
Eliminating the Bandwidth Bottleneck of Central Query Dispatching
Through TCP Connection Hand-Over

Stefan Klauck1, Max Plauth1, Sven Knebel1, Marius Strobl2, Douglas Santry2, Lars Eggert2

1 Hasso Plattner Institute, University of Potsdam, Germany
2 .

March, 2019
Image: wolfro54 CC BY-NC-ND 2.0

In scale-out database systems, queries must be routed to individual servers.

Motivation

2

Central Dispatcher

+ Simple clients / dynamic backends
 - Central dispatcher is potential bottleneck

Direct Communication

+ Latency
 - Requires smart clients or static backends

In scale-out database systems, queries must be routed to individual servers.

Motivation

3

Client 1

Client m

DB Backend 1

DB Backend n

… …

DB Backend 1

DB Backend n

Dispatcher

Client 1

Client m

… …

Database

1

2 43
6

5

7 98 10

5

1 2 3 4

3 4 6

97 8

108 9

1

q1

q2

q3

q4

q5

q1 (100%)
q5 (50%)

25%

Scale-Out

10%

15%

25%

30%

20%

Replica 1

1

2 43
6

7 98 10

5

Replica 2

1

2 43
6

7 98 10

5

Replica 3

1

2 43
6

7 98 10

5

Replica 4

1

2 43
6

7 98 10

5

q2 (100%)
q5 (33.3%)

25%

q3 (100%)

25%

q4 (100%)
q5 (16.6%)

25%

Dispatcher
Client 1

Client m

…

Client 1

Client m

…

■  Horizontal Partitioning / Sharded Database

■  Partially Replicated Database System

□  Maximize throughput

 by balancing the load evenly

 while minimizing memory footprint

Motivation – Use Cases for Central Dispatching

4 Rabl et Jacobsen. Query Centric Partitioning and Allocation for Partially Replicated Database Systems. SIGMOD 2017.

Klauck et Schlosser. Workload-Driven Fragment Allocation for Partially Replicated Databases Using Linear Programming. ICDE 2019.

Shard 1

Dispatcher
Client 1

Client m

…

1
2
3
4

Shard 2

6
7
8

5

>>> import psycopg2

>>> conn = psycopg2.connect("dbname='tpch' host='dispatcher'”)

■  Logical view

Motivation – Central Dispatching from a Network Perspective

5

DB Backend 1

DB Backend n

Dispatcher

Client 1

Client m

… …
dispatcher:5432

database1:5432

database2:5432

client1:65140

client2:65144

dispatcher:65228

dispatcher:65231

>>> import psycopg2

>>> conn = psycopg2.connect("dbname='tpch' host='dispatcher'”)

■  Logical view

■  Physical view

Motivation – Central Dispatching from a Network Perspective

6

DB Backend 1

DB Backend n

Dispatcher

Client 1

Client m

… …
dispatcher:5432

database1:5432

database2:5432

client1:65140

client2:65144

dispatcher:65228

dispatcher:65231

DB Backend 1

DB Backend n

Dispatcher
Client 1

Client m

… …dispatcher:5432

database1:5432

database2:5432

client1:65140

client2:65144

dispatcher:65228
dispatcher:65231

Switch

■  Whether the dispatcher becomes a bottleneck depends on the workload

□  Number and size of queries/messages

□  Ratio of processed tuples and result set size

Motivation

7

DB Backend 1

DB Backend n

Dispatcher

Client 1

Client m

… …

■  Whether the dispatcher becomes a bottleneck depends on the workload

□  Number and size of queries/messages

□  Ratio of processed tuples and result set size

■  “Transferring a large amount of data out of a database system
to a client program is a common task.”

□  Needed for statistical analyses or machine learning in clients

□  Main bottleneck is network bandwidth

Motivation

8

Raasveldt et Mühleisen. Don’t Hold My Data Hostage – A Case For Client Protocol Redesign. VLDB 2017.

DB Backend 1

DB Backend n

Dispatcher

Client 1

Client m

… …

■  Integration of a TCP connection hand-over by means of a reprogrammable
network switch into a database

■  Comparison of query-based dispatching approaches in terms of

□  Throughput scaling

□  Processing flexibility

Research Goals

9

■  Traditional architecture with two separate TCP connections:
 client ßà dispatcher ßà database

1. HAProxy – free and open source TCP/HTTP load balancer
2. Hyrise dispatcher

■  Using a reprogrammable switch to perform TCP connection hand-over
3. Prism: exchange most packets directly between client and backend

 Y. Hayakawa et al. Prism: A Proxy Architecture for Datacenter Networks. SoCC 2017.

Dispatcher Implementations

10

https://github.com/hyrise

■  Client query is initially sent/routed to Prism Controller

■  Prism Controller forwards connection to an appropriate backend and
reprograms the switch

■  Backend processes query and sends result directly to the client
(bypassing the Prism Controller)

■  Backend hands back connection to Prism Controller

Dispatcher Implementations - Prism

11
Client

Prism Switch

Client
DB Backend

Prism InterfaceSwitch Logic

Rewrite Paket
Information

Lookup(Src IP, Src TCP
Port, Dst IP, Dst Port)

Transform RulesUnmatched Packets Connection
Hand-Off/Hand-Back

Prism Controller

■  10Gb and 40Gb Ethernet experiments

□  Hyrise with a stored procedure https://github.com/hyrise

□  wrk - HTTP benchmarking tool https://github.com/wg/wrk

□  mSwitch - software switch Honda et al. mSwitch: A Highly-Scalable, Modular Software Switch. SOSR 2015.

