AUTOMATED ARCHITECTURE-MODELING FOR CNNS

MANH KHOI DUONG

TABLE OF CONTENTS

- I. Introduction
 - I. Motivation
 - 2. Related Works
- 2. Methods
 - I. Foundation: Bayesian Optimization
 - 2. Model finding
 - 3. Fine-tuning
- 3. Evaluation
 - I. Dataset
 - 2. Final Results
 - 3. Comparison with related works
- 4. Conclusion and Future Works

INTRODUCTION

MOTIVATION

- Artificial Neural Networks (ANNs) are nowadays very popular and used widely in many tasks
- Among image classification datasets, Convolutional Neural Networks (CNNs) are used often
- But ANNs have too many hyperparameters!
- Not only the learning rate, dropout value etc. can be considered
 - Numerous ANNs architectures can be considered
 - What yields the best results?
- ANNs are still considered as a Black Box function
 - Unclear what makes the model learn best
 - Makes hyperparameter tuning even harder

- Use Bayesian Optimization [6] to find the optimal model architecture
- Final evaluation: Histological dataset of breast cancer

MOTIVATION: FIGURES

Fig. 1: Illustration of VGG16 by Kasthurirangan Gopalakrishnan

Fig. 2: Illustration taken from the DenseNet paper [1]

6 / 33

Many architectures can be proposed as seen in Figure 1,2

RELATED WORKS

- Grid Search, Random Search [2]
- Reinforcement learning methods
 - Neural architecture search with reinforcement learning (NAS) [3]
 - Progressive neural architecture search [4]
 - Learning transferable architectures for scalable image recognition [5]
 - Controller produces models and each model returns the validation accuracy
 - The validation acc. guides the controller to produce better models

FOUNDATION

FOUNDATION: BAYESIAN OPTIMIZATION [6]

- Bayesian Opt. is an algorithm for global optimization
 - The minimum or maximum of every function **f** can be found

BAYESIAN OPTIMIZATION: INTUITIVE IDEA

- Suppose function f has to be minimized
- It is possible to evaluate a certain point of f
- → For every x_i we get a $y_i = f(x_i)$ for all $i \in \mathbb{N}$

BAYESIAN OPTIMIZATION: INTUITIVE IDEA

- Assume that function f is very expensive to calculate
- Aim: min(f) by evaluating as few points as possible
- Bayesian inference: Use information given by the regression model to find the minimum
 - Regions which where not discovered yet should be sampled to escape the local minimum

BAYESIAN OPTIMIZATION: INTUITIVE IDEA

- I. Create a regression model *p* based on the observed points
- 2. Sample next point:
 - **Explore** regions with higher uncertainty or **exploit** where the minimum could be found
 - Exploration-Exploitation trade-off
 - Acquisition function tells which point has to be evaluated next
- 3. Repeat I.-2.

BAYESIAN OPTIMIZATION WITH GP'S

Real black box function *f* (unknown)

Approximation model *p*

13/33

BAYESIAN OPTIMIZATION WITH GP'S

Real black box function *f* (unknown)

Approximation model *p*

BAYESIAN OPTIMIZATION WITH GP'S

Real black box function *f* (unknown)

Approximation model *p*

15/33

METHODS

MODEL FINDING

Definition

- Let function f be a neural network which takes in the hyperparameter vector \vec{x} , training data D, validation data D_{val} , training label y, validation label y_{val} .
- Let f return the validation accuracy. Due to the minimization of the objective, the validation accuracy should be returned negated.
- Let *f̃* be *f* where the validation accuracy is returned negatively.
- The objective is: $argmin_{\vec{x}} \tilde{f}(\vec{x}, D, y, D_{val}, y_{val})$

Bayesian Opt. applied on Hyperparam.opt.

