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Eliminating the Bandwidth Bottleneck of Central Query
Dispatching Through TCP Connection Hand-Over
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Abstract: In scale-out database architectures, client queries must be routed to individual backend
database servers for processing. In dynamic database systems, where backend servers join and leave a
cluster or data partitions move between servers, clients do not know which server to send queries to.
Using a central dispatcher, all queries and responses are routed via a single node. In a system with
many high-performance backends, such a central node can become the system bottleneck. This paper
compares three different approaches for query dispatching in terms of scaling network throughput and
processing flexibility. Off-the-shelf TCP/HTTP load-balancers cannot dispatch individual queries
arriving over a single connection to different backend servers, unless they are extended to understand
the database wire protocol. For small response sizes up to 4 KB, a purpose-built query dispatcher
delivers the highest throughput. For larger responses (i.e., BLOBs or data sets for external analysis),
a novel approach for network proxying that transparently maps TCP connections between backend
servers performs best.We propose hybrid query dispatching that performs a TCP connection hand-over
on demand when returning large database results.
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1 Query Dispatching

In scale-out database systems, queries must be routed to individual backend servers. Clients
may send queries directly to individual backends (see Figure 1a). In this case, they have to
select a suitable server with respect to load-balancing and data distribution. An alternative
approach uses one or multiple dedicated controller nodes (“dispatchers”), which act as
central load-balancers (see Figure 1b).
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Fig. 1: Query dispatching architectures.

1 Hasso Plattner Institute, University of Potsdam, Germany
2 NetApp

cba doi:10.18420/btw2019-07

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 97



2 Stefan Klauck et al.

TCP/IP is the most common communication protocol to exchange information in shared-
nothing architectures. Likewise, database systems use wire protocols over TCP/IP. Without
dispatchers, clients communicate directly with backend servers, using one or more TCP
connections for each. With central dispatchers, the dispatchers mediate client communication
with backend servers, often terminating client TCP connections and maintaining a separate
set of (persistent) TCP connections with the backend servers. Dispatchers introduce
overhead, but also provide several advantages. They allow for simpler clients that remain
unaware of individual backend servers, their load levels, and the deployed physical design,
i.e., partitioning and replication. This is advantageous for elastic and dynamic systems,
because servers can transparently join or leave a cluster and data can be repartitioned on the
fly. Such flexible database backends have increased in importance [Cu10, Se16, RJ17].

Dispatchers can be used independently of particular database systems, which may have
different communication characteristics. Workloads for transactional systems and key-value
stores are characterized by simple read and write queries (or get and put operations). Message
sizes comprise usually up to a few kilo bytes, but larger data object comprising mega bytes
of data may occur from time to time. The in-memory database Silo can process almost 700K
TPC-C transactions per second [Tu13]. Analytical workloads are characterized by more
complex queries with varying response sizes for which the query execution time dominates
communication costs most of the time. However, Raasveldt et al. claim that transferring
large amounts of data from databases to clients is common for complex statistical analyses
or machine learning [RM17] in the application.

The existence of a database bandwidth bottleneck depends on the query characteristics,
especially the ratio of database processing and result set sizes. Comparing the speed of a
single 10 Gb network interface controller (NIC) and 8 CPU cores accessing main memory
with 10GB/s, we informally claim that the network is 64 times slower in this scenario.
Resulting, a reasonably well-programmed result-set serialization can produce messages that
are an order of magnitude larger than those which can be send. (Note that serialization can be
parallelized and carried out asynchronously to messages transfer.) In systems with multiple
backend servers, a central query dispatcher can further constrain the data throughput.
Prism [Ha17] eliminates the dispatcher bottleneck by redirecting client connections to
individual backend servers on a query level. Redirecting TCP connections adds overhead
for packet transformations but pays off for large data transfers.

