# Facing Air Pollution with Smart Homes

Christian Schmitz Dhiren Devinder Serai Tatiane Escobar Gava



**Universität Stuttgart** 

### Challenge

- Analyse data from [luftdaten.info]
- Use external Data Sources for improved results
- Create an analysis that answers questions that are relevant for the society

### Motivation

- Stuttgart's inhabitants are exposed to high particulate matter concentration within surroundings.
- Bad quality air can cause health issues or may lead to death [WHO].
- Minimize the particulate matter exposure to the inhabitants.
- Automatically open smart windows when the particulate matter concentration is low.

### Data Sources

- Air pollution data from [luftdaten.info]
  - DHT22 and SDS011 sensor data
- Weather data from [DWD]
  - Wind direction, precipitation, air pressure
- VfB Stuttgart matches from Google (ad hoc)
  - Game days
- Topology data from Topographische Karten (ad hoc)
  - Elevation

### Data Processing

 We take temperature, humidity from DHT22 sensor data and PM2.5 and PM10 values from SDS11 sensor data.

- We drop the columns which contains multiple NaN values set
- Removed the records, for conditions under which SDS011 and DHT22 do not work, as per the manual.

(e.g. Temperatures lower or equal than -10 Celsius)

### Data Fusion

- Two alternatives
  - Join by *datetime* with tolerance
  - Standardize the values in both (DHT22 & SDS11) sensors

- We chose standardization

- After standardizing the data by taking **average** of all attributes w.r.t timestamp on an hourly basis, we combined them into a single dataset

### Data Integration

- Materialized integration
- Through join on timestamp and location
  - Timestamp standardization



Example of standardization in the SDS11 dataset, which indicates P1 and P2 values. (P1=PM10,P2=PM2,5)

### **Technologies Used**

**IBM Bluemix :** 

Python

Flask Server

Plotly Graphs with Dash :









### Architecture and Integration



### Interaction Model



## Interaction Model (2)



### Insight 1: Commuter's traffic

- Air pollution strongly correlates to commute traffic during the day
- The season also
  plays a strong factor
  on average Air
  Pollution



### Insight 2: Season



- Average values of PM10 is 4 times higher in winter than in summer
- Average values of PM2.5 is 2 times higher in winter than in summer
- In Winter PM10 values are particularly low during day time

### Insight 3: Wind Direction

- The higher the surroundings of the Stuttgart valley are, from which the wind is blowing, the higher is the air pollution (especially the PM10 values)



Image collected via [topographic-map]

#### VfB Stuttgart home game (Sat, 1/09/18, 6pm).





#### No VfB Stuttgart home game (Sat, 25/08/18, 6pm).

### Insight 4: Soccer Games

 Stuttgart's soccer stadium is close to the city center

 On game days, the air quality in Stuttgart is not as good as on non-game days

### Smart Windows improve indoor Air Quality

- Open windows when outdoor particulate matter concentration is low.
- Opening times are optimized based on our insights :
  - Insight 1: Do not open windows during rush hours.
  - Insight 2: In winter the values are particularly low during day time.
  - Insight 3: Values are lower, when the wind direction is beneficial.
  - Insight 4: Avoid opening windows during soccer games(if you stay nearby).

### Smart Windows: Idea



 Prevent Stuttgart's inhabitants from breathing polluted air.

- Based on insights identify the **optimal** time of the day to open the window.

- Allow for window openings while inhabitants are **not at home**.

### Smart Windows: Approach

 Using an algorithm, we can automate windows to open and close when air quality is good.

 Using the correlations displayed before (rush-hours, weekdays)

 Visualize common useful information (precipitation values, temperature,P1,P2)

### Smart Windows: Algorithm



\*PM10 and PM2.5 information taken from [AirVeda]

### Demo



### Conclusion

- We have analysed approximately 178k+ rows of data regarding air quality
- We obtained 4 main insights:
  - commuter's traffic, soccer games, season, and wind direction.
- Smart Windows open daily when the outdoor air quality is best.
- Better life quality due to less respiratory diseases caused by polluted air breath (such as asthma).

### Future Work

What is do be done to implement the smart window?

- Integrate with Raspberry Pi for automating it with the window to open/close.

### How can the formula be improved?

 Data of gases like NO2,SO2,CO,O3 should be integrated and considered in the formula.

### Facing Air Pollution with Smarthomes

Christian Schmitz

Dhiren Devinder Serai

**Tatiane Escobar Gava** 

st160269@stud.uni-stuttgart.de

st161906@stud.uni-stuttgart.de

st160427@stud.uni-stuttgart.de



Universität Stuttgart

### References

- [luftdaten.info] Luftdaten Archive. https://archive.luftdaten.info (last access in 06/02/2019)
- [DWD] Deutscher Wetterdienst Climate Data Center.
  ftp://<u>ftp-cdc.dwd.de/pub/CDC/observations\_germany/climate/</u> (last access in 06/02/2019)
- [Topographic-map] <u>http://de-de.topographic-map.com/places/Stuttgart-8132395/</u> (last access in 26/02/19)
- [WHO] Exposure to Air Pollution (Particulate Matter) in outdoor air. World Health Organization. <u>http://www.euro.who.int/\_\_\_data/assets/pdf\_file/0018/97002/ENHIS\_Factsheet\_3.3\_July\_2011.pdf?</u> <u>ua=1</u> (last access in 26/02/19)
- [AirVeda] Understanding Particulate Matter and How It Impacts Our Health <u>https://www.airveda.com/blog/Understanding-Particulate-Matter-and-Its-Associated-Health-Impact</u> <u>?seo\_data=%5Bobject%20Object%5D</u> (last access in 26/02/19)