
PGcuckoo
Injecting Physical Plans into PostgreSQL

Denis Hirn
 denis.hirn@uni-tuebingen.de

University of Tübingen
BTW 2019, Rostock
March 5, 2019

the query pipeline of postgresql

The query pipeline of PostgreSQL consists of
four phases:
1. Parser: create query AST from query string
2. Analyzer: semantic analysis and rewriting
3. Planner: find the best evaluation strategy
4. Executor: evaluate the query

Each phase creates a new data structure.

SIGMOD 2019, June 2019, Amsterdam, The Netherlands
Denis Hirn Torsten Grust

PostgreSQL

SQL text Q

parse tree

query tree
plan
tree

plan tree

parser

analyzer

planner

executor

plan source (Q)

Figure 1: PgCuckoo uses PostgreSQL’s planner hook to
inject plan trees from external sources.

complete in the sense that they carry all information needed
to drive the system’s query executor.
We build on this crucial completeness property and take

the liberty to return a plan tree that describes the evalu-
ation of an, in general, entirely different query Q of our
choosing. As long as this plan tree is correct and complete—a
significant challenge that we address in Section 2.1 below—
PostgreSQL’s executor will duly evaluate Q and return its
tabular result instead. We thus “short-circuit” the standard
planner and effectively close down PostgreSQL’s query front
end—the executor does not depend on it (symbolized by
in Figure 1).

This work explores the opportunities that arise when we
plug in different PostgreSQL-external plan sources. The live
demonstration will consider four such sources, all described
below. A wider variety is conceivable.

2.1 External Code Generation
The planner hook opens a side entrance for plan trees that
we can use to operate PostgreSQL as an execution-only back-
end for foreign front-end languages. We benefit from Post-
greSQL’s proven executor, table storage, and index support
and may focus on the development of the front-end itself.
Numerous data-centric languages—some non-relational,

even—have been developed with PostgreSQL as the execu-
tion target in mind. These languages had to be compiled
into intermediate SQL code that is then fed into PostgreSQL,
often yielding (1) large or non-idiomatic queries that turned
out to be challenging for the back-end or (2) queries that

1 SELECT c.c_name, o.o_orderkey, o.o_orderdate,
2 abs(o.o_totalprice -
3 SUM(l.l_extendedprice *
4 (1 - l.l_discount) * (1 + l.l_tax))) AS deviation
5 FROM orders AS o, lineitem AS l, customer AS c
6 WHERE o.o_orderkey = l.l_orderkey
7 AND o.o_custkey = c.c_custkey
8 AND o.o_orderdate > date '1998-01-01'
9 GROUP BY o.o_orderkey, o.o_totalprice, o.o_orderdate, c.c_name
10 HAVING SUM(l.l_extendedprice *
11 (1 - l.l_discount) * (1 + l.l_tax)) <> o.o_totalprice
12 ORDER BY c.c_name, o.o_orderkey;

Figure 2: Sample SQL query (plan shown in Table 1).

Overall/Inferred Seed
Plan Properties Query Plan Properties

S S S S S plannedstmt
E E E E E E E E E E E E E E R R R R M M M M M M M M group agggregate E E R R R R M M

E E E E E E E E E E E E E ER R M M M M M M M M M sort E E E E R R M M M M

E E E E E E E E E E E E E E M M hash join E E E E M M

E E E E E E E E E E E E E M M hash join E E E M M

E E E E E E E E M seq scan E E M

lineitem
E E E E R M M hash E R M

E E E E E R seq scan E M

orders
E R M M hash ER M

E M seq scan EM

customer
E expression (×30) R intra-plan reference
M meta data, misc. flags S schema information (×10)

Table 1: Required plan tree properties overall (left),
seed from which PgCuckoo can infer the rest (right).

failed to fully exploit front-end language semantics. To ex-
emplify, the Pathfinder XQuery-to-SQL compiler had per-
fect information about the (non-)relevance of row order in
parts of a generated plan. This knowledge was largely lost
during SQL code generation [5]. Further examples of such
SQL-emitting systems include Database-Supported Haskell
(DSH) [13], Ferry [4], GProM [10], GraphGen [14], Links [2],
MayBMS [1], or Perm [3].
PgCuckoo, instead, admits the immediate generation of

algebraic code in the form of plan trees. Code generators
gain full control over plan shape (e.g., type of operations, in-
termediate materialization, row order preservation, or index
usage) and may assemble operator constellations that could
never be derived from intermediate SQL code.
Plan trees are PostgreSQL-internal data structures that need
to be assembled carefully since the system’s executor en-
tirely relies on their completeness and correctness to drive

2

1

what is an execution plan?

