Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

EI|m|nat|ng the BandW|dth Bottleneck of Central Query Dlspatchlng
Through TCP Connection Hand-Over

Stefan Klauck!, Max Plauth!, Sven Knebel?!, Marius Strobl?, Douglas Santry?2, Lars Eggert?

1 Hasso Plattner Institute, University of Potsdam, Germany

‘[

March, 2019

Image: wolfro54 CCBY_-NC_ND 2.0

. . tt
Motivation |n§titn§tr

In scale-out database systems, queries must be routed to individual servers.

) ; tt
Motivation |n§ti?3tr

In scale-out database systems, queries must be routed to individual servers.

Direct Communication Central Dispatcher
Client 1 DB Backend 1 Client 1 DB Backend 1
Dispatcher
Client m DB Backend n Client m DB Backend n
+ Latency

4+ Simple clients / dynamic backends

= Requires smart clients or static backends
d = Central dispatcher is potential bottleneck

Hasso

: : : . Plattner
Motivation - Use Cases for Central Dispatching Institut
Shard 1
m Horizontal Partitioning / Sharded Database -
Client 1
: Dispatcher
Client m Shard 2
Replica 1
m Partially Replicated Database System o pEEm.~ pa
o [EIRIs]] =+ e |G [[<]
H H gz [7]8]8] 25% Replica 2
O Malelze thrOUghpUt Z:.-20% gszgggz))
. 30% 25%
by balancing the load evenly (Gt Database scaoont [Gio ‘W]
. . m .. . @ |:> i t Dispatcher Replica 3
while minimizing memory footprint [oentm e ent — 1
25% “
s 0%
Rabl et Jacobsen. Query Centric Partitioning and Allocation for Partially Replicated Database Systems. SIGMOD 2017. 25% 4
Klauck et Schlosser. Workload-Driven Fragment Allocation for Partially Replicated Databases Using Linear Programming. ICDE 2019.

Hasso
Motivation - Central Dispatching from a Network Perspective ﬂ f’,{gﬁ‘,?&{

>>> import psycopg?2

>>> conn = psycopg?2.connect ("dbname="'tpch' host='dispatcher'”)

client1:65140 databasel:5432

Client 1 \ dispath DB Backend 1

dispatcher:5432| Dispatcher

dispatcher:65231

Client m DB Backend n
client2:65144 database2:5432

m Logical view

Hasso

Motivation - Central Dispatching from a Network Perspective mgmj{
>>> import psycopg?2
>>> conn = psycopg?2.connect ("dbname="'tpch' host='dispatcher'”)
. R client1:65140 databasel:5432
m Logical view)
Client 1 \ dispath DB Backend 1
E dispatcher:5432 Dispatcher '
. dispatc;;;ngE§T§\“‘\~
Client m DB Backend n
client2:65144 database2:5432
Ph . | . clientl:65140 Dispatcher databasel:5432
[| SiCal view .
Y Client 1 dispatcher:5432 | dispatcher: 65231 DB Backend 1
dispatcher:65228
Client m Switch DB Backend n 6

client2:65144 database2:5432

Motivation

m Whether the dispatcher becomes a bottleneck depends on the workload

o Number and size of queries/messages

o Ratio of processed tuples and result set size

Client 1

Hasso
Plattner
Institut

DB Backend 1

Dispatcher

Client m

DB Backend n

Motivation

m Whether the dispatcher becomes a bottleneck depends on the workload

o Number and size of queries/messages

o Ratio of processed tuples and result set size

Client 1

Hasso
Plattner
Institut

DB Backend 1

Dispatcher

Client m

m "Transferring a large amount of data out of a database system

to a client program is a common task.”

