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Indexes: Pros & Cons

* Pros
* Fast lookups
* Fast ordered range scans

=» Best supported by bulk loading a perfect secondary b-tree
* Cons

* Maintenance cost
* Robustness of performance over time



Creation of a Perfect B-tree
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Subsequent Insertions on a Perfect B-tree
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Subsequent Insertions on a Perfect B-tree
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=> Immediate, widespread node splits after index creation



Problem of Subsequent Insertions

* Splits of almost all leaves within a short time period
* high 1/O load

* low buffer utilization Split
* low query performance due to contention
e Status quo database solution: Leave free space (e.g. 30%)

e Oracle, SQL Server, DB2, ...




Creation of a Perfect B-tree with free space
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Subsequent insertions
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Subsequent insertions
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Continuation of insertions
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Continuation of insertions
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=> Delayed, widespread node splits after index creation




Limitations of the status quo

* The problem of splits is merely delayed
 Moreover, the problem occurs in waves
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Problem Assessment— When does it occur?

* Loading Distribution = Insert Distribution

* E.g.: Hash-Keys
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Basic Idea

* Do not leave constant free space while loading

Data

Bulk Loading




Basic Idea — Insert Batch
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=> Distributing node splits over time
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|deal solution for predictable splits
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|deal solution (Leaf Nodes)
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* g = Probability of a split after insertion




|deal solution (Leaf Nodes)

4B
* Fringe Analysis: <2> = g(n)
4B

* Insert-Operation: g(n) * (I + ﬁT) =qgn+1)

* Goal: g(n) = q(n + k) => A stable state
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|deal solution (Leaf Nodes)

« Goal: g(n) = q(n + k) => A stable state

qB
* Analyze Transition: T x ( 2) =0
4B

* Formula holds for g; = 1/(j+1)




|deal solution (Leaf Nodes)

* Intuition:
* Few full pages split immediately
* Many half full pages eventually *

* |deal solution 0 W
e ...for expected B-tree utilization T ok

e ...i.e., for Utilization of In(2) = 69%
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Practical Remedies — Random

* While loading: Randomly pick around target utilization
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Practical Remedies — Suffix Truncation

* While loading: Search for shortest key within range
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 Added compression effect
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Experimental Evaluation — Setup

* Procedure:
e Records: 21 integers (84 bytes), normal distribution
* Loading b-tree with 100,000 pages of 8KB
* Inserting batches of 10,000 records

* Workstation:
e AMD Ryzen7 2700X
* 16GB memory
* Java indexing library XXL



Experimental Evaluation — Random
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Experimental Evaluation — Buffer Utilization
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Waves of Misery after index creation A_/\/\,

e Loading secondary b-tree index in...
* Write-intensive workloads
e Loading distribution = Insert distribution
* Want to achieve predictable split performance:

@ Don't just leave constant free space in your tree nodes!

373 Work towards starting in the steady state of the b-tree.




Thank you for your attention!




