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Indexes: Pros & Cons

• Pros

• Fast lookups

• Fast ordered range scans

➔ Best supported by bulk loading a perfect secondary b-tree

• Cons

• Maintenance cost 

• Robustness of performance over time

4



Creation of a Perfect B-tree

1, 5, 8, 15, 17, 19, 41, 50, 90, 100, 120, 142

1, 5, 8

Building B-Tree 

Max Nodesize = 3

15, 17, 19 100, 120, 14241, 50, 90

15, 41, 100

Sort
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Subsequent Insertions on a Perfect B-tree

1, 5, 8 15, 17, 19 100, 120, 14241, 50, 90

15, 41, 100

Max Nodesize = 3

Insert Batch

4, 10, 22, 60, 102, 150
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Subsequent Insertions on a Perfect B-tree

1, 4, 5, 8, 10 14, 17, 19, 22 100, 102, 120, 142, 15041, 50, 60, 90

15, 41, 100

Node Split Node Split Node Split Node Split

Max Nodesize = 3

=> Immediate, widespread node splits after index creation

Insert Batch

4, 10, 22, 60, 102, 150
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Problem of Subsequent Insertions

• Splits of almost all leaves within a short time period

• high I/O load 

• low buffer utilization

• low query performance due to contention

• Status quo database solution: Leave free space (e.g. 30%)

• Oracle, SQL Server, DB2, …

100%

50% 50%

Split
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Creation of a Perfect B-tree with free space

1, 5, 8, 15, 17, 19, 41, 50, 90, 100, 120, 142

1, 5

Building B-Tree 

Max Nodesize = 3, Utilization = 70%

17, 19 120, 14290, 100

8, 17, 41, 90, 120

Sort

8, 15 41, 50
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Subsequent insertions

1, 5 17, 19 120, 14290, 100

8, 17, 41, 90, 120

8, 15 41, 50

4, 10, 22, 60, 102, 150

Max Nodesize = 3

Insert Batch
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Subsequent insertions

1, 4, 5 17, 19, 22 120, 142, 15090, 100, 102

8, 17, 41, 90, 120

8, 10, 14 41, 50, 60

Max Nodesize = 3

Insert Batch

4, 10, 22, 60, 102, 150
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Continuation of insertions

1, 4, 5 17, 19, 22 120, 142, 15090, 100, 102

8, 17, 41, 90, 120

8, 10, 14 41, 50, 60

Max Nodesize = 3

Insert Batch

6, 13, 38, 55, 95, 136
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Continuation of insertions

1, 4, 5, 6 17, 19, 22, 38 120, 136, 142, 15090, 95, 100, 102

8, 17, 41, 90, 120

8, 10, 13, 14 41, 50, 55, 60

Max Nodesize = 3

Insert Batch

6, 13, 38, 55, 95, 136

Node Split

=> Delayed, widespread node splits after index creation

Node Split Node Split Node Split Node Split Node Split
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Limitations of the status quo

• The problem of splits is merely delayed

• Moreover, the problem occurs in waves
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Problem Assessment – When does it occur?

• Loading Distribution = Insert Distribution

• E.g.: Hash-Keys
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Basic Idea

• Do not leave constant free space while loading

90% 60% 95%

Data

50%70%

Bulk Loading

15



Basic Idea – Insert Batch

90% 60% 95%50%70%

Insert Batch

Node SplitNode Split
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=> Distributing node splits over time
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Ideal solution for predictable splits

Moving hills into valleys
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Ideal solution (Leaf Nodes)

B/2 B B/2

1 Item

B-5

• qB = Probability of a split after insertion

qB
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Ideal solution (Leaf Nodes)

• Fringe Analysis:

• Insert-Operation: Ԧ𝑞 𝑛 ∗ 𝐼 +
1

𝑛+1
𝑇 = Ԧ𝑞 𝑛 + 1

• Goal: Ԧ𝑞 𝑛 = Ԧ𝑞 𝑛 + 𝑘 => A stable state 
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Ideal solution (Leaf Nodes)

• Goal: Ԧ𝑞 𝑛 = Ԧ𝑞 𝑛 + 𝑘 => A stable state 

• Analyze Transition: 

• Formula holds for qj = 1/(j+1)
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Ideal solution (Leaf Nodes)

• Intuition:

• Few full pages split immediately

• Many half full pages eventually

• Ideal solution 

• …for expected B-tree utilization

• ...i.e., for Utilization of ln(2) = 69% 
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Practical Remedies – Random

• While loading: Randomly pick around target utilization

80%

80%+x

80%-y

nextPage()
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Practical Remedies – Suffix Truncation

• While loading: Search for shortest key within range

• Added compression effect

"catchphrase"

100%

80%

nextPage()
"catchweight"

"cattle"

...
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Experimental Evaluation – Setup 

• Procedure:

• Records: 21 integers (84 bytes), normal distribution

• Loading b-tree with 100,000 pages of 8KB

• Inserting batches of 10,000 records

• Workstation:

• AMD Ryzen7 2700X

• 16GB memory

• Java indexing library XXL
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Experimental Evaluation – Random
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Experimental Evaluation – Buffer Utilization
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Waves of Misery after index creation

• Loading secondary b-tree index in...

• Write-intensive workloads

• Loading distribution = Insert distribution

• Want to achieve predictable split performance:

Don't just leave constant free space in your tree nodes!

Work towards starting in the steady state of the b-tree.
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Thank you for your attention!
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