. SOFORT stores primary data, accesses it,
and updates it directly in SCM. Other data structures are required to achieve reasonable
performance including, for each column, a dictionary index that maps values to value IDs,
and for each table, a set of multi-column inverted indexes that map sets of value IDs to
the set of corresponding row IDs. We refer to these structures as secondary data since
they can be reconstructed from the primary data. SOFORT can keep secondary data in
DRAM or in SCM. Putting all indexes to DRAM gives the best performance but might
stress DRAM resources, while placing indexes in SCM exposes them to its higher latency
which compromises performance.

To track conflicts between transactions, MVCC keeps for every transaction, among other
metadata, a write set that contains the row IDs of the tuples that the transaction inserted or
deleted. This information is enough to undo a transaction in case it is aborted. We make the
observation that the same information can be used to undo the effects of in-flight transactions
during recovery. Therefore, to provide durability, SOFORT places the MVCC write set in
SCM, which enables it to remove the traditional write-ahead log from the critical path of
transactions. Furthermore, by persisting more MVCC metadata, SOFORT can allow the
user to continue executing open transactions after a system failure.

SOFORT stores its columns contiguously in memory, which complicates memory reclama-
tion of deleted tuples. Indeed, the latter would require a writer-blocking process which would
replace the current columns with new, garbage-free ones. To remedy this issue, we propose
to keep track of deleted rows and re-use them when inserting new tuples whenever possible
instead of appending them to the table. Through an extensive experimental evaluation, we
show that SOFORT exhibits competitive OLTP performance despite being a column-store.

5 SOFORT Recovery Techniques

SCM-enabled database systems such as SOFORT keep a single copy of the data that
is stored, accessed, and modified directly in SCM. This eliminates the need to reload a
consistent state from durable media to memory upon recovery, as primary data is accessed

Architectural Principles for Database Systems on Storage-Class Memory 483

directly in SCM. Hence, the new recovery bottleneck is rebuilding DRAM-based data
structures. We address this bottleneck following two orthogonal dimensions: The first one
pertains to secondary data placement in SCM, in DRAM, or in a hybrid SCM-DRAM
format. We show that near-instant recovery is achievable if all secondary data is persisted
in SCM. However, this comes at the cost of a decreased query performance by up to
51.1%. Nevertheless, near-instant recovery offers guarantees that are appealing to business
applications where availability is critical. Hybrid SCM-DRAM data structures offer a good
compromise by reducing recovery time by up to 5.9x while limiting the impact on query
performance between 16.6% and 32.7%. The second dimension is optimizing the recovery
of DRAM-based data independent of data placement.

After recovering its SCM-based data structures, SOFORT rebuilds DRAM-based secondary
data structures, then starts accepting requests. If DRAM-based secondary data structures
are large, restart times can still be unacceptably long. To address this, we propose an Instant
Recovery strategy. It allows queries to be answered concurrently with the rebuilding of
DRAM-based data structures, i.e., while recovery is still in progress. However, while the
secondary data structures are being rebuilt, request throughput is reduced, partially because
of the overhead of rebuilding, but more importantly because of the unavailability of the
DRAM-based secondary data structures, resulting in sub-optimal access plans.

To remedy the shortcomings of instant recovery, we propose a novel recovery strategy,
named Adaptive Recovery [Oul7b]. It is inspired by the observation that not all secondary
data structures are equally important to a given workload. It improves on instant recovery in
two ways. First, it prioritizes the rebuilding of DRAM-based secondary data structures based
on their benefit to a workload (instant recovery simply uses an arbitrary order). Second,
it releases most of the CPU resources dedicated to recovery once all of the important
secondary data structures have been rebuilt (instant recovery statically splits CPU resources
between recovery and query processing for the entire recovery period).

Through our experimental evaluation, we showed that SOFORT regains its peak performance
up to 4.3x faster with adaptive recovery than with synchronous recovery, while allowing
the system to be responsive near-instantly. We demonstrated that our benefit ranking adapts
well to workload changes during recovery and allows to regain pre-failure throughput up to
2.1x faster than rankings that do not take into consideration the recovery workload.