Experimental Evaluation

12

Switch

Client 1 DB Backend 1

mSwitch
Learning Bridge Mode

wrk 1

Client 2
wrk 2

Hyrise 1

DB Backend 2
Hyrise 2

Load-Balancer
Hyrise Dispatcher/

HAProxy

Switch

Client 1 DB Backend 1
wrk 1

Client 2
wrk 2

Hyrise 1

DB Backend 2
Hyrise 2

mSwitch
Prism Switch Module

Prism Controller

■  10 GbE results

□  Using TCP hand-over outperforms traditional approaches for large payloads

Experimental Evaluation with two Clients and Backends

13

1B 32B 1KiB 32KiB 1MiB 32MiB
10-4
10-2

1
1.25

2.5
5

10
20

Payload

Th
ro

ug
hp

ut
 [G

b/
s] Prism

Dispatcher
HAProxy

ß limited by bandwidth of central dispatcher

ß scales up to bandwidth: min(Σ clients, Σ backends)

■  10 GbE results

□  Using TCP hand-over outperforms traditional approaches for large payloads

□  Hyrise dispatcher performs best for small payload sizes up to 4kB

Experimental Evaluation with two Clients and Backends

14

1B 32B 1KiB 32KiB 1MiB 32MiB
10-4
10-2

1
1.25

2.5
5

10
20

Payload

Th
ro

ug
hp

ut
 [G

b/
s] Prism

Dispatcher
HAProxy

ß limited by bandwidth of central dispatcher

ß scales up to bandwidth: min(Σ clients, Σ backends)

ß Throughput for 512 B payload
 Prism: 50 Mb/s
 Dispatcher: 63 MB/s
 HAProxy: 42 MB/s

■  Implement transaction ordering
inside the network switch
(published @ SOSP 2017)

Other Uses of Software Defined Networking
in Databases

15

The Case for Network-Accelerated Query Processing

Alberto Lerner Rana Hussein Philippe Cudre-Mauroux

eXascale Infolab, U. of Fribourg—Switzerland

ABSTRACT
The fastest plans in MPP databases are usually those with
the least amount of data movement across nodes, as data
is not processed while in transit. The network switches
that connect MPP nodes are hard-wired to perform packet-
forwarding logic only. However, in a recent paradigm shift,
network devices are becoming “programmable.” The quotes
here are cautionary. Switches are not becoming general pur-
pose computers (just yet). But now the set of tasks they can
perform can be encoded in software.

In this paper we explore this programmability to accel-
erate OLAP queries. We determined that we can o✏oad
onto the switch some very common and expensive query
patterns. Thus, for the first time, moving data through
networking equipment can contribute to query execution.
Our preliminary results show that we can improve response
times on even the best agreed upon plans by more than 2x
using 25 Gbps networks. We also see the promise of linear
performance improvement with faster speeds. The use of
programmable switches can open new possibilities of archi-
tecting rack- and datacenter-sized database systems, with
implications across the stack.

1. INTRODUCTION
Networking is an area in constant evolution. New pro-

tocols keep arising from emerging fields such as virtualiza-
tion [20], cloud computing [6], or the Internet-of-Things [27].
Many such protocols are implemented in hardware-based
switches. In the past, support for a new protocol would re-
quire a new version of a switching silicon – something very
costly and time consuming. Recently, however, chips such
as Barefoot Tofino [1], Cavium Xpliant [2], and Cisco Quan-
tum Flow [3] started to support programming protocols via
software.

At the core of this innovation is a packet-processing hard-
ware called Match-Action Unit (MAU). A MAU combines
a match engine with an action engine. The match engine
holds data in a table format and can match a packet’s fields

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

0 N… 0 N…
parser deparseringress

MAUs
egress
MAUs

traffic
manager

packets

01:02:03:04:05:06 forward(port4)
11:22:33:44:55:66 drop()

… …

06:05:04:03:02:01 forward(port1)
field: dest MAC addr action

(a)

(b)

Figure 1: (a) A match-action table programmed to forward
or to drop a packet according to its destination MAC ad-
dress. (b) Architecture of a programmable switch dataplane
holding that table.

with a row in this table using, for instance, exact match-
ing. Other types of matches are also possible. The action

engine executes simple instructions over a packet or table
data. Examples of such instructions are simple arithmetic
or moving data within a packet. The MAU is programmable
in the sense that one can specify its table layout, the type
of lookup to perform, and the processing done at a match
event, as we illustrate in Figure 1(a). We say that a MAU
implements a match-action table (or, simply, a table) ab-
straction.