Contributions: In this paper, we investigate database query dispatching for large messages.
We integrated Prism into the in-memory database Hyrise [Gr10] and compare the perfor-
mance of Prism against two approaches with the state-of-the-art architecture for central
dispatchers, i.e., using two separate TCP connections, one between client and dispatcher, the
other between dispatcher and backend. The first approach is the purpose-built Hyrise query
dispatcher [Sc15]; the second is the off-the-shelf TCP/HTTP load-balancer HAProxy [Ta].
We investigate for which message sizes the Prism architecture outperforms the classical
dispatcher architecture. In case message sizes are known in advance, Prism’s connection
redirection can be carried out on demand.
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Outline: The remainder of this paper proceeds with an introduction of the compared
dispatcher implementation in Section 2. In Section 3, we evaluate the performance of
implementations. Section 4 discusses the results and most important aspects of query-based
load-balancing. Section 5 describes related work, and Section 6 concludes the paper.

2 Dispatcher Implementations
To evaluate the different dispatcher implementations, we use a cluster of Hyrise [Gr10]
database instances that implement lazy master replication. Load-balancing can be imple-
mented at connection, transaction, or query level [CCA08]. While query processing at
backends is independent of load-balancing, a dispatcher has to understand the message
format in order to perform transaction- and query-level load-balancing. Hyrise uses JSON-
encoded query plans encapsulated in HTTP request bodies. Other databases use different
message-based protocols [RM17]. The Hyrise dispatcher and Prism can be extended to
implement these wire protocols, because their underlying architectures are database-agnostic.

2.1 Hyrise Dispatcher

The Hyrise dispatcher is a purpose-built query load-balancer for Hyrise database clus-
ters [Sc15]. Using purpose-build dispatchers for different database systems in common,
because they have to understand the database wire protocol. To the best of our knowledge,
all central query dispatchers send client queries and database responses over two separate
TCP connections successively: the first between the client and the dispatcher; the second
between the dispatcher and a database backend.

The Hyrise dispatcher uses the Berkeley socket API with a buffering mechanism that avoids
copying data inside the user space. Client requests are first read into a buffer, after which
the dispatcher parses the requests and forwards queries to a suitable backend. The Hyrise
dispatcher uses the nodejs/http-parser3 for parsing client requests and extracting queries.
Writes go to the master, while reads can go to any node, and tables loads are replicated across
all database instances. Query responses are returned to clients also via the Hyrise dispatcher.
The current implementation of the Hyrise dispatcher uses one thread per client connection.
This implementation was sufficient for the experimental analysis, which uses a small number
of persistent client connections. However, we observed some thread interference, especially
when not pinning threads to CPU cores.

2.2 HAProxy

HAProxy [Ta] is a popular and general-purpose TCP/HTTP load-balancer. It has a similar
design as the Hyrise dispatcher with separate TCP connection between clients and dispatcher
3 https://github.com/nodejs/http-parser
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Fig. 2: Prism software architecture, based on [Ha17].

as well as dispatcher and backends. Including an off-the-shelf solution in the evaluation is
interesting, because it is consistently updated for performance and support of new features.
However, it requires some customization in order to adapt it to the specific scenario.

HAProxy can perform routing and processing decisions based on aspects of an HTTP
request, such as the request URI. Following, HAProxy can be used for Hyrise clusters
as long as the distinction between reads (to be distributed between replicas) and writes
(to be delivered to the master) can be made without a deep inspection of HTTP request
bodies. When it comes to load-balancing of application-level protocols other than HTTP
(as for other databases), HAProxy is limited to TCP connection load-balancing. Resulting,
HAProxy and possibly other off-the-shelf load-balancers cannot be used with database
clusters that partition data or replicate only subsets of the data.

2.3 Prism

In analogy to an optical prism, Prism [Ha17] transparently splits a single TCP connection,
breaking out different application-level requests and forwarding them to different backend
servers by means of reprogrammable software-defined networking (SDN) switches, such as
P4 [Bo14] hardware switches or software switches, such as mSwitch [Ho15]. By default, the
mSwitch kernel software switch operates in learning bridge mode, but allows for dynamic
packet forwarding decisions by ancillary modules, such as the kernel component of Prism.

