
cbe

Vorname Nachname et al. (Hrsg.): BTW2019,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

LinDP++: Generalizing Linearized DP to Crossproducts
and Non-Inner Joins

Bernhard Radke1, Thomas Neumann2

Abstract: Choosing the best join order is one of the main tasks of query optimization, as join ordering
can easily affect query execution times by large factors. Finding the optimal join order is NP-hard in
general, which means that the best known algorithms have exponential worst case complexity. As a
consequence only relatively modest problems can be solved exactly, which is a problem for today’s
large, machine generated queries. Two developments have improved the situation: If we disallow
crossproducts, graph-based DP algorithms have pushed the boundary of solvable problems to a few
dozen relations. Beyond that, the linearized DP strategy, where an optimal left-deep plan is used to
linearize the search space of a subsequent DP, has proven to work very well up to a hundred relations
or more.

However, these strategies have limitations: Graph-based DP intentionally does not consider implicit
crossproducts, which is almost always ok but sometimes undesirable, as in some cases such crossprod-
ucts are beneficial. Even more severe, linearized DP can handle neither crossproducts nor non-inner
joins, which is a serious limitation. Large queries with, e. g., outer joins are quite common and having
to fall back on simple greedy heuristics in this case is highly undesirable.

In this work we remove both limitations: First, we generalize the underlying linearization strategy to
handle non-inner joins, which allows us to linearize the search space of arbitrary queries. And second,
we explicitly recognize potential crossproduct opportunities, and expose them to the join ordering
strategies by augmenting the query graph. This results in a very generic join ordering framework that
can handle arbitrary queries and produces excellent results over the whole range of query sizes.

1 Introduction

One of the most important tasks of query optimization is join ordering. Due to the
multiplicative nature of joins, changes in join order can easily affect query execution times
by large integer factors [Le18]. Unfortunately, finding the optimal join order is NP-hard in
general [IK84] and no exact algorithms with better than exponential worst case optimization
time are known for the general case. This is problematic because queries tend to get larger,
at least in the long tail. Today, most queries are not written by humans but by machines, and
queries that join a hundred relations or more are not that uncommon [Vo18]. To put that
into perspective, PostgreSQL for example switches from dynamic programming (DP) to a
1 Technische Universität München, radke@in.tum.de
2 Technische Universität München, neumann@in.tum.de

cba doi:10.18420/btw2019-05

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 57

2 Bernhard Radke, Thomas Neumann

heuristic if the query contains 12 relations or more, which means that none of the larger
queries will be optimized exactly.

One reason for that is their somewhat simplistic DP strategy. DP strategies that exploit the
structure of the query graph for example can handle larger queries [MN08], but even there
the exponential nature of the problem limits query sizes to about 30 relations, depending
upon on the structure of the query graph. For even larger queries most approaches fall back
to simple heuristics. An alternative to that is the relatively recent linearized DP strategy
[NR18]. The idea is to linearize the search space by first picking a good (ideally optimal)
relative order of relations, and then use a polynomial time DP step to construct the optimal
bushy tree for that relative order. Of course we do not know the optimal order for the general
solution, but we can use the IK/KBZ algorithm [IK84, KBZ86] to construct the optimal
left-deep order in polynomial time. In practice this leads to excellent results, producing
optimal or near-optimal solutions even for large queries with very low optimization time.

However, the IK/KBZ algorithm supports only inner joins, which is a problem for practical
usage. Outer, semi, and anti joins are quite common: In the real-world workload presented
by Vogelsgesang et al. [Vo18], about 20% of the join queries do contain at least one
outer join with a maximum of 247 outer joins in a single query. Having to fall back to
simple heuristics just because the query contains a single outer join is not very satisfying.
Similar problems occur with complex predicates, for example predicates of the form
R1.A+ R2.B = R3.C + R4.D. These complex predicates are rare, but they can be formulated
in SQL. In the query graph they form a hyperedge, connecting sets of relations with sets of
relations, which is also not supported by IK/KBZ. Note that non-inner joins can be expressed
by using hyperedges, too [MFE13], thus both problems are closely related from an optimizer
perspective. These restrictions are very unfortunate, as now queries with simple inner joins
can be optimized very efficiently, but adding just one non-inner join or one complex join
predicate forces the system to switch to simple heuristics, resulting in clearly inferior plans.

Furthermore, graph-based DP as well as linearized DP ignore crossproducts. Usually this is
a good idea. The search space without crossproducts is much smaller, and in most cases
crossproducts are a bad idea. However, sometimes they can indeed be helpful if some input
relations or intermediate results are known to be very small. Even then, crossproducts
should be used prudently as mis-estimations about input cardinalities can lead to terrible
execution times due to the O(n2) nature of a crossproduct. And considering crossproducts
in the presence of non-inner joins is dangerous as that can lead to wrong results. Consider
e. g. the query (A Z B) Z A.x=C.y C and assume B = ∅. Performing a crossproduct between
B and C before evaluating the outer join would cause an empty result, whereas the original
query yields the complete relation C. Nevertheless, if we make sure that a crossproduct
does not bypass non-inner joins and we are certain about the input cardinalities (e. g.
when a primary key is bound), crossproducts can sometimes significantly improve query
performance [OL90]. Having support for crossproducts in “safe” cases is thus highly
desirable.

58 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 3

In this paper we generalize the recently published linearized DP [NR18] by removing both
limitations. Our generalized LinDP++ strategy is capable of ordering non-inner joins, which
allows it to handle all kinds of join queries. We achieve this using a recursive precedence-
graph decomposition at hyperedges, which allows IK/KBZ to handle hypergraphs. In
addition we present a fast heuristic that explicitly enriches the search space to also consider
safe crossproducts without causing the search space to grow exponentially. The combination
of these two components results in a fast polynomial time heuristic for join ordering that
finds very good plans, explicitly investigates relevant crossproducts, and handles non-inner
joins correctly. Experimental comparisons with slow exact DP strategies show that the
resulting plans are close to optimal. And the algorithm can scale to queries with a hundred
relations or more, which is far beyond what normal DP algorithms can do. For practical
usage this is a great improvement, as we no longer have to fall back to weaker approaches
for certain classes of queries.