DB Backend n

Raasveldt et Muhleisen. Don’t Hold My Data Hostage - A Case For Client Protocol Redesign. VLDB 2017.

o Needed for statistical analyses or machine learning in clients

o Main bottleneck is network bandwidth

attner
Research Goals Institut

m Integration of a TCP connection hand-over by means of a reprogrammable
network switch into a database

m Comparison of query-based dispatching approaches in terms of
o Throughput scaling

o Processing flexibility

Hasso
Plattner
Institut

Dispatcher Implementations

m Traditional architecture with two separate TCP connections:
client €« dispatcher <> database
1. HAProxy - free and open source TCP/HTTP load balancer
2. Hyrise dispatcher

RI

https: //Qlthub com/hyrise

m Using a reprogrammable switch to performm TCP connection hand-over
3. Prism: exchange most packets directly between client and backend

Y. Hayakawa et al. Prism: A Proxy Architecture for Datacenter Networks. SoCC 2017.

10

Dispatcher Implementations - Prism

Hasso
Plattner
Institut

m Client query is initially sent/routed to Prism Controller

m Prism Controller forwards connection to an appropriate backend and

reprograms the switch

m Backend processes query and sends result directly to the client

(bypassing the Prism Controller)

m Backend hands back connection to Prism Controller

Prism Controller

A

Unmatched Packets

Transform Rules

Connection
Hand-Off/Hand-Back

Lookup(Src IP, Src TCP | | |

Rewrite Paket
Information

|\ DB Backend

. <«—b| | Port, Dst IP, Dst Port)
Client Switch Logic

| Prism Interface

Prism Switch

Experimental Evaluation

Hasso
Plattner
Institut

m 10Gb and 40Gb Ethernet experiments

o Hyrise with a stored procedure

o wrk - HTTP benchmarking tool

o mSwitch - software switch

https://github.com/hyrise

https://github.com/wg/wrk

Honda et al. mSwitch: A Highly-Scalable, Modular Software Switch. SOSR 2015.

Client 1 Load-Balancer DB Backend 1
wrk 1 Hyrise Dispatcher/ Hyrise 1
HAProxy
mSwitch
Client 2 Learninq Bndqe Mode DB Backend 2
wrk 2 1 Switch N Hyrise 2

Client 1 DB Backend 1
wrk 1 Prism Controller Hyrise 1
mSwitch
Client 2 Prism Switch Module DB Backend 2
wrk 2 |1 Switch ~__Hyrise 2

12

Hasso
Experimental Evaluation with two Clients and Backends E plattner

m 10 GbE results

20
w10 —e— Prism
o)
O 5 —=— Dispatcher
§_ 2.5 —— HAProxy
£ 1.25
3 1 i
£ 102 .‘J_‘..--!""'H—
- 10-4-...

rr|rrrrrrrererrrere T
1B 32B 1KiB 32KiB 1MiB 32MiB
Payload

< scales up to bandwidth: min(Z clients, X backends)

< limited by bandwidth of central dispatcher

o Using TCP hand-over outperforms traditional approaches for large payloads

13

Hasso
Experimental Evaluation with two Clients and Backends H Plattner

m 10 GbE results

20 < scales up to bandwidth: min(Z clients, X backends)
g 10 —— Prism < limited by bandwidth of central dispatcher
O, 5 —=— Dispatcher
§_ 2.5 —— HAProxy
<
o))
=2 2 iy
_g & Throughput for 512 B payload
- Prism: 50 Mb/s
1T Dispatcher: 63 MB/s
1B 32B 1l HAProxy: 42 MB/s
Payload

o Using TCP hand-over outperforms traditional approaches for large payloads

o Hyrise dispatcher performs best for small payload sizes up to 4kB 14

Other Uses of Software Defined Networking
in Databases

m Implement transaction ordering
inside the network switch

(published @ SOSP 2017)

m Offload full SQL query segments
onto a programmable dataplane

(published @ CIDR 2019)

Eris: Coordination-Free Consistent Transactions
Using In-Network Concurrency Control

Jialin Li Ellis Michael Dan R. K. Ports
University of Washington University of Washington University of Washington
lijl@cs.washi du edu drkp@cs.washington.edu
ABSTRACT KEYWORDS

Distributed storage systems aim to provide strong consis-
tency and isolation guarantees on an architecture that is parti-
tioned across multiple shards for scalability and replicated for
fault tolerance. Traditionally, achieving all of these goals has
required an expensive of atomic

distributed transactions, in-network concurrency control, net-
work multi-sequencing

ACM Reference Format:
Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris:
Coordination-Free Consistent Using In-Network Con-

and replication protocols — introducing extensive coordina-

tion overhead. Our system, Eris, takes a different approach.