Figure 2 shows Prism’s software architecture. Prism logically consists of a controller, which
handles TCP handshaking and parses client request headers, and a programmable switch,
which the controller reprograms to route TCP packets containing request and response
payloads directly between a backend server and the client. After a backend server has
handled a request, the controller resumes handing off the client’s TCP connection. Compared
to traditional proxy approaches, Prism significantly reduces load on the controller, because
the majority of packets is exchanged directly between clients and backends. Eliminating the
controller as a central bottleneck for most of the communication also means that connections
can take better advantage of typical multi-connected datacenter fabrics, significantly
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Fig. 3: Topologies for the evaluations, based on [Ha17].

improving performance. Dispatching at the switch level does incur some overheads, due
to the need to reprogram switches and performing connection hand-offs, making Prism
primarily suitable for larger messages. In most scenarios, the Prism connection hand-off
only becomes possible after the complete query is received at the controller. Although the
bandwidth for queries to the database is not increased in this case, database results can be
sent with higher overall bandwidth. Details of Prism, e.g., the connection hand-over and
TLS support, are described in [Ha17].

3 Evaluation

We integrated Prism into Hyrise. This integration is transparent to clients, but required
changes to the database server, which has to be able to hand-over TCP connections with
the Prism controller (see Figure 2). In this section, we compare the query dispatching
performance of Prism, the Hyrise dispatcher, and HAProxy. We describe the experimental
setup in Section 3.1. The results are presented in Section 3.2.

3.1 Experimental Setup
Our experimental setup is similar to the one employed for evaluating Prism [Ha17], but
extends the experiments with 40G Ethernet. It is comprised of six nodes: two clients, two back-
ends and two “dispatcher” machines acting as either software switches or Hyrise/HAProxy
dispatchers, depending on whether measurements using 10 or 40G networking are conducted.
Figure 3a depicts the logical topology used for the Hyrise dispatcher and HAProxy tests,
Figure 3b likewise for Prism. Using only two clients and backend servers is no architectural
limitation, but a result of limited own network hardware resources and the impossibility of
running the experiments in public clouds due to insufficient hardware control.

The client machines are equipped with one Intel Xeon E5-2680 v2 CPU clocked at 2.8 GHz,
64 GB of 1333 MHz DRAM and Linux 4.11 kernels with Ubuntu 17.04. Backends have
two Intel Xeon E5-2650 packages clocked at 2.0 GHz and 128 GB of 1333 MHz memory,
running Linux 4.8 kernels with Ubuntu 16.10. The remaining “dispatcher” machines have
one Intel Xeon E5-2680 v2 CPU clocked at 2.8 GHz, 64 GB of 1600 MHz DRAM, running
Linux 4.8 with Ubuntu 16.10.

Eliminating the Bandwidth Bottleneck of Central Query Dispatching 101



6 Stefan Klauck et al.

For the 10G experiments, all machines use Intel 82599ES dual-port NICs, connected through
an Arista 7050QX-32-F switch. For the 40G experiments, the “dispatcher” nodes have
Intel XL710-QDA2 dual-port NICs, while backends and clients use Mellanox ConnectX-3
MCX354A-FCB NICs. All 40G cards are directly connected, because of insufficient 40G
ports on the Arista switch. The Ethernet MTU is set to the default of 1500 B in all cases.

Depending on which dispatcher approach is being measured, one “dispatcher” node is
configured to run mSwitch, either in Prism mode or as a learning bridge. This allows for a
fair comparison between the Prism and non-Prism scenarios, by using a software switch
in all cases. A baseline netperf4 TCP network benchmark results in 19.5 Gb/s maximum
throughput for 128 MB of bulk data over the 40G setup with the Mellanox adapters, i.e., the
bottleneck is not the software switch. Full wire speed is achieved with 10G.

The backends are running Hyrise on all 16 cores, one acts as master with the other as replica.
In order to make sure that Hyrise itself is not the bottleneck, a minimal stored procedure
returns a database result with the requested number of bytes. The single-threaded Prism
controller executes bound to a single core on the same “dispatcher” machine as mSwitch. For
experiments not involving Prism, the other “dispatcher” node is either running the Hyrise
dispatcher with its client threads bound to four cores or HAProxy 1.7.9 in a multiprocess
configuration with both its backend and frontend processes also bound to four cores.

Measurement data is obtained on the clients by running one single-threaded instance of the
wrk5 HTTP benchmark tool. Client transactions result in response payload sizes between
1 B and 128 MB, which are sampled for 20 s using one persistent connection each. The
results of the two clients then are aggregated.

