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Graph Data Transformations in Gradoop

Matthias Kricke! Eric Peukert! Erhard Rahm!

Abstract: The analysis of graph data using graph database and distributed graph processing systems
has gained significant interest. However, relatively little effort has been devoted to preparing the graph
data for analysis, in particular to transform and integrate data from different sources. To support such
ETL processes for graph data we investigate transformation operations for property graphs managed
by the distributed platform Gradoop. We also provide initial results of a runtime evaluation of the
proposed graph data transformations.

Keywords: Graph analytics; Big Data; Graph transformations; Data integration

1 Introduction

The flexible and scalable analysis of large amounts of graph data has gained significant
interest in the last decade and is supported by graph database systems (e.g., Neo4j), graph
extensions in relational DBMS and a growing number of distributed platforms including
those based on Apache Spark and Flink like GraphX, Gelly or Gradoop [Jul7a]. A largely
neglected topic, however, is the support for ETL-like operations to prepare the graph data
for analysis which requires to transform data sources into the supported graph format, to
consolidate different graphs and to integrate them into a combined graph. As in traditional
analysis platforms these steps can be highly complex and easily require the majority of time
for graph analytics.

We have begun to investigate ETL and data integration for graph data for (extended)
property graphs managed by the distributed open-source graph processing platform Gradoop
[Jul6, Jul8]. Gradoop provides already different connectors to import data from relational
databases or CSV files into property graphs. Furthermore, we provide initial match
approaches within the FAMER system [SPR17, SPR18] to match and cluster graph vertices
derived from multiple data sources. In this paper, we propose additional Gradoop operations
to transform graphs to facilitate their integration with other graphs or to make them
better suitable for analysis. For example, a bibliographic network with publications and
their authors might have to be transformed for an easier analysis of co-authorships, e.g.,
by generating a graph with author vertices and co-authorship edges only. The proposed
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operations are not only relevant for Gradoop but should be useful for other platforms
supporting property graphs.

We thus extend Gradoop with a number of generic transformation operations that can be used
to define advanced graph transformations on property graphs. Each graph transformation
can implicitly trigger a series of low-level graph changes (e.g. vertex/edge/property additions
and deletions) that do not need to be defined by the user. Composite transformations can
be expressed from basic ones and the transformations we propose are implemented with
Apache Flink for parallel execution and good scalability to large graphs.

After a discussion of related work, we briefly introduce Gradoop and outline the overall
data integration process. We then describe and illustrate the new operations for graph data
transformation. In Section 5, we present initial results of a runtime evaluation before we
conclude.

2 Related Work

Graph preparation and transformation have received little attention in research so far
especially with reference to integration and analysis of property graphs. On the other
hand, there have been some algebraic, declarative and imperative approaches for graph
transformation some of which have been considered for graph data processing. Algebraic
approaches have been used for model transformation in software engineering [L693, Eh97]
and more recently for the parallel execution with the vertex-centric processing model of
Pregel [KTG14, Ar10, Mal0] or Map Reduce [Bel5].

Declarative approaches rely on a declarative language like Cypher and Sparql to query,
construct and transform graphs. Cypher and Sparql provide only limited support for graph
transformation with its RETURN statement (Cypher) and CONSTRUCT statement (Sparql)
but new language proposals like Open Cypher [Gr18] and G-Core [An18] provide extensions
to express graph grouping and aggregations. BigGra [TH17] translates an SQL-like query
language called UnQL+ to the Pregel processing model in GraphX. In this approach
navigational queries and transformations are expressed as so-called structural recursions
which seem complex to be defined by a user. Some additional proposals provide a declarative
specification of graph extraction from relational databases, for example expressed with
a Datalog-based language as done in GraphGen [XKD15] or Table2Graph[Le15] that is
based on MapReduce.

Imperative methods provide languages for a step-wise definition of graph transformations. A
well known representative is Gremlin/TinkerPop [Ro15] offering a set of low-level operators
for navigation and traversal of graphs and for adding or removing vertices and edges. The
GraphBuilder tool [Jal3] mainly focuses on the construction of graphs rather than their
transformation based on the extraction of values from data sources. The support for the
actual transformation is limited to filters. GraphGen [XD17], GraphX and Gelly[KVH18]
also provide only limited support for transformation, letting the user add edges, vertices and
attributes manually for each necessary transformation.
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Fig. 1: Sample graph data integration pipeline combining person data from a social network and a
company database.