The rest of this paper is structured as follows: First we summarize prior work in Section 2.
The extension of linearized DP to non-inner joins is described in Section 3. In Section 4
we investigate how join ordering can be extended to take beneficial crossproducts into
consideration. We evaluate runtime characteristics and result quality of LinDP++ in Section 5
before we draw a conclusion and point out directions for future research in Section 6.

2 Related Work

Join ordering has first been tackled by Selinger et al. in [Se79]. They proposed a dynamic
programming (DP) strategy that generates an optimal linear join tree. Optimal solutions
for subproblems of increasing size are built bottom up by combining optimal solutions for
smaller subproblems. Since then there has been lots of follow-up work of which we discuss
the most relevant techniques in the following.

An obvious improvement over the initial DP is to consider bushy trees as well. Furthermore,
for a DP algorithm to work it is not necessary to enumerate alternatives increasing in size.
Other enumeration schemes work as well (e. g. integer order enumeration [VM96]), as long
as optimal solutions for subproblems are generated prior to their usage in larger problems.
All of these dynamic programming variants can be implemented to consider crossproducts.
In this case, however, all possible crossproducts would implicitly be enumerated. This
results in exponential complexity of the algorithms and disregards the actual structure of the
query. In addition to this increase in complexity, crossproducts between arbitrary relations
can produce incorrect query results in the presence of outer joins.

The most efficient DP algorithms take the query graph into account. By design, such
algorithms generate only execution plans without crossproducts. With the reordering
constraints induced by outer joins encoded into the query graph, they can also validly reorder
across outer joins [MN08]. Besides bottom-up enumeration there also exist variants that
perform the enumeration top-down, thereby enabling more aggressive pruning [FM13]. As

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 59

4 Bernhard Radke, Thomas Neumann

these algorithms strictly follow the structure of the query graph, they per se do not generate
crossproducts. crossproducts can, however, explicitly be taken into account by adding edges
to the query graph and updating the reordering constraints of outer joins.

Another approach to incorporate the reordering constraints imposed by non-inner joins
is to add compensation operators [WC18]. These operators correct errors introduced by
crossproducts across outer joins by removing or modifying spurious tuples. Materializing
these spurious tuples and manipulating them, however, creates overhead at query runtime.

Hardware trends have motivated research on parallelizing dynamic programming [Ha08].
However, linearly increasing the compute power cannot compensate for the exponential
growth of the search space. Doubling e. g. the compute power only allows queries with one
additional join to be optimized exactly in a similar, reasonable amount of time.

Lately, the use of linear programming for join ordering has been proposed [TK17]. The
mixed integer linear program (MILP) that they generate encodes relations, cardinalities,
and costs. The solution of the MILP can then be interpreted as a linear join tree. As they do
not fully constrain the MILP to the query graph, the solution may contain crossproducts.
For queries with outer joins this can again lead to invalid execution plans.

Many commercial systems find a good join order by applying transformations onto the initial
execution plan [Gr95]. These transformative approaches have the advantage that relational
equivalences can directly be translated into transformation rules. Direct application of
equivalences enables the algorithms to take care of reordering constraints as transformation
rules can be disabled as required. However, these algorithms are considerably slower than
DP style algorithms and avoiding to generate trees multiple times is non-trivial. These issues
become even more prominent if additional rules to generate crossproducts are introduced.

Besides exact algorithms that give an optimal tree, a large number of heuristics have
been proposed especially to handle large queries. One well known heuristic is the genetic
algorithm [SMK97], a variant of which is used by PostgreSQL for queries containing more
than 12 joins. The genetic meta-heuristic starts with a population of randomly generated
execution plans. For a number of generations, crossover and mutation is applied and the
best plans of the resulting population survive the generation.

Another interesting algorithm is Greedy Operator Ordering (GOO) [Fe98]. This heuristic
builds a bushy join tree bottom up by picking the pair of relations whose join result is
minimal. The picked pair is then merged into a single relation representing the join. Repeated
application of this procedure finally results in a single relation representing a complete join
tree. GOO is fast even for large queries and usually gives decent plans despite it’s greediness.

Iterative Dynamic Programming (IDP) [KS00] is a combination of DP and GOO. It has
proven to work well especially for really large queries. By using DP to refine expensive
parts of a join tree generated by a greedy algorithm, plan costs can be significantly reduced.

60 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 5

In [NR18] we described linearized DP, a heuristic for join ordering on large queries. We
avoid the exponential complexity of a full dynamic programming strategy by restricting the
DP algorithm to a reduced, linearized search space. Utilizing this technique we bridged the
gap between the small queries which can be optimized exactly and the really large queries,
where only greedy heuristics have acceptable runtime. While this approach gives excellent
results for regular queries, its inability to handle outer joins is a major drawback which we
tackle in this paper.

3 Search Space Linearization

Dynamic Programming (DP) algorithms can be used to solve the join ordering problem
exactly, but the exponential worst case complexity of all known algorithms limits their use
to relatively small queries. The exact complexity depends upon the structure of the explored
search space: A join query Q induces an undirected query graph G = (V, E), where V is the
set of relations, and E is the set of join possibilities between relations. In the general case,
or when the query graph forms a clique, the best known algorithm has a time complexity
in O(3n), which is infeasible for large n. But when the query graphs forms a linear chain
and if crossproducts are not allowed, the optimal solution can be found in O(n3) [MN06],
which is tractable even for large n.

This observation recently led to the concept of linearized DP [NR18]. The key idea is as
follows: Assume that we would know the optimal join order. Then we could take the relative
order of the relations in the optimal join tree and linearize the search space by restricting the
DP algorithm to consider only sub-chains of that relative order. Given the optimal relative
order as input the DP phase can construct the optimal bushy tree in O(n3) [NR18].