3.2 Experimental Results

Figure 4 shows the throughput results for the different dispatcher approaches for the 10 and
40G experiments. A subset of the results is summarized in Table 1. Throughput is provided
in terms of HTTP payload in all cases, i.e., from the client/user perspective. The main
result is that, for payload sizes over 1 MB, Prism outperforms the other two dispatchers by
up to 2× (the number of client/backend nodes). This is because for the Hyrise dispatcher
and HAProxy, each payload byte needs to traverse the dispatcher (see Figures 1b and 3a,
respectively), which in a typical datacenter fabric is connected via a single 10 or 40G link to
the top-of-rack switch. This limits both cases to at most 10 Gb/s and 40 Gb/s, respectively.

In the 10G experiment, the Hyrise dispatcher and HAProxy achieve almost the physical limit
of 10 Gb/s for payload sizes over 16 MB. However, the maximum measured throughput in
the 40G experiment is only 18.9 Gb/s for the Hyrise dispatcher and 19.4 Gb/s for HAProxy,
demonstrating the overheads that limit performance over today’s faster network fabrics.

4 http://www.netperf.org/
5 https://github.com/wg/wrk
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Result Prism Dispatcher HAProxy
Payload Unit 10G 40G 10G 40G 10G 40G

1 B Mb/s 0.10 0.08 0.14 0.11 0.09 0.11
8 B Mb/s 0.79 0.64 1.2 0.88 0.74 0.60

64 B Mb/s 6.3 5.1 9.3 7.0 5.8 4.8
512 B Mb/s 50 41 63 55 42 44

4 KB Mb/s 378 321 396 324 303 248
32 KB Gb/s 2.4 2.2 1.7 2.1 1.4 1.3

256 KB Gb/s 7.2 9.1 6.1 10.4 4.8 9.5
1 MB Gb/s 9.39 17.2 8.4 16.9 7.5 10.1
2 MB Gb/s 11.9 20.3 9.0 18.9 8.4 9.9

16 MB Gb/s 17.7 37.8 9.5 18.1 9.3 17.7
128 MB Gb/s 18.8 39.1 9.6 17.9 9.6 19.4

Tab. 1: Selected throughput measurements from Figure 4.

Prism does not share this limitation, because clients and backend servers are communicating
directly after a TCP connection has been redirected, i.e., responses are directly sent to
the clients, taking advantage of the inherent fan-out in the fabric. Consequently, Prism
throughput is only limited by the speed of the network fabric (10G or 40G) or the processing
capacity of the backends, whichever is lower. In the 10G case, Prism achieves 18.8 Gb/s,
which is close to the physical limit of 2 × 10 Gb/s and twice as high as for the Hyrise
dispatcher and HAProxy. In the 40G case, Prism reaches 39.1 Gb/s, again about twice as
high as the other two dispatcher approaches.

For payload sizes below 4 KB, the Hyrise dispatcher outperforms Prism’s and HAProxy’s
throughput by up to 1.5×. For small responses, Prism cannot amortize the connection
hand-off overheads. We observed that HAProxy’s performance for small payload sizes is
reduced by interprocess communication overheads (see Section 4 for more details), which
appear to be higher than for the Hyrise dispatcher.

No Dispatcher Prism Dispatcher HAProxy
10G 40G 10G 40G 10G 40G 10G 40G

59µs 70µs 161µs 214µs 104µs 144 µs 167µs 151µs

Tab. 2: Average user latencies for querying 1B payload.

To evaluate the overhead of query dispatching in comparison to direct client-backend
communication, Table 2 shows the user perceived query latencies for 1 B payloads. Latency
is measured from sending the request until the reception of the response, including network
transmission and database processing times. Without an intermediate dispatcher, the latency
is about 59 µs in the 10G and 70 µs in the 40G experiment. Adding a dispatcher, increases
the latency by about 45 µs to 144 µs depending on the dispatching approach and NIC type.
Among the dispatching approaches, the latency of the Hyrise dispatcher is the lowest.
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4 Discussion

In this section, we discuss several aspects of query-based load-balancing. First, we summarize
our research findings (see Section 4.1). Based on these, we propose a hybrid query
dispatching approach in Section 4.2. In the following, we discuss the scalability of central
query dispatching in Section 4.3.

