
Waves of misery
after index creation

Nikolaus Glombiewski1, Bernhard Seeger1, Goetz Graefe2

1University of Marburg
2Google Inc.

1



Outline

• Problem Assessment

• Basic Solution

• Ideal Solution 

• Practical Remedies

• Experimental Evaluation

• Conclusion

2



Outline

• Problem Assessment

• Basic Solution

• Ideal Solution 

• Practical Remedies

• Experimental Evaluation

• Conclusion

3



Indexes: Pros & Cons

• Pros

• Fast lookups

• Fast ordered range scans

➔ Best supported by bulk loading a perfect secondary b-tree

• Cons

• Maintenance cost 

• Robustness of performance over time

4



Creation of a Perfect B-tree

1, 5, 8, 15, 17, 19, 41, 50, 90, 100, 120, 142

1, 5, 8

Building B-Tree 

Max Nodesize = 3

15, 17, 19 100, 120, 14241, 50, 90

15, 41, 100

Sort

5



Subsequent Insertions on a Perfect B-tree

1, 5, 8 15, 17, 19 100, 120, 14241, 50, 90

15, 41, 100

Max Nodesize = 3

Insert Batch

4, 10, 22, 60, 102, 150

6



Subsequent Insertions on a Perfect B-tree

1, 4, 5, 8, 10 14, 17, 19, 22 100, 102, 120, 142, 15041, 50, 60, 90

15, 41, 100

Node Split Node Split Node Split Node Split

Max Nodesize = 3

=> Immediate, widespread node splits after index creation

Insert Batch

4, 10, 22, 60, 102, 150

7



Problem of Subsequent Insertions

• Splits of almost all leaves within a short time period

• high I/O load 

• low buffer utilization

• low query performance due to contention

• Status quo database solution: Leave free space (e.g. 30%)

• Oracle, SQL Server, DB2, …

100%

50% 50%

Split

8



Creation of a Perfect B-tree with free space

1, 5, 8, 15, 17, 19, 41, 50, 90, 100, 120, 142

1, 5

Building B-Tree 

Max Nodesize = 3, Utilization = 70%

17, 19 120, 14290, 100

8, 17, 41, 90, 120

Sort

8, 15 41, 50

9



Subsequent insertions

1, 5 17, 19 120, 14290, 100

8, 17, 41, 90, 120

8, 15 41, 50

4, 10, 22, 60, 102, 150

Max Nodesize = 3

Insert Batch

10



Subsequent insertions

1, 4, 5 17, 19, 22 120, 142, 15090, 100, 102

8, 17, 41, 90, 120

8, 10, 14 41, 50, 60

Max Nodesize = 3

Insert Batch

4, 10, 22, 60, 102, 150

10



Continuation of insertions

1, 4, 5 17, 19, 22 120, 142, 15090, 100, 102

8, 17, 41, 90, 120

8, 10, 14 41, 50, 60

Max Nodesize = 3

Insert Batch

6, 13, 38, 55, 95, 136

12



Continuation of insertions

1, 4, 5, 6 17, 19, 22, 38 120, 136, 142, 15090, 95, 100, 102

8, 17, 41, 90, 120

8, 10, 13, 14 41, 50, 55, 60

Max Nodesize = 3

Insert Batch

6, 13, 38, 55, 95, 136

Node Split

=> Delayed, widespread node splits after index creation

Node Split Node Split Node Split Node Split Node Split

11



Limitations of the status quo

• The problem of splits is merely delayed

• Moreover, the problem occurs in waves

12



Problem Assessment – When does it occur?

• Loading Distribution = Insert Distribution

• E.g.: Hash-Keys

13



Outline

• Problem Assessment

• Basic Solution

• Ideal Solution 

• Practical Remedies

• Experimental Evaluation

• Conclusion

14



Basic Idea

• Do not leave constant free space while loading

90% 60% 95%

Data

50%70%

Bulk Loading

15



Basic Idea – Insert Batch

90% 60% 95%50%70%

Insert Batch

Node SplitNode Split

16

=> Distributing node splits over time



Outline

• Problem Assessment

• Basic Solution

• Ideal Solution 

• Practical Remedies

• Experimental Evaluation

• Conclusion

17



Ideal solution for predictable splits

Moving hills into valleys

18



Ideal solution (Leaf Nodes)

B/2 B B/2

1 Item

B-5

• qB = Probability of a split after insertion

qB

19



Ideal solution (Leaf Nodes)

• Fringe Analysis:

• Insert-Operation: Ԧ𝑞 𝑛 ∗ 𝐼 +
1

𝑛+1
𝑇 = Ԧ𝑞 𝑛 + 1

• Goal: Ԧ𝑞 𝑛 = Ԧ𝑞 𝑛 + 𝑘 => A stable state 

20



Ideal solution (Leaf Nodes)

• Goal: Ԧ𝑞 𝑛 = Ԧ𝑞 𝑛 + 𝑘 => A stable state 

• Analyze Transition: 

• Formula holds for qj = 1/(j+1)

21



Ideal solution (Leaf Nodes)

• Intuition:

• Few full pages split immediately

• Many half full pages eventually

• Ideal solution 

• …for expected B-tree utilization

• ...i.e., for Utilization of ln(2) = 69% 

22



Outline

• Problem Assessment

• Basic Solution

• Ideal Solution 

• Practical Remedies

• Experimental Evaluation

• Conclusion

23



Practical Remedies – Random

• While loading: Randomly pick around target utilization

80%

80%+x

80%-y

nextPage()

24



Practical Remedies – Suffix Truncation

• While loading: Search for shortest key within range

• Added compression effect

"catchphrase"

100%

80%

nextPage()
"catchweight"

"cattle"

...

25



Outline

• Problem Assessment

• Basic Solution

• Ideal Solution 

• Practical Remedies

• Experimental Evaluation

• Conclusion

26



Experimental Evaluation – Setup 

• Procedure:

• Records: 21 integers (84 bytes), normal distribution

• Loading b-tree with 100,000 pages of 8KB

• Inserting batches of 10,000 records

• Workstation:

• AMD Ryzen7 2700X

• 16GB memory

• Java indexing library XXL

27



Experimental Evaluation – Random

28



Experimental Evaluation – Buffer Utilization

29



Outline

• Problem Assessment

• Basic Solution

• Ideal Solution 

• Practical Remedies

• Experimental Evaluation

• Conclusion

30



Waves of Misery after index creation

• Loading secondary b-tree index in...

• Write-intensive workloads

• Loading distribution = Insert distribution

• Want to achieve predictable split performance:

Don't just leave constant free space in your tree nodes!

Work towards starting in the steady state of the b-tree.

31



Thank you for your attention!

32