Tt moves a core piece of concurrency control functionality,

which we term multi-sequencing, into the datacenter network

itself. This network primitive takes on the responsibility for
ordering and a new

transaction protocol ensures atomicity.

The end result is that Eris avoids both replication and trans-
action coordination overhead: we show that it can process a
large class of distributed transactions in a single round-trip
from the client to the storage system without any explicit co-
ordination between shards or replicas in the normal case. It
provides atomicity, consistency, and fault tolerance with less
than 10% overhead — achieving throughput 3.6-35x higher
and latency 72-80% lower than a conventional design on
standard benchmarks.

CCS CONCEPTS

« Information svstems — Database transaction process-

currency Control. In Proceedings of SOSP *17, Shanghai, China,
October 28, 2017, 17 pages.
hitps://doi.org/10.1145/3132747.3132751

1 INTRODUCTION

stmbuled storage systems today face a tension between
semantics and To meet the de-

mands of large-scale applications, these storage systems must
be partitioned for scalability and replicated for availability.
strong and strict serializability would

give the system the same semantics as a single system exe-
cuting each transaction in isolation — freeing programmers
from the need to reason about consistency and concurrency.
Unfortunately, doing so is often at odds with the performance
requirements of modern applications, which demand not just
high scalability but also tight latency bounds. Interactive ap-
plications now require contacting hundreds or thousands of
individual storage services on each request, potentially leav-
individual transactions with sub-millisecond latency bud-

The Case for Network-Accelerated Query Processing

Alberto Lerner Rana Hussein

Philippe Cudre-Mauroux

eXascale Infolab, U. of Fribourg—Switzerland

ABSTRACT

The fastest plans in MPP databases are usually those with
the least amount of data movement across nodes, as data.
is not. processed while in transit. The network switches
that connect MPP nodes are hard-wired to perform packet-
forwarding logic only. However, in a recent paradigm shift
network devices are becoming “programmable.” The quotes
here are cautionary. Switches are not becoming general pur-
pose computers (just yet). But now the set of tasks they can
perform can be encoded in software.

In this paper we exploxe thi: pxogrammabllnv to accel-
erate OLAP queries. We determined that we can offload
onto the switch some my common and expsn;we query
patterns. Thus, for the first time, moving data through
networking equipment can contribute to query execution.
Our preliminary results show that we can improve response
times on even the best agreed upon plans by more than 2x
using 25 Gbps networks. We also see the promise of linear
performance improvement with faster speeds. The use of
programmable switches can open new possibilities of archi-
tecting rack- and datacenter-sized database systems, with
implications across the stack.

1. INTRODUCTION

Networking is an area in constant evolution. New pro-
tocols keep arising from emerging fields such as virtualiza-
T g o (0]

PR

feld: dest MAC addr action

01.02:03:0405.06 [forward(pora)
@ I E——

packets

= I I I =
®) parser T Tnoress affic s dearser
MAUs manager

Figure 1: (a) A match-action table programmed to forward
or to drop a packet according to its destination MAC ad-
dress. (b) Architecture of a programmable switch dataplane
holding that table.

with a row in this table using, for instance, exact match-
ing. Other types of matches are also possible. The action
engine executes simple instructions over a packet or table
data. Examples of such instructions are simple arithmetic
or moving data within a packet. The MAU is programmable
in the sense that one can specify its table layout, the type
of lookup to perform, and the processing done at a match
event. as we illustrate in Figure 1(a). We sav that a MAU

Hasso
Plattner
Institut

15

attner
Summary Institut

m Scale-out database systems use central query dispatchers to hide backend
complexity, but may be a bandwidth bottleneck

m We compared dispatching architectures for database systems
o Traditional dispatcher performs best for small payload sizes

o Prism’s connection overhead pays off for larger payloads

-> Hybrid approach with on-demand connection hand-over for large results

16

Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Stefan Klauck
stefan.klauck@hpi.de

http://epic.hpi.de