4.1 Research Findings

The experiments show that no single dispatcher approach is best across all payload sizes.
The Hyrise dispatcher performs best for small payloads, because the overhead of Prism’s
connection hand-over does not amortize if the payload fits into a few network packets. Prism
outperforms the Hyrise dispatcher for larger payloads, because the majority of payload bytes
can be directly handled by the switch.

HAProxy was not able to compete with either of the two, despite a lot of effort on fine-
tuning its configuration. Although a single-process HAProxy configuration delivered best
throughputs for small payload sizes below 0.5 KB compared to multiprocess setups, it peaked
at only 10 Gb/s for payloads above 2 MB in the 40G case. Further, we did not observe any
performance benefits from HAProxy taking advantage of socket splicing [MB99] compared
to the Hyrise dispatcher, which has to copy all data to and from user space. These findings
indicate that although an off-the-shelf load-balancer can be used, it has severe performance
limitations, besides its lack of flexibility (see Section 2.2).

4.2 Hybrid Approach

Based on our measurements, we propose a hybrid load-balancing approach, which uses
Prism for queries returning large results and the Hyrise dispatcher for all other requests.
This requires knowledge about response sizes of individual queries, which can be calculated
(or estimated) during the result set serialization. Hence, the connection hand-off has to be
postponed until the response size is determined and must be initiated by the backend.

4.3 Scalability

Additional throughput can be achieved with additional and/or faster hardware. First, we can
scale-up the dispatcher with additional and/or faster NICs. However, this requires efficient
software to actually take advantage of the hardware. Due to its improved usage of hardware
and preexisting software, Prism is expected to provide the best price-performance ratio in
this regard.
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Further, we can hide multiple dispatchers behind a virtual IP, using network-level load-
balancing as the first and query-level load-balancing as the second step. Network-level
load-balancers can additionally aggregate multiple requests to avoid the network overhead
for many connections sending small messages. Especially transactional databases, which
are able to process millions of small queries per second, require query batching [Tu13].

5 Related Work

Efficient query dispatching is a research field combining database and network aspects. On the
database side, clustered databases with a single entry point require query dispatching. Cecchet
et al. summarize different approaches for replicated databases and discuss load-balancing
alternatives [CCA08]. Database load-balancing research focuses on equal distribution of
load, such as the Tashkent+ load-balancer [EDZ07], rather than efficient load-balancing
from a networking perspective. Consequently, there is a lack of focus on throughput and
latency measurements. Our work investigates scenarios where query dispatching and the
relaying of database responses can become the bottleneck. These scenarios range from
thousands of small transactions [Tu13] as one extreme to large data transfers from the
database [RM17] as the other extreme. Besides networking as database client interface, high
performance networks are a relevant topic for distributed query processing [Bi16, Rö15].
Associated research includes microbenchmarks for single connection RDMA and Ethernet,
but no switching measurements that are relevant for query load-balancing.

On the networking side, the focus in recent years has been on large-scale network-level
load-balancing, especially on distributing the ingress load of hyperscalar datacenters onto
backend servers at connection-open time. Proxy approaches, in which an intermediary
remains in the communication path and can therefore provide finer-grained operations than
simple load-balancing, have somewhat fallen out of favor, due to their perceived higher
overheads. Hayakawa et al. present related work in this space [Ha17].

6 Conclusion

Many scale-out database systems use a central query load-balancer that decides where to
send individual client queries. For clusters serving many thousands of requests and returning
large objects or data sets, the query dispatcher and the network fabric connecting it to
the clients and backend servers can become a bandwidth bottleneck. Prism redirects TCP
connections and allows database backends to directly respond to clients without changing
the clients. We integrated Prism into an in-memory database and compared its performance
against the common dispatching architecture in which each query and result is routed via
a single node. The traditional dispatcher architecture provided the highest throughput for
small database responses, whereas the Prism approach significantly outperformed it for
larger payloads. We propose to use a hybrid load-balancing approach that uses Prism’s
connection hand-over on demand for large payloads.
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