Such a table abstraction is powerful enough to express
very common computations in networking protocols. For
example, it can encode many variations of IP lookup [26] or
packet classification [15] – two of the most recurring prob-
lems in packet forwarding. To support full protocols, sev-
eral MAUs can be combined in a pipelined fashion to form
a programmable dataplane. The dataplane is complete with
a programmable packet parser/deparser [13] and a tra�c
manager (e.g. a bu↵ered, routing element that moves pack-
ets across switch lanes). We depict such a dataplane in Fig-
ure 1(b). Some tables may use fields from the very packet
routing decision made by the tra�c manager. Therefore,
there are MAUs in both the ingress and the egress sides of
the routing element. Incidentally, the tra�c manager itself
can also be a programmable. [25].

From a database perspective, the switch was historically
a passive element, routing packets for networking purposes.
From a networking perspective, tuples generated by query
execution were opaque payload. We argue here that a pro-

Eris: Coordination-Free Consistent Transactions
Using In-Network Concurrency Control
Jialin Li

University of Washington
lijl@cs.washington.edu

Ellis Michael
University of Washington

emichael@cs.washington.edu

Dan R. K. Ports
University of Washington
drkp@cs.washington.edu

ABSTRACT
Distributed storage systems aim to provide strong consis-
tency and isolation guarantees on an architecture that is parti-
tioned across multiple shards for scalability and replicated for
fault tolerance. Traditionally, achieving all of these goals has
required an expensive combination of atomic commitment
and replication protocols – introducing extensive coordina-
tion overhead. Our system, Eris, takes a different approach.
It moves a core piece of concurrency control functionality,
which we term multi-sequencing, into the datacenter network
itself. This network primitive takes on the responsibility for
consistently ordering transactions, and a new lightweight
transaction protocol ensures atomicity.

The end result is that Eris avoids both replication and trans-
action coordination overhead: we show that it can process a
large class of distributed transactions in a single round-trip

from the client to the storage system without any explicit co-

ordination between shards or replicas in the normal case. It
provides atomicity, consistency, and fault tolerance with less
than 10% overhead – achieving throughput 3.6–35⇥ higher
and latency 72–80% lower than a conventional design on
standard benchmarks.

CCS CONCEPTS
• Information systems ! Database transaction process-
ing; Distributed database transactions; • Networks ! In-
network processing; Data center networks; • Computer sys-
tems organization ! Reliability;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China

© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132751

KEYWORDS
distributed transactions, in-network concurrency control, net-
work multi-sequencing

ACM Reference Format:
Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris:
Coordination-Free Consistent Transactions Using In-Network Con-
currency Control. In Proceedings of SOSP ’17, Shanghai, China,

October 28, 2017, 17 pages.
https://doi.org/10.1145/3132747.3132751

1 INTRODUCTION
Distributed storage systems today face a tension between
transactional semantics and performance. To meet the de-
mands of large-scale applications, these storage systems must
be partitioned for scalability and replicated for availability.
Supporting strong consistency and strict serializability would
give the system the same semantics as a single system exe-
cuting each transaction in isolation – freeing programmers
from the need to reason about consistency and concurrency.
Unfortunately, doing so is often at odds with the performance
requirements of modern applications, which demand not just
high scalability but also tight latency bounds. Interactive ap-
plications now require contacting hundreds or thousands of
individual storage services on each request, potentially leav-
ing individual transactions with sub-millisecond latency bud-
gets [23, 49].

The conventional wisdom is that transaction processing
systems cannot meet these performance requirements due to
coordination costs. A traditional architecture calls for each
transaction to be carefully orchestrated through a dizzying
array of coordination protocols – e.g., Paxos for replication,
two-phase commit for atomicity, and two-phase locking for
isolation – each adding its own overhead. As we show in
Section 8, this can increase latency and reduce throughput by
an order of magnitude or more.

This paper challenges that conventional wisdom with Eris,1
a new system for high-performance distributed transaction
processing. Eris is optimized for high throughput and low
latency in the datacenter environment. Eris executes an im-
portant class of transactions with no coordination overhead

1Eris takes its name from the ancient Greek goddess of discord, i.e., lack of

coordination.

■  Offload full SQL query segments
onto a programmable dataplane
(published @ CIDR 2019)

■  Scale-out database systems use central query dispatchers to hide backend
complexity, but may be a bandwidth bottleneck

■  We compared dispatching architectures for database systems

□  Traditional dispatcher performs best for small payload sizes

□  Prism’s connection overhead pays off for larger payloads

-> Hybrid approach with on-demand connection hand-over for large results

Summary

16

Thanks
Stefan Klauck

stefan.klauck@hpi.de

http://epic.hpi.de