1: p	focedure bayesopt($\vec{x}, D, y, D_{val}, y_{val}$)	
2:	for $i \leftarrow 1, n$ do	
3:	$x_{next} \leftarrow argmax_{\vec{x}}acq(\vec{x}, \vec{D})$	acq is the acquisition function
4:	val_accuracy $\leftarrow \tilde{f}(x_{next}, D, y, D_{val}, y_{val})$	
5:	if val_accuracy < best_accuracy then	
6:	$best_accuracy \leftarrow val_accuracy$	
7:	$\vec{x_{best}} \leftarrow \vec{x_{next}}$	
8:	end if	
9:	$\widetilde{D} \leftarrow \widetilde{D} \cup (x_{next}, \text{val}_\text{accuracy})$	
10:	Update Gaussian process regression based on \widetilde{D}	
11:	end for	
12:	return $\vec{x_{best}}$	
13: e	nd procedure	

MODEL FINDING: ARCHITECTURE

Fig. 4: Possible model architectures. m, n, o, p, k are hyperparameters

FINE-TUNING

- Same algorithm, \tilde{f} is modifiable in other parts
- \tilde{f} just takes a different hyperparameter vector \vec{x}
- Arbitrary choice of hyperparameters
 - Choice of hyperparameters can be chosen differently
 - Search space can be defined arbitrary

FINE-TUNING: DETAILS

- Eight hyperparameters were optimized on:
 - Output dimension of the Conv Blocks (3)
 - Kernel size of every Conv filter
 - Learning rate, dropout, number of dense nodes
 - L2-regularization

EVALUATION

- Breast Cancer Dataset
- Histological images: tissue extracted and colorized with haematoxylin and eosin
- Magnification: 200x

DATASET [7]

Information

- Dataset consists of 249 training data and 20 test data
- Dataset is mostly equally distributed
- Task
 - Four-class classification (benign, normal, in situ, invasive)
 - Two-class classification (noncarcinoma, carcinoma)
 - Benign, normal and summarized into noncarcinoma
 - In Situ and invasive are summarized into carcinoma
- Evaluation
 - In this work, the test set has been used as the validation data
 - For comparable results: only the validation accuracy is compared against similar works

DATA AUGMENTATION

Augmentations:

- Flipping
- Mirror
- Rotation
- Random contrast changes
- Training data increased by factor 8 → 249 * 8 = 1992 samples

EXPERIMENTATION SETTINGS

- Model finding
 - Create 600 models
 - Each model is trained for 40 epochs
- Fine-tuning
 - I 000 hyperparameters are tested
 - Best model is trained on those hyperparameters
 - Each hyperparameter setting is trained for 60 epochs
- Best model found (with fine-tuning) is trained further for 10000
 - Further training can decrease the validation acc due to overfitting:
 - Make use of early stopping

INSPECTING BAYESIAN OPTIMIZATION

Fig. 9: Accuracy of the created models on both classification tasks. Linear Regression describes the course of the points.

- Points appear to be very random
- For both tasks, lots of models could not learn
 - Accuracy as good as the threshold
 - Randomly bad weight initialization
 - Maybe hard task (?)
 - High exploration rate
 - Sign that neural networks are chaotic systems

FINAL RESULTS

- Best models fine-tuned and trained further
- End result:
 - 69% accuracy for four classes
 - 89% accuracy for two classes

COMPARISON WITH RELATED WORKS

Team	4-class acc.	2-class acc.	Approach
Aditya et al. [8]	85%	93%	Transfer learning: Inception-v3 [11]
Kamyar et al. [9]	95%	-	Transfer learning: Inception-v3 [11]
Wajahat et al. [10]	81%	-	Transfer learning: AlexNet [12]
This work	69 %	89 %	Automated Architecture-Modeling

- [8], [9], [10] use a more extensive dataset (400 training samples) provided by the ICIAR Grand Challenge [13]
- Only participants had access to this dataset
- This work comes close with [8] when comparing 2-class results
- Inferior in the 4-class task