3 Background

3.1 Graph Data Model

Gradoop [Jul6, Jul8] is based on an extended version of the property graph model
(PGM) [RN10, RN12] which is widely used in graph database systems (e.g. Neo4j) and
parallel processing systems such as Apache Spark GraphX. A property graph is a directed
multigraph supporting properties and type labels for both vertices and edges. The properties
are represented by key-value pairs (e.g. name : Bob). Properties are defined at the instance
level and no schema definition is necessary. In extension to the PGM Gradoop supports
storage and analysis of multiple property graphs called logical graphs that can also have a
label and properties. Properties can be atomic (string, numeric, boolean, etc.) or collection-
valued, e.g. lists. Gradoop also supports a number of generic operators on graphs and graph
collections (for pattern matching, subgraph filtering, etc.) that can be used within workflows
for graph analysis. The workflows can be specified in a declarative domain-specific language
called GrALa. The implementation of the Gradoop operators is built on Apache Flink to
achieve a parallel execution and scalability to large graphs.

3.2 Graph Data Integration

Figure 1 shows a typical data integration pipeline to integrate several sources into a graph for
further analysis. Initially, already existing graphs are loaded or data from different sources
such as databases or files of different formats (e.g. CSV, JSON, XML) are transformed
into property graphs. The individual graphs may then have to be transformed to achieve a
similar graph structuring and to facilitate further integration steps. In the example of Figure
1, we simplify the second graph by transforming the company vertices into properties of
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Operator GrALa
Property To Vertex graph.propertyToVertex(label, propertyName, newLabel,

newPropertyName, edgeConfig, condense)

Vertex to Property graph.propagateToNeighbor(label, edgeConfig)

Vertex To Edge graph.vertexToEdge(vertexlLabel, newEdgelLabel)

Edge To Vertex graph.edgeToVertex(edgelLabel, newVertexLabel,
edgeLabelSourceToNew, edgelLabelNewToTarget)

Connect Neighbors  graph.connectNeighbors(vertexLabel, edgeDirection,
neighborVertexLabel, newEdgeLabel)

Invert Edge graph.invertEdge(label, newLabel)

Cluster Fusion graph. fuse (fusionConfig)

Grouping graph.groupBy (vertexGroupingKeys, edgeGroupingKeys)
Cypher Construct graph.query(patternQuery, constructionQuery)

Tab. 1: Overview of structural graph transformation operators in Gradoop. Italic operations are new.

person vertices. To integrate the different graphs, we have to identify matching vertices
and edges that need to be fused together. Given that the graphs may contain vertices and
edges of many different types this is typically a complex process that is currently under
investigation. What has already been implemented is the FAMER system [SPR17, SPR18§]
to link and cluster equivalent entities from multiple graphs, e.g., the vertices for the same
person in the example. Clustered entities are fused together to create a single vertex in the
integrated graph with the combined property values (e.g., for person Bob in the example).
The integrated graph can be further transformed to support specific analytical purposes.

4 Graph Transformation

Table 1 gives an overview on the implemented transformations in Gradoop that change the
graph structure. Additional simpler transformations include property transformations to
change properties based on an UDF or basic functions like string splitting or concatenation.
Due to space restrictions we only describe the first five transformations in more detail in the
following. The grouping and Cypher operations have already been described in earlier work
[JPR17, Jul7b]. Grouping allows us to determine structural graph aggregations with super-
vertices and super-edges summarizing several vertices and edges based on common label
and property conditions. Gradoop also has initial Cypher support to specify construction
patterns such that the found instances for a query pattern can be transformed. We omit the
description of the invert edge operation since it is simple and only inverts the edge direction
plus the label of the edge. The cluster fusion operation combines several equivalent vertices
into one and takes the union of different properties and combines different values for the
same properties based on a specified function, e.g., to prefer the longest string or values
from preferred sources (similar to fusion operations for relational data [BN09]).
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Fig. 2: PropertyToVertex examples for atomic (top) and collection (bottom) properties. Newly
created/removed elements are shown in green/red, respectively.

In general, it is desirable that one can reverse the effect of graph transformations unless
they lead to a reduced information such as deletes or grouping. We therefore have pairs of
transformations and their inverse operations (propertyToVertex and VertexToProperty,
EdgeToVertex and VertexToEdge). Furthermore we have to deal with both atomic and
collection-based properties as well as with the creation / avoidance of duplicate information.

