Waves of misery
after index creation

Nikolaus Glombiewski!, Bernhard Seeger!, Goetz Graefe?

lUniversity of Marburg
’Google Inc.

VAIRY

CALABLE DATA MANAGEMENT
OR FUTURE HARDWARE

Outline

* Problem Assessment
* Basic Solution

* Ideal Solution

* Practical Remedies

* Experimental Evaluation

* Conclusion

Outline

* Problem Assessment
* Basic Solution

* |deal Solution

* Practical Remedies

* Experimental Evaluation

 Conclusion

Indexes: Pros & Cons

* Pros
* Fast lookups
* Fast ordered range scans

=» Best supported by bulk loading a perfect secondary b-tree
* Cons

* Maintenance cost
* Robustness of performance over time

Creation of a Perfect B-tree

1,5, 8, 15, 17, 19, 41, 50, 90, 100, 120, 142

Building B-Tree
Max Nodesize = 3

\

15, 41, 100

Sort

S

1,5,8

15, 17, 19 41, 50, 90

100, 120, 142

Subsequent Insertions on a Perfect B-tree

4, 10, 22, 60, 102, 150

Insert Batch

15, 41, 100

1,5,8 15, 17, 19 41, 50, 90 100, 120, 142

Subsequent Insertions on a Perfect B-tree

4, 10, 22, 60, 102, 150

Insert Batch

15, 41, 100
1, 4,5, 8, 14, 17, 19, 41, 50, ©0, 90 100, , 120, 142,
Node Split Node Split Node Split Node Split

=> Immediate, widespread node splits after index creation

Problem of Subsequent Insertions

* Splits of almost all leaves within a short time period
* high 1/O load

* low buffer utilization Split
* low query performance due to contention
e Status quo database solution: Leave free space (e.g. 30%)

e Oracle, SQL Server, DB2, ...

Creation of a Perfect B-tree with free space

Sort

1,5, 8, 15, 17, 19, 41, 50, 90, 100, 120, 142

Building B-Tree
Max Nodesize = 3, Utilization = 70%

8, 17, 41, 90, 120

N

1,5 8, 15 17, 19 41, 50 90, 100 120, 142

Subsequent insertions

4, 10, 22, 60, 102, 150

Insert Batch

\

8, 17, 41, 90, 120

Max Nodef%N

1,5

8, 15

17,19

41, 50

90, 100

120, 142

Subsequent insertions

4, 10, 22, 60, 102, 150

Insert Batch

\

8, 17, 41, 90, 120

Max Nodef%N

1,

, 5

8,

, 14

17, 19,

41, 50,

90, 100,

120, 142,

Continuation of insertions

6, 13, 38, 55, 95, 136

Insert Batch

\

8, 17, 41, 90, 120

Max Node%N

1,4,5 8, 10, 14 17, 19, 22 41, 50, 60 90, 100, 102 | 120, 142, 150

Continuation of insertions

6, 13, 38, 55, 95, 136

Insert Batch

\

8, 17, 41, 90, 120

Max Nodesize = 3

1, 4,5, 8,10, 1=, 14 | |17, 19, 22, 41, 50, -5, 601 |90, 95, 100, 102 | |120, , 142, 150
Node Split Node Split Node Split Node Split Node Split Node Split

=> Delayed, widespread node splits after index creation

Limitations of the status quo

* The problem of splits is merely delayed
 Moreover, the problem occurs in waves

800
600

400

Leaf Splits

200

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

12

Problem Assessment— When does it occur?

* Loading Distribution = Insert Distribution

* E.g.: Hash-Keys

1000

== Normal to Normal
800

Normal to Uniform

2 600
=
)
[
S
— 400
200
o o

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

13

Outline

* Problem Assessment
* Basic Solution

* |deal Solution

* Practical Remedies

* Experimental Evaluation

 Conclusion

Basic Idea

* Do not leave constant free space while loading

Data

Bulk Loading

Basic Idea — Insert Batch

Insert Batch

So% | oWl | ol | (s

Node Split Node Split

=> Distributing node splits over time

16

Outline

* Problem Assessment
* Basic Solution

* Ideal Solution

* Practical Remedies

* Experimental Evaluation

 Conclusion

|deal solution for predictable splits

800

600

Moving hills into valleys

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

|deal solution (Leaf Nodes)

1 Item

Os

B2 B2l | BsE

* g = Probability of a split after insertion

|deal solution (Leaf Nodes)

4B
* Fringe Analysis: <2> = g(n)
4B

* Insert-Operation: g(n) * (I + ﬁT) =qgn+1)

* Goal: g(n) = q(n + k) => A stable state

20

|deal solution (Leaf Nodes)

« Goal: g(n) = q(n + k) => A stable state

qB
* Analyze Transition: T x (2) =0
4B

* Formula holds for g; = 1/(j+1)

|deal solution (Leaf Nodes)

* Intuition:
* Few full pages split immediately
* Many half full pages eventually *

* |deal solution 0 W
e ...for expected B-tree utilization T ok

e ...i.e., for Utilization of In(2) = 69%

Outline

* Problem Assessment
* Basic Solution

* |deal Solution

* Practical Remedies

* Experimental Evaluation

 Conclusion

Practical Remedies — Random

* While loading: Randomly pick around target utilization

80%+x

nextPage() > 80%

80%-y

Practical Remedies — Suffix Truncation

* While loading: Search for shortest key within range

100%

"cattle"

nextPage() >

"catchweight"

"catchphrase”
80%

 Added compression effect

25

Outline

* Problem Assessment
* Basic Solution

* |deal Solution

* Practical Remedies

* Experimental Evaluation

 Conclusion

Experimental Evaluation — Setup

* Procedure:
e Records: 21 integers (84 bytes), normal distribution
* Loading b-tree with 100,000 pages of 8KB
* Inserting batches of 10,000 records

* Workstation:
e AMD Ryzen7 2700X
* 16GB memory
* Java indexing library XXL

Experimental Evaluation — Random

1000
me= Random 20% Range
800 = Random 10% Range
Random 5% Range
s Constant 80%
z 600
=
A
G
8
— 400

200

“M

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

28

Experimental Evaluation — Buffer Utilization

95

90 m (Constant 80%
Random 20% Range

85

80

75

70

65

Buffer Utilization in %

60

55

50
0 1000 2000 3000 4000 5000 6000

Insert Batch (Batchsize 10,000)

29

Outline

* Problem Assessment
* Basic Solution

* |deal Solution

* Practical Remedies

* Experimental Evaluation

* Conclusion

Waves of Misery after index creation A_/\/\,

e Loading secondary b-tree index in...
* Write-intensive workloads
e Loading distribution = Insert distribution
* Want to achieve predictable split performance:

@ Don't just leave constant free space in your tree nodes!

373 Work towards starting in the steady state of the b-tree.

Thank you for your attention!