27 / 33

RESULTS

- Results not completely comparable
 - Dataset used in this work was more limited
 - Result also depends on the preprocessing part
 - Aditya et al. [8] and Kamyar et al. [9] use similar techniques
 - Still different results
 - Validation set different
 - Test accuracy not comparable for the same reason

CONCLUSION AND FUTURE WORKS

- Conclusion
 - Results good in the binary classification task
 - Results inferior in the four-class classification task
 - Lack of experimentation
 - Results not comparable
- Future Works
 - Allow the creation of nonsequential, recurrent models etc.
 - Search algorithm to find the optimal model
 - Lots of models do not learn from the data
 - Limit the training process
 - Number of epochs: Depth of tree
 - Set of models: Breadth of tree

THANK YOU FOR LISTENING

REFERENCES

- [1] Densely Connected Convolutional Networks
 - Gao Huang, Zhuang Liu and Kilian Q. Weinberger, arXiv preprint arXiv:1611.01578 (2016)
- [2] Random Search for Hyperparameter Optimization
 - James Bergstra and Yoshua Bengio, Journal of Machine Learning Research (2012)
- [3] Neural architecture search with reinforcement learning
 - Zoph, Barret and Quoc V. Le, arXiv preprint arXiv:1611.01578 (2016)
- [4] Progressive neural architecture search
 - Liu, Chenxi, et al., arXiv preprint arXiv:1712.00559 (2017)
- [5] Learning transferable architectures for scalable image recognition
 - Zoph, Barret, et al., CVPR (2018)
- [6] Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization
 - Jones, Donald R.; Schonlau, Matthias; Welch, William J., Journal of Global Optimization (1998)
- [7] Classification of breast cancer histology images using Convolutional Neural Networks
 - Teresa Araújo et al., Public Library of Science (PLOS) (2017)

REFERENCES

- [8] Classification of Breast Cancer Histology using Deep Learning
 - Golatkar, Aditya; Anand, Deepak; Sethi, Amit, CoRR, abs/1802.08080 (2018)
- [9] Two-Stage Convolutional Neural Network for Breast Cancer Histology Image Classification
 - Nazeri, Kamyar; Aminpour, Azad; Ebrahimi, Mehran, International Conference Image Analysis and Recognition. Springer (2018)
- [10] Classification Of Breast Cancer Histology Images Using ALEXNET
 - Nawaz, Wajahat; Ahmed, Sagheer; Tahir, Muhammad; Khan, Hassan (2018)
- [11] Rethinking the Inception Architecture for Computer Vision
 - Szegedy, Christian; Vanhoucke, Vincent; Ioffe, Sergey; Shlens, Jonathon; Wojna, Zbigniew, CoRR, abs/1512.00567 (2015)
- [12] ImageNet Classification with Deep Convolutional Neural Networks
 - Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E, Advances in Neural Information Processing Systems 25 (2012)

REFERENCES

- [13] BACH: Grand Challenge on Breast Cancer Histology Images
 - Aresta, Guilherme; Araújo, Teresa; Kwok, Scotty; Chennamsetty, Sai Saketh; P., Mohammed Safwan K.; Varghese, Alex; Marami, Bahram; Prastawa, Marcel; Chan, Monica; Donovan, Michael J.; Fernandez, Gerardo; Zeineh, Jack; Kohl, Matthias; Walz, Christoph; Ludwig, Florian; Braunewell, Stefan; Baust, Maximilian; Vu, Quoc Dang; To, Minh Nguyen Nhat; Kim, Eal; Kwak, Jin Tae; Galal, Sameh; Sanchez-Freire, Veronica; Brancati, Nadia; Frucci, Maria; Riccio, Daniel; Wang, Yaqi; Sun, Lingling; Ma, Kaiqiang; Fang, Jiannan; Koné, Ismaël; Boulmane, Lahsen; Campilho, Aurélio; Eloy, Catarina; Polónia, António; Aguiar, Paulo
 - CoRR, abs/1808.04277 (2018)