4.1 Property to Vertex & Vertex to Property

Property extraction is one of the most basic transformations and expressed in GrALa
as: graph.propertyToVertex(label, propertyName, newlLabel, newPropertyName,
edgeConfig, condense). It applies to all vertices of a given label and for the values
of property propertyName it creates new vertices with label newLabel and property
newPropertyName. For collection-based values a vertex is created for every value in the
collection. Note that this operator is very beneficial to transform data imported from data
files (e.g., in CSV format) into a property graph. In this case, one can generate a vertex
per input record and then generate additional vertices and connecting edges for selected
properties by applying propertyToVertex.

Since the same property value can occur many times, the creation of new vertices can lead
to many duplicate vertices. We can thus choose to avoid such duplicate vertices (parameter
condense). Such vertices can thus be connected to multiple originating vertices and thus
represent shared information. The deduplication with the condense option is limited to
equal values and thus only covers clean data sources. Hence, an additional deduplication for
the created vertices may become necessary to fuse equivalent vertices with different names.

The user has several options to connect a newly created vertex to the original vertex with
parameter edgeConfig: no edge, origin to new, new to origin and bidirectional. If an edge
is created a user-defined label is set which is defined in the edgeCon fig. The upper example
in Fig. 2 shows the extraction of the atomar property lives_in. Alice and Bob are living
in the same city and therefore the Ciry vertex is deduplicated based on the value of the
property name. All vertices Leipzig originates from are the start point of an edge with the
label lives_in while the City vertex is the target of these edges. The edgeCon fig for this
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promo_invited
name: NewYeam
( Person ) Promotion N ( Person N
invited - participated )
Lname: Bob J name: NewYearlnvite name: Alice

Fig. 3: The edge promo_invited is replaced (red) by the Promotion vertex with two edges (green) by
using the Edge to Vertex operator. The Vertex to Edge operator inverts this operation.

example is: (label: lives_in; direction: origin to new). For the second example of Figure 2,
we have a shared interest in Music so that this new vertex is connected to both Bob and
Alice. This representation is obviously much better suited to analyze shared interests than
the use of interest properties.

The inverse operation vertex to property is relatively straight-forward. Here label and
edgeCon fig are used to select the vertices to transform as well as the target vertices where
the new properties should be added. As a result we can reverse both transformations shown
in Figure 2.

4.2 Edge to Vertex & Vertex to Edge

The Edge to Vertex operator is beneficial for already existing graph structures.
It creates a new vertex and two new edges for every edge with the desired la-
bel in the graph. GrALa code: graph.edgeToVertex(edgelLabel, newVertexLabel,
edgeLabelSourceToNew, edgelLabelNewToTarget). For the example in Figure 3 the
GrALa call would be: graph.edgeToVertex(promo_invited, Promotion, participated,
invited). The operator turns the edge promo_invited between Alice and Bob with all its
properties into a vertex and adds two user-defined edges.

The intuitive counterpart to Edge to Vertex is Vertex to Edge. It converts vertices
with a specified label into edges between adjacent vertices. In GrALa it is defined as:
graph.vertexToEdge (vertexLabel, newEdgeLabel). To identify the necessary edges we
select the "middle vertex" v with the specified label vertexLabel (which is to be replaced)
and compose every direct neighbor with an edge going to v with every neighbor with an
outgoing edge from v. With the Vertex to Edge operation we can revert the example given in
Figure 3. The sole entry in the source set is Alice and in the target set Bob. Hence, an edge
is created between Alice and Bob with the new label and all properties.

4.3 Connect Neighbors

The operator Connect Neighbors is designed to create relations between same-type ver-
tices sharing a common neighbor vertex, e.g., employees of the same company (Fig.
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[ Person ) ( Company ) ( Person |

colleagues _
name:Sunshine Ltd

Fig. 4: The example shows two Persons that got connected by there shared Company.

4) or authors of the same publication. In GrALa, the operator call is expressed by us-
ing: graph.connectNeighbors(vertexLabel, edgeDirection, neighborVertexLabel,
newEdgeLabel). Here, vertexLabel is the label of the central (shared) vertex and
neighborVertexLabel the label of the vertices to be connected. Parameter edge Direction
is interpreted with respect to the shared vertex and can either be incoming, outgoing or
undirected. For each pair of indirectly connected vertices of type neighborVertexLabel a
new bidirectional edge of type new EdgeLabel is created. This is in contrast to the Vertex to
Edge operation that creates directed edges and can be applied to vertices between neighbors
of different type as shown in the example of Fig. 3.