Of course we do not know the optimal join order, and thus we do not know the optimal
relative order, either. But for a large class of queries we can construct the optimal left-deep
tree in polynomial time using the IK/KBZ algorithm [IK84, KBZ86]. This gives us a relative
order of relations, too, which we can then use for search space linearization. Using the
IK/KBZ solutions as seed for search space linearization is a heuristic, as we can cut the
optimal solution from the search space, but 1) the resulting plan is never worse than the
optimal left-deep plan, and 2) it is usually close to the true optimal solution in practice, with
much lower optimization time [NR18]. Note that while IK/KBZ requires the cost function
to have Adjacent Sequence Interchange (ASI) property [MS79], the subsequent DP phase
can use any cost function that adheres to the bellman principle.

The main limitation of this technique is that IK/KBZ cannot handle arbitrary queries.
First, it requires an acyclic query graph. We can avoid that problem by first constructing
a minimum spanning tree before executing IK/KBZ. The intuition behind this is that less
selective joins are less likely to be part of the optimal join tree, thus dropping edges that
correspond to such joins to break cycles is usually safe. Note that the DP phase of the
algorithm can again operate on the original, complete query graph potentially including

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 61

6 Bernhard Radke, Thomas Neumann

Algorithm 1 The IKKBZ algorithm [IK84, KBZ86]
IKKBZ(Q = (V, E))
// construct an optimal left-deep tree for the acyclic query graph Q

b = ∅
for each s ∈ V

Pv = IKKBZ-precedence(Q, s, ∅)
while Pv is not a chain

pick v′ in Pv whose children are chains
IKKBZ-normalize each child chain of v′
merge the child chains by rank

if b = ∅ ∨ C(Pv) < C(b)
b = Pv

return b

IKKBZ-precedence(Q(V, E), v, X)
// build a precedence tree by directing edges away from a node v ∈ V

Pv = v
for each e ∈ E : (e = (v, u) ∨ e = (u, v)) ∧ u < X

add IKKBZ-precedence(Q, u, X + v) as child of Pv
return Pv

IKKBZ-normalize(c)
//normalize a chain of relations

while ∃i: rank(c[i])>rank(c[i + 1])
merge c[i] and c[i + 1] into a compound relation

cycles. More severely, IK/KBZ cannot handle hyperedges in the query graph, which would
be necessary to support non-inner joins and complex join predicates. For example the join
query (A Z B) Z (C Z D) will have the regular edges (A, B), (C, D), and the hyperedge
({A, B}, {C, D}), which captures the reordering constraints of inner joins and outer joins.
Note that this is a fundamental problem: The algorithm constructs left-deep trees, but that
query graph has no valid left-deep solution, all solutions must be bushy. In order to apply
the idea of search space linearization to queries with non-inner joins we must therefore
extend IK/KBZ to handle hyperedges.

In the following we first briefly repeat how regular search-space linearization works, and
then show an extension to handle hyperedges.

3.1 Regular Search Space Linearization

Before discussing the linearization for hypergraphs, let us briefly reiterate, how the
linearization of regular graphs works. The IK/KBZ algorithm [IK84, KBZ86] constructs an
optimal left-deep join tree, which is then used as relative relation order in the linearized DP.

62 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 7

As input the algorithm gets an acyclic query graph. For cyclic query graphs we construct a
minimum spanning tree first.

The pseudo-code for the IK/KBZ algorithm is shown in Algorithm 1. It chooses each
relation s as start node once, and then runs the complete construction algorithm given
that start node. For each s, it first constructs the directed precedence graph Pv rooted in s
by directing all join edges away from s. That precedence graph indicates which relations
have to be joined first before other joins become feasible. That is, all valid join orders
adhere to the partial order induced by the precedence graph. Then the algorithm tries to sort
all relations by the cost/benefit ratio of performing the join with a relation. This ratio is
called rank [IK84]. If we get conflicts between the rank order and the order imposed by the
precedence graph, i. e., if we would like to join with R1 before R2, but the precedence graph
requires that R2 is joined before R1, the IKKBZ-normalize function takes both relations and
combines them into a compound relation, because we know that both must occur next to
each other in the optimal solution [IK84]. The remaining relations are ordered by rank until
we get a total order.

The traditional IK/KBZ algorithm returns the cheapest of these n total orders, which is
guaranteed to be an optimal left-deep execution plan. For the linearized DP we take the
total order and use it to restrict the search space considered by the DP phase [NR18]. Note
that we get better results by running the DP phase not only on the order in the cheapest plan,
but on all Pv orders. The reason for that is that the optimal bushy order can be different
from the optimal left-deep order. The different Pv orders are the optimal left-deep orders
given a certain start node; by considering all of them we give the DP algorithm a chance to
recognize orders that are more expensive left-deep but cheaper in bushy form.

3.2 Precendence for Hypergraphs

The IK/KBZ algorithm is only capable of producing linearizations for regular, acyclic
graphs. When generalizing it to handle hypergraphs we first have to construct a precedence
graph, too, which is a bit non-intuitive for hyperedges. The hyperedges have to be directed
away from the start node, but note that a hyperedge connects a set of relations with a set of
relations. To express that, a directed hyperedge is defined similar to the definition used by
Gallo et al. [GLP93]:

Definition 1. In a directed hypergraph H = (V, E), a directed edge e from T ⊆ V to H ⊆ V
is an ordered pair e = (T, H), where T is said to be the tail and H the head of the edge.

We differentiate two types of edges during precedence graph construction: backward
hyperedges b = (T, H) : |T | > 1 and forward hyperedges f = (T, H) : |H | > 1. Note that
an edge can be both a backward and a forward edge.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 63

8 Bernhard Radke, Thomas Neumann

A B

C

E F

D

Fig. 1: A query graph with a hyperedge ({C, D}, {E})

For backward hyperedges all relations in the tail set T have to be available before any
relation of the head H can be joined. Such edges, thus, have to be postponed until all tail
relations are covered by the precedence graph. If all relations in T lie on a single path from
the start relation s to the last visited relation of T we can simply append the backward edge
to that relation, because we know that all other relations must have been joined before. If
that is not the case, i. e., if some relations lie on different paths from the start relation we
still attach the edge to the last visited relation of T , but we mark it as partial. We cannot
statically guarantee that all relations in T will be available when considering the join and
must re-check that when merging child chains.