6 Testing of SCM-Based Software

Consistency failure scenarios and recovery strategies of software that persists data depend
on the underlying storage technology. In the traditional case of block-based devices, software
has full control over when data is made persistent. Basically, software schedules 1/0 to persist
modified data at a page granularity. The application has no direct access to the primary
copy of the data and can only access copies of the data that are buffered in main memory.
Hence, software errors can corrupt data only in main memory which can be reverted

484 Ismail Oukid

Copy upon crash simula-

: : tion in the main process T
L. . i Copies
Original Mirror . ; .
segments segments [- go_p y-on-write of mirror . go_p y-on-write
: Modified segments ! Modified
r r r 1
A . ages i . ages
? Replicat Merge upon 1 |:| Replicat Merge upon 1 |:|
cplicate barrier cplicate barrier

flushes

Normal
execution

Recovery
execution

Execute recovery
and user-
defined test

Simulated
crash

Simulated
crash

Resllm
ain
Resume l L rOCGSS_ Resume

execution execution

Fig. 5: lllustration of crash simulation in the testing framework.

as long as the corruption was not explicitly propagated to storage. In fact, crash-safety
for block-based software highly depends on the correctness of the underlying file system.
In contrast, SCM is byte-addressable and is accessed via volatile store buffers and CPU
caches, over which software has little control. As a side effect, changes can be speculatively
propagated from the CPU cache to SCM at any time, and compilers and out-of-order CPU
execution can jeopardize consistency by reordering memory operations. Moreover, changes
are made persistent at a cache line granularity which necessitates the use of CPU persistence
primitives. This adds another level of complexity as enforcing the order in which changes
are made persistent cannot be delayed like with block-based storage devices, and must be
synchronous. Hence, storing the primary copy of the data in SCM and directly updating it
in-place significantly aggravates the risk of data corruption.

Several proposals tackled these challenges following two main approaches. The first one
focuses on providing global software-based solutions, mainly transactional-memory-like
libraries, to make it easier for developers to write SCM-based software. The second and
more mainstream approach is to rely solely on existing hardware persistence primitives, such
as cache line flushing instructions and memory barriers to achieve consistency. Nevertheless,
all approaches have in common that SCM-related errors may result in data corruption. In
contrast to volatile RAM where data corruption can be cured with a restart of the program,
data corruption in SCM might be irreversible as it is persistent. Therefore, we argue for the
need of testing the correctness of SCM-based software against software crashes and power
failures—which result in the loss of the content of the CPU cache.

We tackle this challenge by proposing a lightweight automated on-line testing framework,
illustrated in Figure 5, that helps detecting and debugging a wide range of SCM-related bugs
that can arise upon software or power failures [Oul6a]. We particularly focus on detecting
missing cache line flushing instructions. Our testing framework employs a suspend-test-

Architectural Principles for Database Systems on Storage-Class Memory 485

resume approach and simulates power failures using data replication, similar to shadow
memory testing approaches [NSO7]. The testing framework creates a mirror segment for
each segment that the program creates; the mirror segment contains only data that is
explicitly flushed by the program. The testing framework triggers randomly simulated
crashes in the path of persistence primitives, upon which a test process is forked and the
main process is suspended. Then, the test process executes a user-defined program that
recovers using the mirror segment with copy-on-write access semantics. Upon completion
of the user-defined program, the test process is terminated and the changes to the mirror
segments are discarded.

An important feature of our testing framework is its ability to avoid excessive duplicate
testing by tracking the call stack information of already tested code paths, which leads to
fast code coverage. Additionally, our testing framework is able to partially detect errors that
might arise due to the compiler or the CPU speculatively reordering memory operations.
It can further simulate crashes in the recovery procedure of the tested program, which
we argue is important since hidden SCM-related errors in the recovery procedure may
compromise the integrity of the data upon every restart. We show with an experimental
evaluation on the FPTree and PAllocator that our testing framework achieves fast testing
convergence, even in the case of nested crash simulations.

7 Conclusion

SCM is emerging as a disruptive hybrid memory and storage technology, requiring us to
fundamentally rethink current database system architectures. In this thesis, we endeavored
to explore this potential by building a hybrid transactional and analytical database system
from the ground up that leverages SCM as persistent main memory. Our pathfinding work
led us to identify the challenges and opportunities brought by SCM for database systems.
As a result, we devised a set of building blocks, including an SCM allocator, a hybrid
SCM-DRAM persistent and concurrent B*-Tree, an adaptation of MVCC for SCM, novel
database recovery techniques, and a testing tool for SCM-based software. Armed with
these building blocks, we designed and implemented SOFORT, a hybrid SCM-DRAM
transactional engine that keeps primary data in SCM and directly operates on it. We showed
how SOFORT’s architecture enables near-instant recovery, allows to continue unfinished
transactions after failure, removes traditional write-ahead logging from the critical path of
transactions, and therefore achieves low transaction latencies. These building blocks can be
used to build more complex systems, exemplified by SOFORT, paving the way for future
database systems on SCM.