Figure 4 shows an example where Bob and Marc share the same Company vertex. Therefore,
the vertex and the two edges pointing to it are removed in favor of the colleagues edge
which retains the properties of the removed vertex. If several edges are created, each of those
edges is containing the property set of the removed vertex. The operation can also be used
to create a co-author network from a publication network as discussed in the introduction.

5 Evaluation & Discussion

For the evaluation of the operators we used Flink version 1.5.0, Gradoop version 0.4.1 and
a subset of the OpenAcademicGraph (as of 2017-06-09, MAG files 1 - 59)[Sil5, Ta08].
OpenAcademicGraph contains two bibliographic datasets: the MAG dataset with 166
million and the the AMiner dataset with 155 million publication records. Each line in the
datasets contains the Json representation of one publication.

Our subset contains 60 million publication records from the MAG dataset and comprises
102,5 GB of unpacked data. We read the data with the JsonDatalmport of Gradoop that
resulted in a so-called Initial evaluation dataset of 60 million vertices. However, some of
our operators (Edge to Vertex, Connect Neighbors) require the data to already contain edges
and relations between vertices. We thus created a second dataset called Extended using the
PropertyToVertex operation. We extracted the properties author, affiliation, keywords and
field of study all with condense option activated. This resulted in 100 million vertices and
74 million edges. Note that this graph may still include some deduplication problems not
covered by PropertyToVertex, e.g., due to different variations of author or affiliation names.

We executed our benchmark operations on a Shared Nothing cluster of the Leipzig University
Computing Center. We used 9 nodes of the cluster where each had 2 sockets equipped with
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Atomic Property Extraction || Collection Property Extraction
Configuration min | average max min | average max
no edge, no condense || 821s | 838.2s 857s 851s | 866.1s 894s
no edge, with condense 829s 846.7s 875s 853s 873.8s 899s
create edge, no condense || 848s | 853.3s 860s 910s | 1066.7s 1235s
create edge, with condense 924s 940.6s 955s 905s 927.1s 955s

Tab. 2: Runtimes of atomic and collection property extraction.

6 core CPUs (Intel Xeon E5-2620 v3, 2.4 GHz, supports Hyperthreading), 128GB RAM,
6 SATA hard disks with 4 terabyte each and 10 Gigabit/s Ethernet interface. One node
was designated to be the master node while all others where configured to work with 96
task executors in total (12 each). Each tested operator was executed at least 10 times and
measurements contain I/O.

Table 2 shows the runtimes of the PropertyToVertex operator for atomic and collection-based
property extraction. We consider the impact of whether or not edges are created between
newly created and original vertices as well as whether or not property values are deduplicated
(condense options). For the atomic case, we consider the venue properties and for the
collection-based extraction we use the FoS properties (Field of Study) of publications. We
observe that there are mostly only small differences between atomic and collection-based
extraction. In the atomic case 22 million venue vertices and edges are created without
deduplication and only 10 million vertices with deduplication. The collection-based property
extraction created 40 million FoS vertices and edges without and 12.5 million vertices
with deduplication. The highest runtime is in the collection-based scenario where more
than 50 million new graph elements are created. Deduplication with the condense options
typically incurs only a small additional runtime. For the collection-based extraction it is
even faster since the much lower number of vertices to be created more than outweighed the
deduplication effort.

Operator | minimum | average | maximum
Vertex to Property 1449s 1528.5s 1635s
Vertex to Edge 1055s 1088s 1147s
Edge to Vertex 69s 72,3s 76s
Connect Neighbors 1964s 2148.6s 2296s
Invert Edges 63s 66.65s 70s

Tab. 3: Runtimes of structural transformations.

The evaluation of the remaining transformations are based on the second dataset and Table 3
shows the resulting runtimes. We observe that edge-based transformations achieve the lowest
runtimes favored by a small number of properties for edges. This makes communication in
the cluster and creating new objects less expensive. Furthermore, the transformations can be
implemented using only the vertex Ids. In contrast, operators like Vertex to Edge, Connect
Neighbors or Vertex to Property rely on the graph structure and the whole graph needs to
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be loaded. ConnectNeighbors turned out to be most expensive. For our evaluation this
operator creates the co-author connections between authors of the same paper.

6 Conclusion & Future Work

We proposed structural transformation operations for property graphs with simple or
collection properties to facilitate data integration and graph analysis. The operations have
been implemented with Apache Flink and added to the open-source platform Gradoop. An
initial evaluation for bibliographic data showed the applicability and relative efficiency of
the operators. In future work we will further evaluate and optimize graph transformation
operators and their use in real application scenarios as well as for graph-based data
integration, in general.
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