Consider for example the query graph shown in Fig. 1. When building the precedence graph
rooted in B, the backward hyperedge ({C, D}, {E}) has to be handled. If w.l.o.g D is visited
after C during construction, then E is added as a child of D. Note that E is partial here, as
it additionally requires C, which is not part of the path from B to D. All other edges are
regular and handled as in IK/KBZ which results in the precedence graph given in Fig. 2.

For forward hyperedges, all relations in the head set H must be available on the right-hand
side of the join. In particular, there exists no left-deep solution, the final solution must be
bushy and contain a join with a super-set of H on the right hand side. The key insight here
is that the query graph has to be acyclic anyways to apply IK/KBZ. Thus, if we cut the
graph at the forward hyperedge we get exactly two disconnected sub-graphs, which can be
optimized independently. We call the head of such a forward edge a group and optimize it
recursively when encountering a forward edge during precedence graph construction. Note
that the solution of a group is independent of the currently investigated start relation and can
therefore be reused across start relations. When integrating the recursive solution into the
precedence graph we could add all relations in the sub-graph as one compound relation, but
that would be overly restrictive. Instead, only the minimal subchain that covers the groups
relations is added as compound relation and the rest is kept as individual relations. Due to
the recursive nature of this scheme, individual relations here can be compound relations
from other hyperedges, of course.

An example of a precedence graph dealing with a forward hyperedge is shown in Fig. 3.
This is again a precedence graph for the query in Fig. 1, this time rooted in E. When the
forward hyperedge ({E}, {C, D}) is encountered, the group {C, D} has to be solved. The
solution of the group, which covers at least the relations B, C and D, forms a compound

64 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 9

B

A

C

D E F

Fig. 2: Generalized precedence hypergraph of the graph shown in Fig. 1 rooted in B. E is partial and
additionally requires C.

E

B,C, D A

F

Fig. 3: Generalized precedence hypergraph of the graph shown in Fig. 1 rooted in E. {B,C, D}, the
compound solution to the group of the forward hyperedge ({E}, {C, D}) is appended to E

node and is appended as child of E. Note that the solution to {C, D} would additionally
include A if rank(A) < max(rank(B), rank(C), rank(D)).

If an edge is both, a backward and a forward hyperedge, both strategies are combined:
Application of the edge has to be postponed until the complete tail is available and the
solution for the head group must be inserted when the tail is completely included.

3.3 Linearization using Precedence Hypergraphs

Using the generalized precedence graph we can now run a modified IK/KBZ algorithm
to find a linearization. Similar to the original IK/KBZ algorithm, this is achieved by
merging the nodes in subchains ascending in their rank. One difference is that nodes might
already be compound relations (if forward-edges are encountered), but that does not require
code changes. Backward edges are more difficult, as they have to be recognized during
normalization: A sequence AB must not be normalized if B is partial, as this would prevent
interleaving other nodes that are required by B between A and B. Instead, the nodes are kept
separate in the precedence graph. The rank in the subchain of B is no longer monotonic
here, which requires some care during implementation, but in practice B is merged as soon
as possible after A.

The modifications to IK/KBZ making it hypergraph aware are given in Algorithm 2, where
IKKBZ-precedence is called as IKKBZ-precedence(Q, ∅, {s}, ∅) for each start node s.

As an example, let us now linearize the search space of the query depicted in Fig. 1 for
start relation E (cardinalities and selectivities are given in Tab. 1). The algorithm starts

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 65

10 Bernhard Radke, Thomas Neumann

Algorithm 2 IKKBZ procedures generalized to hypergraphs
IKKBZ-solve-group(Q(V, E), I,G, X)
// solve a group G

if |G | = 1 return G
if memoized(G) return memoized(G)
b = ∅
for each s ∈ G

Pv = IKKBZ-precedence(Q, ∅, s, X ∪ I + s)
while Pv is not a chain

pick v′ in Pv whose children are chains
IKKBZ-normalize each child chain of v′
merge the child chains by rank

if b = ∅ ∨ C(Pv) < C(b)
b = Pv

r = smallest subsequence of b that covers all g ∈ G
memoize r as solution for G
return r

IKKBZ-precedence(Q(V, E), I,G, X)
// build a precedence tree by directing edges away from a node representing the group G

Pv = IKKBZ-solve-group((V − (G ∪ X), E), I,G, X ∪ I)
mark all nodes in Pv
for each e ∈ E : (e = (U,W) ∨ e = (W,U)) ∧U ⊆ Pv ∧ ∀w ∈ W : w < X

if ∃!u ∈ U : ¬isMarked(u) add IKKBZ-precedence(Q,U,W, X +U) as child of Pv
else postpone e

for each postponed edge (e = (U,W) ∨ e = (W,U)) ∧ ∀w ∈ W : w < X ∧ ∀u ∈ U :isMarked(u)
add IKKBZ-precedence(Q,U,W, X +U) as child of Pv

return Pv

IKKBZ-normalize(c)
//normalize a chain of relations

while ∃i: rank(c[i])>rank(c[i + 1]) ∧¬isPartial(c[i + 1])
merge c[i] and c[i + 1] into a compound relation

building the precedence graph at the start relation E and directs all edges away from E. This
is immediately possible for the edge (E, F). The forward hyperedge ({E}, {C, D}) however,
requires to solve the group {C, D} first. This is done by recursively linearizing the precedence
graphs for the subgraph covering {A, B,C, D} rooted in C respectively D. Those precedence
graphs, annotated with ranks and their respective linearizations are depicted in Fig 5. After
cost comparison, CBDA is selected as the best solution for the group, from which the
algorithm picks the subchain CBD. The intermediate result of CBD has a cardinality of
200 which gives a rank of 199/200 for the group solution. Finally, the edge (B, A) is again
regular and A is simply added as child of the compound node B,C, D. This completes the
construction of the precedence graph which is depicted with annotated ranks in Fig. 4a.

