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INTRODUCTION
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MOTIVATION

 Artificial Neural Networks (ANNs) are nowadays very popular and used widely in many tasks

 Among image classification datasets, Convolutional Neural Networks (CNNs) are used often

 But ANNs have too many hyperparameters!

 Not only the learning rate, dropout value etc. can be considered

 Numerous ANNs architectures can be considered

 What yields the best results?

 ANNs are still considered as a Black Box function

 Unclear what makes the model learn best

 Makes hyperparameter tuning even harder

4 / 33



TASK

 Use Bayesian Optimization [6] to find the optimal model architecture

 Final evaluation: Histological dataset of breast cancer
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MOTIVATION: FIGURES

Fig. 1: Illustration of VGG16 by Kasthurirangan Gopalakrishnan Fig. 2: Illustration taken from the DenseNet paper [1]

Many architectures can be proposed as seen in Figure 1,2
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RELATED WORKS

 Grid Search, Random Search [2]

 Reinforcement learning methods

 Neural architecture search with reinforcement learning (NAS) [3]

 Progressive neural architecture search [4]

 Learning transferable architectures for scalable image recognition [5]

 Controller produces models and each model returns the validation accuracy

 The validation acc. guides the controller to produce better models
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FOUNDATION
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FOUNDATION: BAYESIAN OPTIMIZATION [6]

 Bayesian Opt. is an algorithm for global optimization

 The minimum or maximum of every function f can be found
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

 Suppose function f has to be minimized

 It is possible to evaluate a certain point of f

 ➔ For every xi we get a yi = f(xi) for all i ∈ ℕ
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

 Assume that function f is very expensive to calculate

 Aim: min(f) by evaluating as few points as possible

 Bayesian inference: Use information given by the regression model to find the minimum

 Regions which where not discovered yet should be sampled to escape the local minimum
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BAYESIAN OPTIMIZATION: INTUITIVE IDEA

1. Create a regression model p based on the observed points

2. Sample next point:

 Explore regions with higher uncertainty or exploit where the minimum could be found

 Exploration-Exploitation trade-off

 Acquisition function tells which point has to be evaluated next

3. Repeat 1.-2.
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BAYESIAN OPTIMIZATION WITH GP’S

Real black box function f (unknown) Approximation model p
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BAYESIAN OPTIMIZATION WITH GP’S
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BAYESIAN OPTIMIZATION WITH GP’S

Real black box function f (unknown) Approximation model p
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METHODS
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MODEL FINDING

Definition Bayesian Opt. applied on Hyperparam.opt.

 Let function 𝑓 be a neural network which takes in the 

hyperparameter vector Ԧ𝑥, training data 𝐷, validation 

data 𝐷𝑣𝑎𝑙, training label 𝑦, validation label 𝑦𝑣𝑎𝑙.

 Let 𝑓 return the validation accuracy. Due to the 

minimization of the objective, the validation accuracy 

should be returned negated.

 Let ሚ𝑓 be 𝑓 where the validation accuracy is returned 

negatively.

 The objective is: 𝑎𝑟𝑔𝑚𝑖𝑛 Ԧ𝑥
ሚ𝑓( Ԧ𝑥, 𝐷, 𝑦, 𝐷𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙)
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MODEL FINDING: ARCHITECTURE

Fig. 4: Possible model architectures. m, n, o, p, k are hyperparameters18 / 33



FINE-TUNING

 Same algorithm, ሚ𝑓 is modifiable in other parts

 ሚ𝑓 just takes a different hyperparameter vector Ԧ𝑥

 Arbitrary choice of hyperparameters

 Choice of hyperparameters can be chosen differently

 Search space can be defined arbitrary
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FINE-TUNING: DETAILS

 Eight hyperparameters were optimized on:

 Output dimension of the Conv Blocks (3)

 Kernel size of every Conv filter

 Learning rate, dropout, number of dense nodes

 L2-regularization
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EVALUATION
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DATASET [7]

Fig. 5: Normal Fig. 6: Benign Fig. 7: In Situ Fig. 8: Invasive

 Breast Cancer Dataset

 Histological images: tissue extracted and colorized with haematoxylin and eosin

 Magnification: 200x

22 / 33



DATASET [7]

 Information

 Dataset consists of 249 training data and 20 test data

 Dataset is mostly equally distributed

 Task

 Four-class classification (benign, normal, in situ, invasive)

 Two-class classification (noncarcinoma, carcinoma)

 Benign, normal and summarized into noncarcinoma

 In Situ and invasive are summarized into carcinoma

 Evaluation

 In this work, the test set has been used as the validation data

 For comparable results: only the validation accuracy is compared against similar works
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DATA AUGMENTATION

 Augmentations:

 Flipping

 Mirror

 Rotation

 Random contrast changes

 Training data increased by factor 8 ➔ 249 * 8 = 1992 samples
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EXPERIMENTATION SETTINGS

 Model finding

 Create 600 models 

 Each model is trained for 40 epochs

 Fine-tuning

 1000 hyperparameters are tested

 Best model is trained on those hyperparameters

 Each hyperparameter setting is trained for 60 epochs

 Best model found (with fine-tuning) is trained further for 10000

 Further training can decrease the validation acc due to overfitting:

 Make use of early stopping
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INSPECTING BAYESIAN OPTIMIZATION

 Points appear to be very random

 For both tasks, lots of models could not learn

 Accuracy as good as the threshold

 Randomly bad weight initialization

 Maybe hard task (?)

 High exploration rate

 Sign that neural networks are chaotic systems

Fig. 9:  Accuracy of the created models on both classification tasks.

Linear Regression describes the course of the points.
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FINAL RESULTS

 Best models fine-tuned and trained further

 End result:

 69% accuracy for four classes

 89% accuracy for two classes
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COMPARISON WITH RELATED WORKS

Team 4-class acc. 2-class acc. Approach

Aditya et al. [8] 85% 93% Transfer learning: Inception-v3 [11]

Kamyar et al. [9] 95% - Transfer learning: Inception-v3 [11]

Wajahat et al. [10] 81% - Transfer learning: AlexNet [12]

This work 69% 89% Automated Architecture-Modeling

 [8], [9], [10] use a more extensive dataset (400 training samples) provided by the ICIAR Grand Challenge [13]

 Only participants had access to this dataset

 This work comes close with [8] when comparing 2-class results

 Inferior in the 4-class task
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RESULTS

 Results not completely comparable

 Dataset used in this work was more limited

 Result also depends on the preprocessing part

 Aditya et al. [8] and Kamyar et al. [9] use similar techniques

 Still different results

 Validation set different

 Test accuracy not comparable for the same reason
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CONCLUSION AND FUTURE WORKS

 Conclusion

 Results good in the binary classification task

 Results inferior in the four-class classification task

 Lack of experimentation

 Results not comparable

 Future Works

 Allow the creation of nonsequential, recurrent models etc.

 Search algorithm to find the optimal model

 Lots of models do not learn from the data

 Limit the training process

 Number of epochs: Depth of tree

 Set of models: Breadth of tree
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