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INTRODUCTION
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MOTIVATION

 Artificial Neural Networks (ANNs) are nowadays very popular and used widely in many tasks

 Among image classification datasets, Convolutional Neural Networks (CNNs) are used often

 But ANNs have too many hyperparameters!

 Not only the learning rate, dropout value etc. can be considered

 Numerous ANNs architectures can be considered

 What yields the best results?

 ANNs are still considered as a Black Box function

 Unclear what makes the model learn best

 Makes hyperparameter tuning even harder
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TASK

 Use Bayesian Optimization [6] to find the optimal model architecture

 Final evaluation: Histological dataset of breast cancer
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MOTIVATION: FIGURES

Fig. 1: Illustration of VGG16 by Kasthurirangan Gopalakrishnan Fig. 2: Illustration taken from the DenseNet paper [1]

Many architectures can be proposed as seen in Figure 1,2
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RELATED WORKS

 Grid Search, Random Search [2]

 Reinforcement learning methods

 Neural architecture search with reinforcement learning (NAS) [3]

 Progressive neural architecture search [4]

 Learning transferable architectures for scalable image recognition [5]

 Controller produces models and each model returns the validation accuracy

 The validation acc. guides the controller to produce better models
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FOUNDATION
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FOUNDATION: BAYESIAN OPTIMIZATION [6]

 Bayesian Opt. is an algorithm for global optimization

 The minimum or maximum of every function f can be found
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

 Suppose function f has to be minimized

 It is possible to evaluate a certain point of f

 ➔ For every xi we get a yi = f(xi) for all i ∈ ℕ
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

 Assume that function f is very expensive to calculate

 Aim: min(f) by evaluating as few points as possible

 Bayesian inference: Use information given by the regression model to find the minimum

 Regions which where not discovered yet should be sampled to escape the local minimum
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

1. Create a regression model p based on the observed points

2. Sample next point:

 Explore regions with higher uncertainty or exploit where the minimum could be found

 Exploration-Exploitation trade-off

 Acquisition function tells which point has to be evaluated next

3. Repeat 1.-2.
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BAYESIAN OPTIMIZATION WITH GP’S

Real black box function f (unknown) Approximation model p
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BAYESIAN OPTIMIZATION WITH GP’S

Real black box function f (unknown) Approximation model p

15 / 33



METHODS
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MODEL FINDING

Definition Bayesian Opt. applied on Hyperparam.opt.

 Let function 𝑓 be a neural network which takes in the 

hyperparameter vector Ԧ𝑥, training data 𝐷, validation 

data 𝐷𝑣𝑎𝑙, training label 𝑦, validation label 𝑦𝑣𝑎𝑙.

 Let 𝑓 return the validation accuracy. Due to the 

minimization of the objective, the validation accuracy 

should be returned negated.

 Let ሚ𝑓 be 𝑓 where the validation accuracy is returned 

negatively.

 The objective is: 𝑎𝑟𝑔𝑚𝑖𝑛 Ԧ𝑥
ሚ𝑓( Ԧ𝑥, 𝐷, 𝑦, 𝐷𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙)
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MODEL FINDING: ARCHITECTURE

Fig. 4: Possible model architectures. m, n, o, p, k are hyperparameters18 / 33



FINE-TUNING

 Same algorithm, ሚ𝑓 is modifiable in other parts

 ሚ𝑓 just takes a different hyperparameter vector Ԧ𝑥

 Arbitrary choice of hyperparameters

 Choice of hyperparameters can be chosen differently

 Search space can be defined arbitrary
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FINE-TUNING: DETAILS

 Eight hyperparameters were optimized on:

 Output dimension of the Conv Blocks (3)

 Kernel size of every Conv filter

 Learning rate, dropout, number of dense nodes

 L2-regularization
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EVALUATION
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DATASET [7]

Fig. 5: Normal Fig. 6: Benign Fig. 7: In Situ Fig. 8: Invasive

 Breast Cancer Dataset

 Histological images: tissue extracted and colorized with haematoxylin and eosin

 Magnification: 200x
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DATASET [7]

 Information

 Dataset consists of 249 training data and 20 test data

 Dataset is mostly equally distributed

 Task

 Four-class classification (benign, normal, in situ, invasive)

 Two-class classification (noncarcinoma, carcinoma)

 Benign, normal and summarized into noncarcinoma

 In Situ and invasive are summarized into carcinoma

 Evaluation

 In this work, the test set has been used as the validation data

 For comparable results: only the validation accuracy is compared against similar works
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DATA AUGMENTATION

 Augmentations:

 Flipping

 Mirror

 Rotation

 Random contrast changes

 Training data increased by factor 8 ➔ 249 * 8 = 1992 samples
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EXPERIMENTATION SETTINGS

 Model finding

 Create 600 models 

 Each model is trained for 40 epochs

 Fine-tuning

 1000 hyperparameters are tested

 Best model is trained on those hyperparameters

 Each hyperparameter setting is trained for 60 epochs

 Best model found (with fine-tuning) is trained further for 10000

 Further training can decrease the validation acc due to overfitting:

 Make use of early stopping
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INSPECTING BAYESIAN OPTIMIZATION

 Points appear to be very random

 For both tasks, lots of models could not learn

 Accuracy as good as the threshold

 Randomly bad weight initialization

 Maybe hard task (?)

 High exploration rate

 Sign that neural networks are chaotic systems

Fig. 9:  Accuracy of the created models on both classification tasks.

Linear Regression describes the course of the points.
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FINAL RESULTS

 Best models fine-tuned and trained further

 End result:

 69% accuracy for four classes

 89% accuracy for two classes
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COMPARISON WITH RELATED WORKS

Team 4-class acc. 2-class acc. Approach

Aditya et al. [8] 85% 93% Transfer learning: Inception-v3 [11]

Kamyar et al. [9] 95% - Transfer learning: Inception-v3 [11]

Wajahat et al. [10] 81% - Transfer learning: AlexNet [12]

This work 69% 89% Automated Architecture-Modeling

 [8], [9], [10] use a more extensive dataset (400 training samples) provided by the ICIAR Grand Challenge [13]

 Only participants had access to this dataset

 This work comes close with [8] when comparing 2-class results

 Inferior in the 4-class task
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RESULTS

 Results not completely comparable

 Dataset used in this work was more limited

 Result also depends on the preprocessing part

 Aditya et al. [8] and Kamyar et al. [9] use similar techniques

 Still different results

 Validation set different

 Test accuracy not comparable for the same reason
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CONCLUSION AND FUTURE WORKS

 Conclusion

 Results good in the binary classification task

 Results inferior in the four-class classification task

 Lack of experimentation

 Results not comparable

 Future Works

 Allow the creation of nonsequential, recurrent models etc.

 Search algorithm to find the optimal model

 Lots of models do not learn from the data

 Limit the training process

 Number of epochs: Depth of tree

 Set of models: Breadth of tree
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