The second phase of the algorithm then builds a total order of relations based on this

66 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 11

Relations Cardinality
A 100
B 100
C 50
D 50
E 100
F 120

Join edge Selectivity
(A,B) 0.4
(B,C) 0.02
(B,D) 0.04

({C,D},E) 0.01
(E,F) 0.5

Tab. 1: Cardinalities and selectivities for the example query (Fig. 1)

E

B,C, D A

F

199/200 39/40

59/60

(a) initial

E

B,C, D, A

F

7999/8200

59/60

(b) normalized
Fig. 4: The initial global precedence graph rooted in E for the example query in Fig. 1 and its
normalization. Ranks are annotated in blue.

C B

A

D

39/40

1/2

1/2

(a) rooted in C, linearization CBDA

D B

A

C

39/40

3/4

0

(b) rooted in D, linearization DBC A

Fig. 5: Sub-precedence graphs when solving group {C, D} rooted in C respectively D. Ranks are
annotated in blue.

precedence graph. The algorithm descends into the tree until it encounters a node whose
children are chains, which is immediately the case for the root node E. Before merging
the child chains into a total order, any contradictory sequences UV within the chains are
normalized if V is not partial. In the example, there is a contradictory sequence between
the compound relation BCD and A. These two nodes are normalized into a compound
node and the new rank computed accordingly (see Fig. 4b). After this normalization step
all contradictions are resolved and the algorithm continues with merging the children of
E. This results in the linearization ECBDAF. Based on this linearized search space, the
polynomial time DP algorithm finally constructs the logical execution plan depicted in
Fig. 6. Overall, the algorithm would build execution plans based on all linearizations for the
different start relations and select the one with the lowest cost.

Using this modified IK/KBZ algorithm we can now linearize the search space of arbitrary

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 67

12 Bernhard Radke, Thomas Neumann

Z

F

Z

A

Z

E

Z

DZ

C B

Fig. 6: Logical execution plan based on the linearization ECBDAF

queries, including queries with non-inner joins and complex join predicates. If the query
becomes too large for the DP step (for example more than 100 or 150 relations, depending
on the available hardware) we can fall back to an iterative dynamic programming strategy
using LinDP++ as inner algorithm, as discussed in [NR18].

4 Considering Potentially Beneficial Crossproducts

Having introduced a technique to handle non-inner joins in the previous section we now
turn our attention onto the usefulness of crossproducts. Usually, when a join ordering
algorithm does consider crossproducts, it considers all of them. Unfortunately this increases
the search space dramatically, and increases the optimization time to O(3n), regardless of
the structure of the query graph. And most of these considered crossproducts will be useless:
A crossproduct L × R is inherently a O(|L | |R|) operation, while a hash join can be executed
ideally in linear time. Which means that crossproducts are only attractive if at least one of its
inputs is reasonably small. On the other hand crossproducts can sometimes be used to avoid
repeated joins with large relations (by building the crossproduct of small relations first). We
would like to capture this (rare, but useful) use case, without paying the exponential costs of
considering all crossproducts. In this section we therefore introduce a cheap heuristic to
detect potentially beneficial crossproducts. We use that information to make them explicit
in the query graph: If a crossproduct between R1 and R2 is considered beneficial we add an
artificial crossproduct edge with selectivity 1 between R1 and R2 to the query graph. The
DP phase of LinDP++ will consider this edge during plan construction and will utilize the
crossproduct if beneficial. Note that the heuristic itself is not tied to LinDP++, it could be
used by any query graph based optimization algorithm, like, for example, DPhyp.

When finding crossproduct candidates we have two problems: First, finding good candidates
has to be reasonably cheap, and second, we must be careful in the presence of non-inner
joins, as adding crossproducts there can lead to wrong results. For example in the query
R1 Z (R2 Z R3 Z R4) we must not introduce a crossproduct between R1 and R4, but we
could introduce a crossproduct between R2 and R4. We solve that problem by analyzing
the paths between two relations: We only consider crossproducts between two relations Ri

68 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 13

and Rj if there exists a path of regular (i. e., inner join) edges between them. This avoids
bypassing non-inner joins with crossproducts.

Intuitively, a crossproduct is potentially beneficial if it allows to cheaply bypass a sequence
of expensive join operations. Analyzing all paths between all pairs of relations is com-
putationally expensive and not feasible in practice. However, restricting the analysis to
paths of length two gives polynomial optimization time and still catches many cases where
a crossproduct could result in a better plan: For a query Q we investigate all pairs of
neighboring edges e1 = (u, v) ∈ Q and e2 = (v,w) ∈ Q. We augment Q with an artificial
crossproduct edge (v,w) of selectivity 1 if the cardinality of the crossproduct |u × w | is less
than the result sizes of both of the joins:

|u × w | < |u Z v | ∧ |u × w | < |v Z w |

For the Cout cost function [CM95] this criterion gives all potentially beneficial crossproducts
to bypass paths of length two while still keeping optimization complexity reasonable. Of
course there could be even longer paths where bypassing joins via crossproducts would
result in cheaper plans. Our experimental evaluation (Section 5), however suggests, that
investigating paths of length two covers most of the important crossproducts, and has
negligible overhead. If one wants to be more aggressive with crossproducts we could
consider even longer paths if the relations are particular small (for example a single tuple).
But this leads to diminishing return compared to the optimization time, which is why we
used only paths of length two in our experiments.

Note that crossproducts should be introduced very conservatively, especially if cardinality
estimates are inaccurate. A crossproduct is inherently quadratic in nature, and if an input
relation has estimated cardinality of 1 and a real cardinality of 10,000 (which can easily
happen in practice), the performance impact will be disastrous. On the other hand the
cardinality is sometimes known exactly, for example if the primary key is bound or if the
input is the result of a group-by query with known group count, which makes the introduction
safe. For base tables the available statistics can sometimes provide reasonably tight upper
bounds for the input size, which also makes the computation safe if the upper bound is
used in the formula above. This essential prudence reduces the number of cases where we
will consider crossproducts, but nevertheless there remain queries where crossproducts are
attractive and safe, and we can and should consider them during join tree construction.