SQL Planner Executor
plan tree

Query planning is critical to database performance:
• SQL only specifies what to compute but not how
• There are many equivalent plans for non trivial queries
• The planner enumerates all possible plans and chooses the
cheapest one, based on a cost model (System R Algorithm)

• Query runtime depends on the quality of the execution plans

Can we hint a specific plan?

2

planner configuration

Planner

?

enable_seqscan

enable_hashjoin

…

cpu_tuple_cost

random_page_cost

SQL

• It is hard to predict which plan gets selected by the planner

• In general it is not possible to select a specific plan

3

planner configuration

Planner

?

enable_seqscan

enable_hashjoin

…

cpu_tuple_cost

random_page_cost

SQL

• It is hard to predict which plan gets selected by the planner

• In general it is not possible to select a specific plan

3

extension pg_hint_plan

PostgreSQL does not support plan hinting by default.
• pg_hint_plan uses SQL comments to tweak execution plans.
This allows to hint scan methods, join orders and algorithms,
as well as row count estimates

postgres=# /*+

postgres=# Rows(t1 + 100)

postgres=# SeqScan(t1)

postgres*# NestLoop(t1 t2)

postgres*# MergeJoin(t1 t2 t3)

postgres*# */

postgres-# SELECT * FROM table1 t1

postgres-# JOIN table2 t2 ON (t1.key = t2.key)

postgres-# JOIN table3 t3 ON (t2.key = t3.key);

4

planner configuration

Planner

?

enable_seqscan

enable_hashjoin

…

cpu_tuple_cost

random_page_cost

SQL

HashJoin(t1 t2)

SeqScan(t1)

Rows(t1 × 10)

…

• It is hard to predict which plan gets selected by the planner
• In general it is not possible to select a specific plan

5

plan forcing

Open problems:
1. If a plan is not part of the search space, the planner can not
select it. No hint or planner configuration can change this

2. It is impossible to design execution plans from scratch

Solution: Get rid of the planner and inject a plan directly instead.

PostgreSQL

SQL

Planner

?
Executor

6

requirements of plan forcing

Language C extension needs an interface to:

1. Load and store execution plans
2. Execute loaded plan
3. Return result of the execution as table valued function

7

serialization and deserialization of execution plans

PostgreSQL has internal modules to load and store execution plans

PostgreSQL

execution plan

{PLANNEDSTMT
:commandType 1
:queryId 0
:hasReturning false
:hasModifyingCTE false
:canSetTag true
:transientPlan false
:dependsOnRole false
:parallelModeNeeded false
:planTree

{RESULT
:startup_cost 0.00
:total_cost 0.01
:plan_rows 1
:plan_width 4
:parallel_aware false
:parallel_safe true
:plan_node_id 0
:targetlist (

{TARGETENTRY
:expr

{CONST
:consttype 23
:consttypmod -1
:constcollid 0
:constlen 4
:constbyval true
:constisnull false
:location 7
:constvalue 4 [1 0 0 0 0 0 0 0]
}

:resno 1
:resname ?column?
:ressortgroupref 0
:resorigtbl 0
:resorigcol 0
:resjunk false
}

)
:qual <>
:lefttree <>
:righttree <>
:initPlan <>
:extParam (b)
:allParam (b)
:resconstantqual <>
}

:rtable <>
:resultRelations <>
:nonleafResultRelations <>
:rootResultRelations <>
:subplans <>
:rewindPlanIDs (b)
:rowMarks <>
:relationOids <>
:invalItems <>
:nParamExec 0
:utilityStmt <>
:stmt_location 0
:stmt_len 0
}

Figure 1: Plan tree for query SELECT 1

38 Appendix

…

nodeToString

stringToNode

8

planner hook

PlannedStmt *

planner(Query *parse, int cursorOptions, ParamListInfo boundParams)

{

PlannedStmt *result;

if (planner_hook)

result = (*planner_hook) (parse, cursorOptions, boundParams);

else

result = standard_planner(parse, cursorOptions, boundParams);

return result;

}

9

injection of a physical plan

1 //Define global variable
2 //for physical execution plan
3 PlannedStmt *myPlan;
4

5 PlannedStmt *
6 myPlanner(Query *parse,
7 int cursorOptions,
8 ParamListInfo boundParams)
9 {

10 // Statically return 'myPlan'
11 return myPlan;
12 }
13

14 Datum plan_execute(String plan)
15 {
16 // [...]
17 myPlan = (Node) stringToNode(plan);
18 // Bypass standard_planner
19 planner_hook = &myPlanner;
20

