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In scale-out database systems, queries must be routed to individual servers. 
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Central Dispatcher 
 
 
 
 
 
 
 
 
+  Simple clients / dynamic backends 
 -   Central dispatcher is potential bottleneck 

 

Direct Communication 
 
 
 
 
 
 
 
+  Latency 
 -   Requires smart clients or static backends 

 

In scale-out database systems, queries must be routed to individual servers. 
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■  Horizontal Partitioning / Sharded Database 

 

 

■  Partially Replicated Database System 

□  Maximize throughput 

   by balancing the load evenly 

   while minimizing memory footprint 

 
Motivation – Use Cases for Central Dispatching 

4 Rabl et Jacobsen. Query Centric Partitioning and Allocation for Partially Replicated Database Systems. SIGMOD 2017. 
 
Klauck et Schlosser. Workload-Driven Fragment Allocation for Partially Replicated Databases Using Linear Programming. ICDE 2019. 
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>>> import psycopg2 

>>> conn = psycopg2.connect("dbname='tpch' host='dispatcher'”) 

 

■  Logical view 

 

 
Motivation – Central Dispatching from a Network Perspective 
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>>> import psycopg2 

>>> conn = psycopg2.connect("dbname='tpch' host='dispatcher'”) 

 

■  Logical view 

■  Physical view 
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6 

DB Backend 1

DB Backend n

Dispatcher

Client 1

Client m

… …
dispatcher:5432

database1:5432

database2:5432

client1:65140

client2:65144

dispatcher:65228

dispatcher:65231

DB Backend 1

DB Backend n

Dispatcher
Client 1

Client m

… …dispatcher:5432

database1:5432

database2:5432

client1:65140

client2:65144

dispatcher:65228
dispatcher:65231

Switch



■  Whether the dispatcher becomes a bottleneck depends on the workload 

□  Number and size of queries/messages 

□  Ratio of processed tuples and result set size 
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■  Whether the dispatcher becomes a bottleneck depends on the workload 

□  Number and size of queries/messages 

□  Ratio of processed tuples and result set size 

■  “Transferring a large amount of data out of a database system 
to a client program is a common task.” 

□  Needed for statistical analyses or machine learning in clients 

□  Main bottleneck is network bandwidth 

 
Motivation 
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Raasveldt et Mühleisen. Don’t Hold My Data Hostage – A Case For Client Protocol Redesign. VLDB 2017. 
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■  Integration of a TCP connection hand-over by means of a reprogrammable 
network switch into a database 

 

■  Comparison of query-based dispatching approaches in terms of 

□  Throughput scaling 

□  Processing flexibility 

 
Research Goals 
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■  Traditional architecture with two separate TCP connections: 
 client ßà dispatcher ßà database 

1.  HAProxy – free and open source TCP/HTTP load balancer 
2.  Hyrise dispatcher 
 
 
 
 

■  Using a reprogrammable switch to perform TCP connection hand-over 
3.  Prism: exchange most packets directly between client and backend 

                                  Y. Hayakawa et al. Prism: A Proxy Architecture for Datacenter Networks. SoCC 2017. 
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https://github.com/hyrise 



■  Client query is initially sent/routed to Prism Controller 

■  Prism Controller forwards connection to an appropriate backend and 
reprograms the switch 

■  Backend processes query and sends result directly to the client 
(bypassing the Prism Controller) 

■  Backend hands back connection to Prism Controller 

 
Dispatcher Implementations - Prism 
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■  10Gb and 40Gb Ethernet experiments 

□  Hyrise with a stored procedure         https://github.com/hyrise 

□  wrk - HTTP benchmarking tool         https://github.com/wg/wrk 

□  mSwitch - software switch         Honda et al. mSwitch: A Highly-Scalable, Modular Software Switch. SOSR 2015. 
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■  10 GbE results 

 

□  Using TCP hand-over outperforms traditional approaches for large payloads 

 
Experimental Evaluation with two Clients and Backends  
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■  10 GbE results 

□  Using TCP hand-over outperforms traditional approaches for large payloads 

□  Hyrise dispatcher performs best for small payload sizes up to 4kB 
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■  Implement transaction ordering 
inside the network switch  
(published @ SOSP 2017) 

Other Uses of Software Defined Networking 
in Databases 
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The Case for Network-Accelerated Query Processing
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ABSTRACT
The fastest plans in MPP databases are usually those with
the least amount of data movement across nodes, as data
is not processed while in transit. The network switches
that connect MPP nodes are hard-wired to perform packet-
forwarding logic only. However, in a recent paradigm shift,
network devices are becoming “programmable.” The quotes
here are cautionary. Switches are not becoming general pur-
pose computers (just yet). But now the set of tasks they can
perform can be encoded in software.

In this paper we explore this programmability to accel-
erate OLAP queries. We determined that we can o✏oad
onto the switch some very common and expensive query
patterns. Thus, for the first time, moving data through
networking equipment can contribute to query execution.
Our preliminary results show that we can improve response
times on even the best agreed upon plans by more than 2x
using 25 Gbps networks. We also see the promise of linear
performance improvement with faster speeds. The use of
programmable switches can open new possibilities of archi-
tecting rack- and datacenter-sized database systems, with
implications across the stack.