Consider for example the query graph with cardinalities and selectivities given in Fig. 7a.
The optimal execution plan without crossproducts for this query has costs of 1.84M and is
depicted in Fig. 8a. When applying the crossproduct heuristic, the query graph is augmented
with two additional edges (A,C) and (D, F) as shown in Fig. 7b. While these two additional
edges only marginally enlarge the search space, costs are cut by almost 50% to 0.94M using
the plan shown in Fig. 8b. Note that even considering all possible crossproducts, although a
much larger search space is explored, does not uncover a cheaper plan. Further note that
LinDP++ generates the same plan, despite exploring a reduced, linearized search space.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 69

14 Bernhard Radke, Thomas Neumann

B

A

C

E

D

F

5

1M

10

30

1M

20

0.1

0.08

2 · 10−6
0.02

0.025

(a) original

B

A

C

E

D

F

5

1M

10

30

1M

20

1

0.1

0.08

2 · 10−6
0.02

0.025

1

(b) augmented
Fig. 7: Query graph where crossproducts enable cheaper execution plans. Cardinalities are annotated
in blue, join selectivities in green.

Z
Z

Z

A B
Z

Z

E F
D

C

(a) original query (Cost: 1.84M)

Z
Z

B ×
A C

Z

E ×
F D

(b) augmented query (Cost: 0.94M)
Fig. 8: Optimal execution plans for the query graphs depicted in Fig. 7

5 Evaluation

In this section we present the results of an extensive experimental analysis of the techniques
described in this paper. We compare LinDP++ against a multitude of different join ordering
algorithms including DPhyp [MN08], Greedy Operator Ordering (GOO) [Fe98], Iterative
Dynamic Programming [KS00] using DPhyp as inner algorithm, Quickpick [WP00],
genetic algorithms [SMK97], query simplification [Ne09], minsel [Sw89], and linearized
DP [NR18]. The algorithms were used to optimize the queries of the following well
known standard benchmarks using the Cout [CM95] cost function: TPC-H [Tra17b] and
TPC-DS [Tra17a], LDBC BI [An14], the Join Order Benchmark (JOB) [Le18], and the
SQLite test suite [Hi15].

The query graphs of the standard benchmark queries unfortunately contain only a small
number of hyperedges, most of them do not contain any hyperedges at all. Furthermore,
the queries are fairly small and can all easily be optimized by a full hypergraph based DP
algorithm [NR18]. Nevertheless, large queries with outer joins are a reality we have to
deal with [Vo18]. To thoroughly assess our approach also for larger queries with non-inner
joins we thus additionally evaluate LinDP++ on a synthetic workload of large randomly
generated queries. We use the same set of tree queries used in [NR18] which was generated
using the procedure described in [Ne09]. The set contains 100 different random queries
per size class. Sizes range from 10 to 100 relations per query, which gives a total of 1,000
queries. Hyperedges are introduced to the queries by randomly adding artificial reordering

70 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 15

Algorithm TPC-H TPC-DS LDBC JOB SQLite
DPhyp 0.4 90 1.2 227 2.2K
GOO 0.8 9.5 2.2 13.7 61
linearized DP 1.4 18.7 4.4 33.4 4.7K
LinDP++ 1.6 19.9 4.4 36.2 4.7K

Tab. 2: Total optimization time (ms) for standard benchmarks

constraints between neighboring joins. All algorithms were ran single-threaded with a
timeout of 60 seconds on a 4 socket Intel Xeon E7-4870 v2 at a clock rate of 2.3 GHz
with 1 TB of main memory attached. When comparing the quality of the plans for a query
generated by different algorithms we report normalized costs, i. e. the factor by which a
plan is more expensive than the best plan found by any of the algorithms.

5.1 Hypergraph Handling

The algorithm described in this paper targets query sizes far beyond what exact algorithms
with exponential runtime can solve in a reasonable amount of time. Thus we start by
analyzing the runtime characteristics of LinDP++.

For completeness reasons we first report numbers for all considered standard benchmarks
even though their queries are all rather small and a full graph based DP would be the
algorithm of choice here. In Tab. 2 we summarize optimization time of DPhyp, GOO,
linearizedDP, and LinDP++ for all considered benchmarks. Most of the queries are optimized
almost instantly and optimization times of LinDP++ are comparable to those of linearized
DP. The only benchmark where optimization time becomes noticeable is the SQLite test
suite, which contains more than 700 queries on up to 64 relations. But even the largest query
of the SQLite test suite is optimized by LinDP++ in 27ms. Regarding the quality of the plans
generated by LinDP++: 93% of the plans are indeed optimal, 6% of them are suboptimal by
at most a factor of 2 and only 10 of the 1159 execution plans are worse than that. Note: we
compare plans to the best plan found when considering all valid crossproducts here.

Once queries become more complex and exact optimization becomes infeasible, search
space linearization helps to keep optimization times reasonable. With LinDP++ we are now
able to linearize the search space of queries with non-inner joins, a class of queries that could
not be handled by linearized DP. To see whether this ability to linearize hypergraph queries
comes at the expense of optimization performance we compare linearized DP on regular
queries with LinDP++ on hypergraph queries with the same number of relations. Figure 9
shows median, minimum and maximum optimization time per size class for linearized DP
and LinDP++. The overhead incurred by hypergraph handling is negligible and LinDP++ is
just as well able to optimize queries on 100 relations within 100ms on average.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 71

16 Bernhard Radke, Thomas Neumann

0

30

60

90

120

10 20 30 40 50 60 70 80 90 100
Query Size (number of relations)

O
pt

im
iz

at
io

n
Ti

m
e

[m
s]

Algorithm
linearized DP

LinDP++

Fig. 9: Median optimization times for LinDP++ on hypergraph queries compared to linearized DP
on regular graph queries for queries on up to 100 relations. The error bars indicate minimum and
maximum optimization time per size class.