21 // issue dummy query
22 res = SPI_exec("select 1;", 0);
23

24 planner_hook = NULL;
25 return res;
26 }

SIGMOD 2019, June 2019, Amsterdam, The Netherlands
Denis Hirn Torsten Grust

PostgreSQL

SQL text Q

parse tree

query tree
plan
tree

plan tree

parser

analyzer

planner

executor

plan source (Q)

Figure 1: PgCuckoo uses PostgreSQL’s planner hook to
inject plan trees from external sources.

complete in the sense that they carry all information needed
to drive the system’s query executor.
We build on this crucial completeness property and take

the liberty to return a plan tree that describes the evalu-
ation of an, in general, entirely different query Q of our
choosing. As long as this plan tree is correct and complete—a
significant challenge that we address in Section 2.1 below—
PostgreSQL’s executor will duly evaluate Q and return its
tabular result instead. We thus “short-circuit” the standard
planner and effectively close down PostgreSQL’s query front
end—the executor does not depend on it (symbolized by
in Figure 1).

This work explores the opportunities that arise when we
plug in different PostgreSQL-external plan sources. The live
demonstration will consider four such sources, all described
below. A wider variety is conceivable.

2.1 External Code Generation
The planner hook opens a side entrance for plan trees that
we can use to operate PostgreSQL as an execution-only back-
end for foreign front-end languages. We benefit from Post-
greSQL’s proven executor, table storage, and index support
and may focus on the development of the front-end itself.
Numerous data-centric languages—some non-relational,

even—have been developed with PostgreSQL as the execu-
tion target in mind. These languages had to be compiled
into intermediate SQL code that is then fed into PostgreSQL,
often yielding (1) large or non-idiomatic queries that turned
out to be challenging for the back-end or (2) queries that

1 SELECT c.c_name, o.o_orderkey, o.o_orderdate,
2 abs(o.o_totalprice -
3 SUM(l.l_extendedprice *
4 (1 - l.l_discount) * (1 + l.l_tax))) AS deviation
5 FROM orders AS o, lineitem AS l, customer AS c
6 WHERE o.o_orderkey = l.l_orderkey
7 AND o.o_custkey = c.c_custkey
8 AND o.o_orderdate > date '1998-01-01'
9 GROUP BY o.o_orderkey, o.o_totalprice, o.o_orderdate, c.c_name
10 HAVING SUM(l.l_extendedprice *
11 (1 - l.l_discount) * (1 + l.l_tax)) <> o.o_totalprice
12 ORDER BY c.c_name, o.o_orderkey;

Figure 2: Sample SQL query (plan shown in Table 1).

Overall/Inferred Seed
Plan Properties Query Plan Properties

S S S S S plannedstmt
E E E E E E E E E E E E E E R R R R M M M M M M M M group agggregate E E R R R R M M

E E E E E E E E E E E E E ER R M M M M M M M M M sort E E E E R R M M M M

E E E E E E E E E E E E E E M M hash join E E E E M M

E E E E E E E E E E E E E M M hash join E E E M M

E E E E E E E E M seq scan E E M

lineitem
E E E E R M M hash E R M

E E E E E R seq scan E M

orders
E R M M hash ER M

E M seq scan EM

customer
E expression (×30) R intra-plan reference
M meta data, misc. flags S schema information (×10)

Table 1: Required plan tree properties overall (left),
seed from which PgCuckoo can infer the rest (right).

failed to fully exploit front-end language semantics. To ex-
emplify, the Pathfinder XQuery-to-SQL compiler had per-
fect information about the (non-)relevance of row order in
parts of a generated plan. This knowledge was largely lost
during SQL code generation [5]. Further examples of such
SQL-emitting systems include Database-Supported Haskell
(DSH) [13], Ferry [4], GProM [10], GraphGen [14], Links [2],
MayBMS [1], or Perm [3].

PgCuckoo, instead, admits the immediate generation of
algebraic code in the form of plan trees. Code generators
gain full control over plan shape (e.g., type of operations, in-
termediate materialization, row order preservation, or index
usage) and may assemble operator constellations that could
never be derived from intermediate SQL code.
Plan trees are PostgreSQL-internal data structures that need
to be assembled carefully since the system’s executor en-
tirely relies on their completeness and correctness to drive

2

10

applications of plan injection

Plan injection enables full control over
execution plans.