8 Acknowledgments

I would like to warmly thank Prof. Wolfgang Lehner for his mentorship and guidance which
were essential to the success of this thesis. Special thanks also go to all current and past

486 Ismail Oukid

members of the SAP HANA Campus, the SAP HANA development team, and the Intel
onsite team at SAP for their help and support throughout my PhD thesis.

References

[Anl7]

[CGN11]

[CI15]

[NSO07]

[OL17]

[Oul4]

[Oul5]

[Oul6a]

[Oul6b]

[Oul7a]

[Oul7b]

[Yal6]

Andrei, Mihnea; Lemke, Christian; Radestock, Giinter; Schulze, Robert; Thiel, Carsten;
Blanco, Rolando; Meghlan, Akanksha; Sharique, Muhammad; Seifert, Sebastian; Vishnoi,
Surendra; Booss, Daniel; Peh, Thomas; Schreter, Ivan; Thesing, Werner; Wagle, Mehul;
Willhalm, Thomas: SAP HANA Adoption of Non-volatile Memory. Proc. VLDB Endow.,
10(12):1754-1765, August 2017.

Chen, Shimin; Gibbons, Phillip B; Nath, Suman: Rethinking Database Algorithms for
Phase Change Memory. In: CIDR. 2011.

Chen, Shimin; Jin, Qin: Persistent B+-trees in Non-volatile Main Memory. Proc. VLDB
Endow., 8(7):786-797, February 2015.

Nethercote, Nicholas; Seward, Julian: Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. SIGPLAN Not., 42(6):89-100, June 2007.

Oukid, Ismail; Lehner, Wolfgang: Data Structure Engineering For Byte-Addressable
Non-Volatile Memory. In: Proceedings of the 2017 ACM International Conference on
Management of Data. SIGMOD ’17, ACM, New York, NY, USA, pp. 1759-1764, 2017.

Oukid, Ismail; Booss, Daniel; Lehner, Wolfgang; Bumbulis, Peter; Willhalm, Thomas:
SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery. In: Proceedings
of the Tenth International Workshop on Data Management on New Hardware. DaMoN
14, ACM, New York, NY, USA, pp. 8:1-8:7, 2014.

Oukid, Ismail; Lehner, Wolfgang; Kissinger, Thomas; Willhalm, Thomas; Bumbulis, Peter:
Instant Recovery for Main-Memory Databases. In: CIDR. 2015.

Oukid, Ismail; Booss, Daniel; Lespinasse, Adrien; Lehner, Wolfgang: On Testing Persistent-
memory-based Software. In: Proceedings of the 12th International Workshop on Data
Management on New Hardware. DaMoN 16, ACM, New York, NY, USA, pp. 5:1-5:7,
2016.

Oukid, Ismail; Lasperas, Johan; Nica, Anisoara; Willhalm, Thomas; Lehner, Wolfgang:
FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class
Memory. In: Proceedings of the 2016 International Conference on Management of Data.
SIGMOD 16, ACM, New York, NY, USA, pp. 371-386, 2016.

Oukid, Ismail; Booss, Daniel; Lespinasse, Adrien; Lehner, Wolfgang; Willhalm, Thomas;
Gomes, Grégoire: Memory Management Techniques for Large-scale Persistent-main-
memory Systems. Proc. VLDB Endow., 10(11):1166—-1177, August 2017.

Oukid, Ismail; Nica, Anisoara; Dos Santos Bossle, Daniel; Lehner, Wolfgang; Bum-
bulis, Peter; Willhalm, Thomas: Adaptive Recovery for SCM-Enabled Databases. In:
ADMS @VLDB. 2017.

Yang, J.; Wei, Q.; Wang, C.; Chen, C.; Yong, K. L.; He, B.: NV-Tree: A Consistent
and Workload-Adaptive Tree Structure for Non-Volatile Memory. IEEE Transactions on
Computers, 65(7):2169-2183, July 2016.