1. INTRODUCTION
Networking is an area in constant evolution. New pro-

tocols keep arising from emerging fields such as virtualiza-
tion [20], cloud computing [6], or the Internet-of-Things [27].
Many such protocols are implemented in hardware-based
switches. In the past, support for a new protocol would re-
quire a new version of a switching silicon – something very
costly and time consuming. Recently, however, chips such
as Barefoot Tofino [1], Cavium Xpliant [2], and Cisco Quan-
tum Flow [3] started to support programming protocols via
software.

At the core of this innovation is a packet-processing hard-
ware called Match-Action Unit (MAU). A MAU combines
a match engine with an action engine. The match engine
holds data in a table format and can match a packet’s fields

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.
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Figure 1: (a) A match-action table programmed to forward
or to drop a packet according to its destination MAC ad-
dress. (b) Architecture of a programmable switch dataplane
holding that table.

with a row in this table using, for instance, exact match-
ing. Other types of matches are also possible. The action

engine executes simple instructions over a packet or table
data. Examples of such instructions are simple arithmetic
or moving data within a packet. The MAU is programmable
in the sense that one can specify its table layout, the type
of lookup to perform, and the processing done at a match
event, as we illustrate in Figure 1(a). We say that a MAU
implements a match-action table (or, simply, a table) ab-
straction.

Such a table abstraction is powerful enough to express
very common computations in networking protocols. For
example, it can encode many variations of IP lookup [26] or
packet classification [15] – two of the most recurring prob-
lems in packet forwarding. To support full protocols, sev-
eral MAUs can be combined in a pipelined fashion to form
a programmable dataplane. The dataplane is complete with
a programmable packet parser/deparser [13] and a tra�c
manager (e.g. a bu↵ered, routing element that moves pack-
ets across switch lanes). We depict such a dataplane in Fig-
ure 1(b). Some tables may use fields from the very packet
routing decision made by the tra�c manager. Therefore,
there are MAUs in both the ingress and the egress sides of
the routing element. Incidentally, the tra�c manager itself
can also be a programmable. [25].

From a database perspective, the switch was historically
a passive element, routing packets for networking purposes.
From a networking perspective, tuples generated by query
execution were opaque payload. We argue here that a pro-
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ABSTRACT
Distributed storage systems aim to provide strong consis-
tency and isolation guarantees on an architecture that is parti-
tioned across multiple shards for scalability and replicated for
fault tolerance. Traditionally, achieving all of these goals has
required an expensive combination of atomic commitment
and replication protocols – introducing extensive coordina-
tion overhead. Our system, Eris, takes a different approach.
It moves a core piece of concurrency control functionality,
which we term multi-sequencing, into the datacenter network
itself. This network primitive takes on the responsibility for
consistently ordering transactions, and a new lightweight
transaction protocol ensures atomicity.

The end result is that Eris avoids both replication and trans-
action coordination overhead: we show that it can process a
large class of distributed transactions in a single round-trip

from the client to the storage system without any explicit co-

ordination between shards or replicas in the normal case. It
provides atomicity, consistency, and fault tolerance with less
than 10% overhead – achieving throughput 3.6–35⇥ higher
and latency 72–80% lower than a conventional design on
standard benchmarks.
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• Information systems ! Database transaction process-
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1 INTRODUCTION
Distributed storage systems today face a tension between
transactional semantics and performance. To meet the de-
mands of large-scale applications, these storage systems must
be partitioned for scalability and replicated for availability.
Supporting strong consistency and strict serializability would
give the system the same semantics as a single system exe-
cuting each transaction in isolation – freeing programmers
from the need to reason about consistency and concurrency.
Unfortunately, doing so is often at odds with the performance
requirements of modern applications, which demand not just
high scalability but also tight latency bounds. Interactive ap-
plications now require contacting hundreds or thousands of
individual storage services on each request, potentially leav-
ing individual transactions with sub-millisecond latency bud-
gets [23, 49].

The conventional wisdom is that transaction processing
systems cannot meet these performance requirements due to
coordination costs. A traditional architecture calls for each
transaction to be carefully orchestrated through a dizzying
array of coordination protocols – e.g., Paxos for replication,
two-phase commit for atomicity, and two-phase locking for
isolation – each adding its own overhead. As we show in
Section 8, this can increase latency and reduce throughput by
an order of magnitude or more.

This paper challenges that conventional wisdom with Eris,1
a new system for high-performance distributed transaction
processing. Eris is optimized for high throughput and low
latency in the datacenter environment. Eris executes an im-
portant class of transactions with no coordination overhead

1Eris takes its name from the ancient Greek goddess of discord, i.e., lack of

coordination.

■  Offload full SQL query segments 
onto a programmable dataplane 
(published @ CIDR 2019) 



■  Scale-out database systems use central query dispatchers to hide backend 
complexity, but may be a bandwidth bottleneck 

■  We compared dispatching architectures for database systems 

□  Traditional dispatcher performs best for small payload sizes 

□  Prism’s connection overhead pays off for larger payloads 

-> Hybrid approach with on-demand connection hand-over for large results 
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