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Our domain expert:

© Eucalyp https://www.flaticon.com

Motivation – Venn Diagram of Data Science

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Elke Sähn
Fraunhofer-Institut 
für Verkehrs- und 
Infrastruktursysteme 
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Data Sets and Data Preparation Visualizing Patterns
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Data Sets

4 data sets from luftdaten.info (covering 01.2017 – 01.2019)

4 data sets from DWD (ftp://ftp-cdc.dwd.de/pub/CDC/)

name type

Dresden sds011 particle concentration (PM10)

Dresden dht22 temperature/humidity

Stuttgart sds011 particle concentration (PM10)

Stuttgart dht22 temperature/humidity

name type

Dresden F wind speed

Dresden GS sun intensity

Stuttgart F wind speed

Stuttgart GS sun intensity
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Data Preprocessing

Problem 1: No concurrent time granularity in sds011 and dht22 data

Stuttgart sds011, sensor 11

timestamp particles [µg/m³]

2014-09-03 12:03:07 10

2014-09-03 12:04:14 9

2014-09-03 12:04:57 8

2014-09-03 12:05:10 7

Stuttgart sds011, sensor 11

timestamp particles [µg/m³]

2014-09-03 12:03:00 10

2014-09-03 12:04:00 8.5

2014-09-03 12:05:00 7

group by minute

avg(particles)
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Data Preprocessing

Problem 2: Separate data set for each sensor type.

Stuttgart sds011, sensor 11

timestamp particles [µg/m³]

2014-09-03 12:03:00 10

2014-09-03 12:04:00 8.5

⋈ join on timestamp (and location)

Stuttgart dht22, sensor 65

timestamp humidity [%] temperature [°C]

2014-09-03 12:03:00 50 18

2014-09-03 12:04:00 52 17.8

Stuttgart

timestamp sensor_id particles [µg/m³] humidity [%] temperature [°C] sensor_dht

2014-09-03 12:03:00 11 10 50 18 65

2014-09-03 12:04:00 11 8.5 52 17.8 65
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Sensor reliability

If the humidity is over 70%, the particle concentration read cannot be seen as reliable.
(from the SDS011 Laser PM2.5 Sensor specification)

© DDpix https://www.ddpix.de/wp-content/gallery/dresden-von-oben/
00551.jpg

© Stuttgarter Zeitung https://cdn1.stuttgarter-zeitung.de/
media.media.3df66286-a0b5-4a54-88cd-053ffef9fc93.original1024.jpg

Data set reduction
Dresden: by 45%

Data set reduction
Stuttgart: by 44%

Inversion
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Sensor reliability

Dresden Stuttgart

PM10
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Time Series Decomposition

Segment a time series into trend, seasonality, and noise [2]

Use seasonal patterns
for analysis

[2] Cleveland et al., STL: A Seasonal-Trend Decomposition, 1990
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Seasonal Patterns

Differences between city centers

Dresden Stuttgart

PM10
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Seasonal Patterns

Differences between city centers

Dresden Stuttgart

PM10

That‘s a spurious 
correlation!
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Expert Knowledge

The rush hour peaks are really the sun rise and sun set because PM10 directly correlates
with the gradient of the global sun intensity and the wind speed [1].

Δ

[1] Klingner, Matthias; Sähn, Elke: Prediction of PM10 concentration on the basis of high resolution weather forecasting, 2008
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Expert Knowledge

The time of sun rise and sun set directly influences PM10 as seen over different months

Δ

Jan 2018 Aug 2018

PM10

Convection
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Graphical Interpolation of Sensor Data

Cubic interpolation for transforming sparse 3D data to smoothed 3D data

10 50

https://emojipedia.org/microsoft/windows-10/eye/
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Geographical Patterns

Average particle concentration (PM10) in 2018

Dresden Stuttgart
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Geographical Patterns

Average particle concentration (PM10) before and after the driving ban in Stuttgart

Dec 2018 Jan 2019

Pollution in city centers can be 
reduced with a driving ban but…
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Geographical Patterns

Average particle concentration (PM10) before and after the driving ban in Stuttgart

Dec 2018 Jan 2019

Pollution in city centers can be 
reduced with a driving ban but…

That could be the influence 
of precipitation.
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Expert Knowledge

Precipitation rate times number of rainy days in Stuttgart

Data: DWD ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/monthly/precipitation/

Dec 2018 Jan 2019
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Forecasting with Neural Networks

Modeling external influences to predict PM10 concentration

PM10

influences
Δtemperature

duration of precipitation

wind speed

day of the week

[1] Klingner, Matthias; Sähn, Elke: Prediction of PM10 concentration on the basis of high resolution weather forecasting, 2008
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Forecasting with Neural Networks

Prediction of PM10 concentration with multi-layer perceptron.

[1] Klingner, Matthias; Sähn, Elke: Prediction of PM10 concentration on the basis of high resolution weather forecasting, 2008
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Long short-term memory (LSTM)

Prediction of PM10 with humidity and temperature with lag 1
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Average particle concentration (PM10) in 2018

Geographical Patterns

StuttgartDresden
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Average particle concentration (PM10) in 2018

Geographical Patterns

Dresden

https://www.sdg-bahn.de/uploads/pics/loessnitzgrundbahn_fruehling_1.jpg
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Conclusion

Summary

 What seems to be rush hours are 
spurious correlations

 External influences other than traffic 
have a more significant impact on the 
particle concentration

 No measurable impact through driving 
bans on particle concentration due to 
the strong influences of weather and 
other factors

 Always ask an expert!

Outlook

 Standardized sensor network
 Identification of other external 

factors (environmental/human)
 Research on better data preparation 

to get exact anthropogenic influence
 Combination of other analysis 

techniques


