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INTRODUCTION




MOTIVATION

= Artificial Neural Networks (ANNs) are nowadays very popular and used widely in many tasks
= Among image classification datasets, Convolutional Neural Networks (CNNs) are used often
= But ANNs have too many hyperparameters!

= Not only the learning rate, dropout value etc. can be considered
®  Numerous ANNs architectures can be considered
= What yields the best results?

= ANNs are still considered as a Black Box function
®  Unclear what makes the model learn best

®  Makes hyperparameter tuning even harder
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m  Use Bayesian Optimization [6] to find the optimal model architecture

= Final evaluation: Histological dataset of breast cancer
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MOTIVATION: FIGURES

Fig. I: lllustration of VGG16 by Kasthurirangan Gopalakrishnan
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Fig. 2: lllustration taken from the DenseNet paper [I]
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https://www.researchgate.net/profile/Kasthurirangan_Gopalakrishnan

RELATED WORKS
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Grid Search, Random Search [2]

Reinforcement learning methods

Neural architecture search with reinforcement learning (NAS) [3]
Progressive neural architecture search [4]

Learning transferable architectures for scalable image recognition [5]
Controller produces models and each model returns the validation accuracy

The validation acc. guides the controller to produce better models



FOUNDATION




FOUNDATION: BAYESIAN OPTIMIZATION [6]

m  Bayesian Opt. is an algorithm for global optimization

®  The minimum or maximum of every function f can be found
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

= Suppose function f has to be minimized
m |tis possible to evaluate a certain point of f

= = Forevery x, we getay, =f(x) foralli € N

10/33



BAYESIAN OPTIMIZATION: INTUITIVE IDEA

= Assume that function f is very expensive to calculate

= Aim: min(f) by evaluating as few points as possible

=  Bayesian inference: Use information given by the regression model to find the minimum

= Regions which where not discovered yet should be sampled to escape the local minimum
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

|. Create a regression model p based on the observed points

2. Sample next point:
= Explore regions with higher uncertainty or exploit where the minimum could be found
= Exploration-Exploitation trade-off

m  Acquisition function tells which point has to be evaluated next

3. Repeat |.-2.
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BAYESIAN OPTIMIZATION WITH GP’S

Real black box function f (unknown) Approximation model p
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BAYESIAN OPTIMIZATION WITH GP’S
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BAYESIAN OPTIMIZATION WITH GP’S
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METHODS




MODEL FINDING

Definition

m  Let function f be a neural network which takes in the
hyperparameter vector X, training data D, validation
data D, training label y, validation label y,,,;.

m  Let f return the validation accuracy. Due to the
minimization of the objective, the validation accuracy
should be returned negated.

= Let f be f where the validation accuracy is returned
negatively.

= The objective is: argming f (X, D, y, Dyat, Voar)
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Bayesian Opt. applied on Hyperparam.opt.

Algorithm 1 Bayesian Optimization

I:
2

3:
4:
5:
6:
7

8:
9:
10:
11:
12:
13:

procedure BAYESOPT(Y, D, y. D\ 1. Vyoal)
fori < l.ndo _
Ynext € argmaxzacq(x, D)
val_accuracy « .fh'(.\',,;_\-r. D.v.Dyar. Yyat)
if val_accuracy < best_accuracy then
best_accuracy « val_accuracy
Xpest < Xnext
end if _
D « D U (xpexs. val_accuracy)
Update Gaussian process regression based on D
end for
return x;,,;
end procedure

> acq is the acquisition function




MODEL FINDING:ARCHITECTURE
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FINE-TUNING

= Same algorithm, f is modifiable in other parts
= f just takes a different hyperparameter vector

®  Arbitrary choice of hyperparameters
®  Choice of hyperparameters can be chosen differently

= Search space can be defined arbitrary
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FINE-TUNING: DETAILS

= Eight hyperparameters were optimized on:
= QOutput dimension of the Conv Blocks (3)
= Kernel size of every Conv filter

m | earning rate, dropout, number of dense nodes

m | 2-regularization
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EVALUATION




DATASET [7]

7 MIBAN 4R —_

Fig. 5: Normal Fig. 6: Benign Fig. 7: In Situ Fig. 8: Invasive

= Breast Cancer Dataset
= Histological images: tissue extracted and colorized with haematoxylin and eosin

= Magnification: 200x
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DATASET [7]

= |nformation
m  Dataset consists of 249 training data and 20 test data
m  Dataset is mostly equally distributed
" Task
" Four-class classification (benign, normal, in situ, invasive)

m  Two-class classification (noncarcinoma, carcinoma)
= Benign, normal and summarized into noncarcinoma

®  |n Situ and invasive are summarized into carcinoma
= FEvaluation

= |n this work, the test set has been used as the validation data

®  For comparable results: only the validation accuracy is compared against similar works
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DATA AUGMENTATION

= Augmentations:
= Flipping
= Mirror
= Rotation

®  Random contrast changes

=  Training data increased by factor 8 =» 249 * 8 = 1992 samples
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EXPERIMENTATION SETTINGS

= Model finding
= Create 600 models
®  Each model is trained for 40 epochs
= Fine-tuning
= |000 hyperparameters are tested
®  Best model is trained on those hyperparameters
m  Each hyperparameter setting is trained for 60 epochs
®  Best model found (with fine-tuning) is trained further for 10000
®  Further training can decrease the validation acc due to overfitting:

m  Make use of early stopping
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= Training Validation
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Fig. 9: Accuracy of the created models on both classification tasks.
Linear Regression describes the course of the points.

Points appear to be very random

For both tasks, lots of models could not learn
" Accuracy as good as the threshold

= Randomly bad weight initialization

= Maybe hard task (?)

®  High exploration rate

®  Sign that neural networks are chaotic systems



FINAL RESULTS

m  Best models fine-tuned and trained further
®  End result:

m  69% accuracy for four classes

m  89% accuracy for two classes
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COMPARISON WITH RELATED WORKS

Team _______ld4classacc.________|2-classacc. | Approach

Aditya et al. [8] 85% 93% Transfer learning: Inception-v3 [11]
Kamyar et al. [9] 95% - Transfer learning: Inception-v3 [1 1]
Wajahat et al. [10] 81% - Transfer learning: AlexNet [12]

This work 69% 89% Automated Architecture-Modeling

= [8],[9],[10] use a more extensive dataset (400 training samples) provided by the ICIAR Grand Challenge [13]
®  Only participants had access to this dataset

®  This work comes close with [8] when comparing 2-class results

®  [nferior in the 4-class task
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RESULTS

m  Results not completely comparable
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Dataset used in this work was more limited

Result also depends on the preprocessing part
= Aditya et al. [8] and Kamyar et al. [9] use similar techniques
= Still different results

Validation set different

Test accuracy not comparable for the same reason



CONCLUSION AND FUTURE WORKS

m  Conclusion
m  Results good in the binary classification task

m  Results inferior in the four-class classification task
®  lack of experimentation

m  Results not comparable
= Future Works

®=  Allow the creation of nonsequential, recurrent models etc.
m  Search algorithm to find the optimal model

"= Lots of models do not learn from the data

= Limit the training process

= Number of epochs: Depth of tree

m  Set of models: Breadth of tree
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