LinDP++ linearized DP (fallback to GOO/DPhyp)

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
1

3

10

Query Size (number of relations)

N
or

m
al

iz
ed

 C
os

ts
 [l

og
 s

ca
le

]

5th percentile
25th percentile
50th percentile
75th percentile
95th percentile

Fig. 10: Distribution of normalized costs of LinDP++ plans compared to the plans the hypergraph
aware greedy GOO/DPhyp fallback of linearized DP generates for queries on up to 100 relations.

The original adaptive optimization framework [NR18] had to fall back to the greedy
iterative DP with DPhyp as hypergraph aware inner algorithm (GOO/DPhyp) for large
queries with non-inner joins. Depending on the structure of the query graph, this could
already be the case for hypergraph queries touching as few as 14 relations. Using the
generalized LinDP++ technique we can avoid the greediness for these queries and generate
significantly better plans. Figure 10 compares the normalized costs of the plans generated by
LinDP++ with the ones GOO/DPhyp generates for the synthetic workload with hyperedges.
On average, plan costs are within 2% of the best plan and 814 plans are indeed the best
known plans for their respective query and normalized costs of 123 plans are within 10% of

72 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 17

0.00

0.25

0.50

0.75

1.00

TPC-H TPC-DS LDBC JOB SQLite
Benchmark

co
st

s
no

rm
al

iz
ed

 to
 o

pt
. p

la
n

w
/o

 c
ro

ss

Crossproducts
all

heuristic

5th
25th
50th
75th
95th

Fig. 11: Normalized costs of plans when either all valid crossproducts or some explicit crossproduct
edges as suggested by the heuristic are considered. Costs are normalized to the optimal plan without
crossproducts.

the best. The remaining execution plans have normalized costs below 2 with the exception
of one query, for which the plan is 2.4 times as expensive as the best known plan. In contrast
to that, 139 plans generated by GOO/DPhyp already have normalized cost worse than 2 and
costs of 54 plans are worse than the best plan by a factor of 10 or more.

5.2 Crossproduct Benefits

Investigating the effectiveness of the crossproduct heuristic described in Section 4 on the
queries of the standard benchmarks shows that crossproducts can indeed improve execution
plans. Figure 11 summarizes the costs of plans normalized to the optimal plan without
crossproducts. We compare these normalized costs when considering all crossproducts
with those when considering only the crossproducts suggested by our heuristic. On
average, introducing crossproduct edges improves plan cost by up to 18%, depending on
the benchmark. Nevertheless, 90% of the execution plans remain the same even when
considering all valid crossproducts. This confirms our statement, that the vast majority of
possible crossproducts is irrelevant and should not be considered. However, while plan
improvements are minimal for most queries, a maximum cost reduction of a factor of 14.4
reconfirms the claim of Ono and Lohman [OL90], that some crossproducts can significantly
improve plan quality. The figure also shows, that our simple heuristic indeed already covers
many of the relevant crossproducts. Only the Join Order Benchmark would benefit from
additional crossproducts that bypass larger chains of joins (mostly of length 3). Extensively
investigating all crossproduct possibilities during join ordering is thus neither required to
get good plans nor feasible in terms of optimization complexity.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 73

18 Bernhard Radke, Thomas Neumann

0.00

0.25

0.50

0.75

1.00

TPC-H TPC-DS LDBC JOB SQLite
Benchmark

co
st

s
no

rm
al

iz
ed

 to
 o

pt
. p

la
n

w
/o

 c
ro

ss

Crossproducts
DPhyp

LinDP++

5th
25th
50th
75th
95th

Fig. 12: Normalized costs of plans generated by LinDP++ compared to the optimal plans with
some crossproducts as suggested by the heuristic. Costs are normalized to the optimal plan without
crossproducts.

crossproducts are never considered during the linearization phase of LinDP++, as they
are eliminated when removing cycles from the query graph. However, even though they
are ignored by the first phase, the second phase does consider them and plan costs are
reduced almost as much as with a full DP algorithm. Figure 12 shows the differences in cost
improvements comparing LinDP++ against full DPhyp, both operating on the augmented
query graph. Despite the reduced search space, which gives much better optimization times,
most of the beneficial crossproducts are discovered and plan costs are within 1% of the
DPhyp solutions on average.

6 Conclusion

In this paper we eliminate a severe limitation of the recently proposed adaptive join ordering
framework [NR18]. While generating high quality execution plans for many large queries
using search space linearization, the framework had to fall back to a greedy heuristic as soon
as a large query contained a single outer join. The generalized algorithm LinDP++ described
in this paper enables linearization of the search space of arbitrary queries, including those
with non-inner joins. We experimentally show that the join orders generated by LinDP++
are clearly superior to those generated by the greedy fallback of the original framework.

LinDP++ in addition is equiped with a fast heuristic to detect promising opportunities to
perform a crossproduct. Despite considering some crossproducts, LinDP++ deliberately
avoids looking at all crossproducts which would result in exponential search space size.
Furthermore, the heuristic ensures that any considered crossproduct obeys all reordering
constraints induced by non-inner joins. We demonstrate the effectiveness of this heuristic on
the queries of major database benchmarks. The heuristic detects most relevant crossproduct

74 Bernhard Radke, Thomas Neumann

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 19

opportunities while keeping the search space small and thus optimization time reasonable.
Our experiments further verify that considering all valid crossproducts is not worth the
dramatically increased optimization time, as the additionally considered crossproducts
rarely lead to an additional cost reduction.

Even a polynomial time heuristic like LinDP++ becomes too expensive at some point.
At that scale, iterative dynamic programming has proven to be an effective technique, as
it allows to gracefully tune down plan quality in favor of acceptable optimization times.
According to our experiments however, the chosen greedy algorithm – Greedy Operator
Ordering (GOO) – seems to also have quality issues with non-inner joins. To ensure high
quality execution plans even at that scale we thus would like to investigate alternatives or
improve GOO in this setting.

This project has received funding from the European Research Council (ERC) under the
Euroean Union’s Horizon 2020 research and innovation programme (grant agreement No
725286).