• Simulate planner functionality that is not
(yet) available

• Externalize former strictly system-internal
query processing steps (Advanced
algebraic rewriting of plans, e.g. for
unnesting of correlated subqueries)

SIGMOD 2019, June 2019, Amsterdam, The Netherlands
Denis Hirn Torsten Grust

PostgreSQL

SQL text Q

parse tree

query tree
plan
tree

plan tree

parser

analyzer

planner

executor

plan source (Q)

Figure 1: PgCuckoo uses PostgreSQL’s planner hook to
inject plan trees from external sources.

complete in the sense that they carry all information needed
to drive the system’s query executor.
We build on this crucial completeness property and take

the liberty to return a plan tree that describes the evalu-
ation of an, in general, entirely different query Q of our
choosing. As long as this plan tree is correct and complete—a
significant challenge that we address in Section 2.1 below—
PostgreSQL’s executor will duly evaluate Q and return its
tabular result instead. We thus “short-circuit” the standard
planner and effectively close down PostgreSQL’s query front
end—the executor does not depend on it (symbolized by
in Figure 1).

This work explores the opportunities that arise when we
plug in different PostgreSQL-external plan sources. The live
demonstration will consider four such sources, all described
below. A wider variety is conceivable.

2.1 External Code Generation
The planner hook opens a side entrance for plan trees that
we can use to operate PostgreSQL as an execution-only back-
end for foreign front-end languages. We benefit from Post-
greSQL’s proven executor, table storage, and index support
and may focus on the development of the front-end itself.
Numerous data-centric languages—some non-relational,

even—have been developed with PostgreSQL as the execu-
tion target in mind. These languages had to be compiled
into intermediate SQL code that is then fed into PostgreSQL,
often yielding (1) large or non-idiomatic queries that turned
out to be challenging for the back-end or (2) queries that

1 SELECT c.c_name, o.o_orderkey, o.o_orderdate,
2 abs(o.o_totalprice -
3 SUM(l.l_extendedprice *
4 (1 - l.l_discount) * (1 + l.l_tax))) AS deviation
5 FROM orders AS o, lineitem AS l, customer AS c
6 WHERE o.o_orderkey = l.l_orderkey
7 AND o.o_custkey = c.c_custkey
8 AND o.o_orderdate > date '1998-01-01'
9 GROUP BY o.o_orderkey, o.o_totalprice, o.o_orderdate, c.c_name
10 HAVING SUM(l.l_extendedprice *
11 (1 - l.l_discount) * (1 + l.l_tax)) <> o.o_totalprice
12 ORDER BY c.c_name, o.o_orderkey;

Figure 2: Sample SQL query (plan shown in Table 1).

Overall/Inferred Seed
Plan Properties Query Plan Properties

S S S S S plannedstmt
E E E E E E E E E E E E E E R R R R M M M M M M M M group agggregate E E R R R R M M

E E E E E E E E E E E E E ER R M M M M M M M M M sort E E E E R R M M M M

E E E E E E E E E E E E E E M M hash join E E E E M M

E E E E E E E E E E E E E M M hash join E E E M M

E E E E E E E E M seq scan E E M

lineitem
E E E E R M M hash E R M

E E E E E R seq scan E M

orders
E R M M hash ER M

E M seq scan EM

customer
E expression (×30) R intra-plan reference
M meta data, misc. flags S schema information (×10)

Table 1: Required plan tree properties overall (left),
seed from which PgCuckoo can infer the rest (right).

failed to fully exploit front-end language semantics. To ex-
emplify, the Pathfinder XQuery-to-SQL compiler had per-
fect information about the (non-)relevance of row order in
parts of a generated plan. This knowledge was largely lost
during SQL code generation [5]. Further examples of such
SQL-emitting systems include Database-Supported Haskell
(DSH) [13], Ferry [4], GProM [10], GraphGen [14], Links [2],
MayBMS [1], or Perm [3].
PgCuckoo, instead, admits the immediate generation of

algebraic code in the form of plan trees. Code generators
gain full control over plan shape (e.g., type of operations, in-
termediate materialization, row order preservation, or index
usage) and may assemble operator constellations that could
never be derived from intermediate SQL code.
Plan trees are PostgreSQL-internal data structures that need
to be assembled carefully since the system’s executor en-
tirely relies on their completeness and correctness to drive

2

11

external rewriting

1. Use PostgreSQL to create an initial plan
2. Transform plan into relational algebra, if needed
3. Rule based plan optimization
4. Execute improved plan

PostgreSQL

SQL
Planner

rewrite

Executor

12

pgcuckoo
injecting physical plans into postgresql

Denis Hirn
 denis.hirn@uni-tuebingen.de

University of Tübingen
BTW 2019, Rostock
March 5, 2019

	Appendix