References
[An14] Angles, Renzo; Boncz, Peter A.; Larriba-Pey, Josep-Lluis; Fundulaki, Irini; Neumann,

Thomas; Erling, Orri; Neubauer, Peter; Martínez-Bazan, Norbert; Kotsev, Venelin; Toma,
Ioan: The linked data benchmark council: a graph and RDF industry benchmarking effort.
SIGMOD Record, 43(1):27–31, 2014.

[CM95] Cluet, Sophie; Moerkotte, Guido: On the Complexity of Generating Optimal Left-Deep
Processing Trees with Cross Products. In: Proceedings of ICDT ’95. pp. 54–67, 1995.

[Fe98] Fegaras, Leonidas: A New Heuristic for Optimizing Large Queries. In: Proceedings of
DEXA ’98. pp. 726–735, 1998.

[FM13] Fender, Pit; Moerkotte, Guido: Top down plan generation: From theory to practice. In:
Proceedings of ICDE 2013. pp. 1105–1116, 2013.

[GLP93] Gallo, Giorgio; Longo, Giustino; Pallottino, Stefano: Directed Hypergraphs and Applica-
tions. Discrete Applied Mathematics, 42(2):177–201, 1993.

[Gr95] Graefe, Goetz: The Cascades Framework for Query Optimization. IEEE Data Eng. Bull.,
18(3):19–29, 1995.

[Ha08] Han, Wook-Shin; Kwak, Wooseong; Lee, Jinsoo; Lohman, Guy M.; Markl, Volker:
Parallelizing query optimization. PVLDB, 1(1):188–200, 2008.

[Hi15] Hipp, R. et al.: , SQLite (Version 3.8.10.2). SQLite Development Team. Available from
https://www.sqlite.org/download.html, 2015.

[IK84] Ibaraki, Toshihide; Kameda, Tiko: On the Optimal Nesting Order for Computing N-
Relational Joins. ACM Trans. Database Syst., 9(3):482–502, 1984.

[KBZ86] Krishnamurthy, Ravi; Boral, Haran; Zaniolo, Carlo: Optimization of Nonrecursive Queries.
In: Proceedings of VLDB ’86. pp. 128–137, 1986.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 75

20 Bernhard Radke, Thomas Neumann

[KS00] Kossmann, Donald; Stocker, Konrad: Iterative dynamic programming: a new class of query
optimization algorithms. ACM Trans. Database Syst., 25(1):43–82, 2000.

[Le18] Leis, Viktor; Radke, Bernhard; Gubichev, Andrey; Mirchev, Atanas; Boncz, Peter A.;
Kemper, Alfons; Neumann, Thomas: Query optimization through the looking glass, and
what we found running the Join Order Benchmark. VLDB J., 27(5):643–668, 2018.

[MFE13] Moerkotte, Guido; Fender, Pit; Eich, Marius: On the correct and complete enumeration of
the core search space. In: Proceedings of SIGMOD 2013. pp. 493–504, 2013.

[MN06] Moerkotte, Guido; Neumann, Thomas: Analysis of Two Existing and One New Dynamic
Programming Algorithm for the Generation of Optimal Bushy Join Trees without Cross
Products. In: Proceedings VLDB 2006. pp. 930–941, 2006.

[MN08] Moerkotte, Guido; Neumann, Thomas: Dynamic programming strikes back. In: Proceedings
of SIGMOD 2008. pp. 539–552, 2008.

[MS79] Monma, Clyde L.; Sidney, Jeffrey B.: Sequencing with Series-Parallel Precedence Con-
straints. Math. Oper. Res., 4(3):215–224, 1979.

[Ne09] Neumann, Thomas: Query simplification: graceful degradation for join-order optimization.
In: Proceedings of SIGMOD 2009. pp. 403–414, 2009.

[NR18] Neumann, Thomas; Radke, Bernhard: Adaptive Optimization of Very Large Join Queries.
In: Proceedings of SIGMOD 2018. pp. 677–692, 2018.

[OL90] Ono, Kiyoshi; Lohman, Guy M.: Measuring the Complexity of Join Enumeration in Query
Optimization. In: Proceedings of VLDB 1990. pp. 314–325, 1990.

[Se79] Selinger, Patricia G.; Astrahan, Morton M.; Chamberlin, Donald D.; Lorie, Raymond A.;
Price, Thomas G.: Access Path Selection in a Relational Database Management System.
In: Proceedings of SIGMOD 1979. pp. 23–34, 1979.

[SMK97] Steinbrunn, Michael; Moerkotte, Guido; Kemper, Alfons: Heuristic and Randomized
Optimization for the Join Ordering Problem. VLDB J., 6(3):191–208, 1997.

[Sw89] Swami, Arun N.: Optimization of Large Join Queries: Combining Heuristic and Combina-
torial Techniques. In: Proceedings of SIGMOD 1989. pp. 367–376, 1989.

[TK17] Trummer, Immanuel; Koch, Christoph: Solving the Join Ordering Problem via Mixed
Integer Linear Programming. In: Proceedings of SIGMOD 2017. pp. 1025–1040, 2017.

[Tra17a] Transaction Processing Performance Council. TPC Benchmark DS, 2017.

[Tra17b] Transaction Processing Performance Council. TPC Benchmark H, 2017.

[VM96] Vance, Bennet; Maier, David: Rapid Bushy Join-order Optimization with Cartesian
Products. In: Proceedings of SIGMOD 1996. pp. 35–46, 1996.

[Vo18] Vogelsgesang, Adrian; Haubenschild, Michael; Finis, Jan; Kemper, Alfons; Leis, Viktor;
Mühlbauer, Tobias; Neumann, Thomas; Then, Manuel: Get Real: How Benchmarks Fail to
Represent the Real World. In: Proceedings of DBTest@SIGMOD 2018. pp. 1:1–1:6, 2018.

[WC18] Wang, TaiNing; Chan, Chee-Yong: Improving Join Reorderability with Compensation
Operators. In: Proceedings of SIGMOD 2018. pp. 693–708, 2018.

[WP00] Waas, Florian; Pellenkoft, Arjan: Join Order Selection - Good Enough Is Easy. In:
Proceedings of the 17th BNCOD. pp. 51–67, 2000.

76 Bernhard Radke, Thomas Neumann

