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Motivation Large-Scale ML

 Large-Scale Machine Learning

 Variety of ML applications (supervised, semi-/unsupervised)

 Large data collection (labels: feedback, weak supervision)

 State-of-the-art ML Systems

 Batch algorithms  Data-/task-parallel operations

 Mini-batch algorithms  Parameter server

 Data-Parallel Distributed Operations

 Linear Algebra (matrix multiplication, element-wise operations, 

structural and grouping aggregations, statistical functions)

 Meta learning (e.g., cross validation, ensembles, hyper-parameters)

 In practice: also reorganizations and cumulative aggregates

Introduction and Motivation

Data

ModelUsage

Feedback Loop
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Motivation Cumulative Aggregates

 Example 

Prefix Sums

 Applications

 #1 Iterative survival analysis: Cox Regression / Kaplan-Meier

 #2 Spatial data processing via linear algebra, cumulative histograms 

 #3 Data preprocessing: subsampling of rows / remove empty rows

 Parallelization

 Recursive formulation looks inherently sequential

 Classic example for parallelization via aggregation trees 

(message passing or shared memory HPC systems)

 Question: Efficient, Data-Parallel Cumulative Aggregates? 

(blocked matrices as unordered collections in Spark or Flink)

Introduction and Motivation
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Outline

 SystemML Overview and Related Work

 Data-Parallel Cumulative Aggregates

 System Integration 

 Experimental Results
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SystemML Overview and

Related Work
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High-Level SystemML Architecture

SystemML Overview and Related Work

[SIGMOD’15,’17,‘19]

[PVLDB’14,’16a,’16b,’18]

[ICDE’11,’12,’15]

[CIDR’17]

[VLDBJ’18] 

[DEBull’14]

[PPoPP’15] Hadoop or Spark Cluster 

(scale-out)

In-Memory Single Node 

(scale-up)

Runtime

Compiler

Language

DML Scripts DML (Declarative Machine 

Learning Language)

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,

Spark MLContext, Spark ML, 

(20+ scalable algorithms) 

In-Progress:

GPU

since 2014/16

05/2017 Apache Top-Level Project

11/2015 Apache Incubator Project

08/2015 Open Source Release
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Basic HOP and LOP DAG Compilation

SystemML Overview and Related Work

LinregDS (Direct Solve)

X = read($1);

y = read($2);

intercept = $3; 

lambda = 0.001;

...

if( intercept == 1 ) {

ones = matrix(1, nrow(X), 1); 

X = append(X, ones);

}

I = matrix(1, ncol(X), 1);

A = t(X) %*% X + diag(I)*lambda;

b = t(X) %*% y;

beta = solve(A, b);

...

write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:

• driver mem: 20 GB

• exec mem:   60 GB

dg(rand)

(103x1,103)

r(diag)

X

(108x103,1011)

y

(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

writeScenario: 
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:

• Size propagation / memory estimates

• Integrated CP / Spark runtime

 Distributed Matrices

• Fixed-size (squared) matrix blocks

• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB

800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in 

MEM_DISK)

X1,1

X2,1

Xm,1
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Cumulative Aggregates in ML Systems
(Straw-man Scripts and Built-in Support)

 ML Systems 

 Update in-place: R (ref count), SystemML (rewrites), Julia

 Builtins in R, Matlab, Julia, NumPy, SystemML (since 2014)

cumsum(), cummin(), cummax(), cumprod() 

 SQL

 SELECT Rid, V, sum(V) OVER(ORDER BY Rid) AS cumsum FROM X

 Sequential and parallelized execution (e.g., [Leis et al, PVLDB’15])

SystemML Overview and Related Work

1: cumsumN2 = function(Matrix[Double] A)

2:   return(Matrix[Double] B)

3: {

4:   B = A; csums = matrix(0,1,ncol(A));

5:   for( i in 1:nrow(A) ) {

6:     csums = csums + A[i,];

7:     B[i,] = csums;

8: }

9: }

1: cumsumNlogN = function(Matrix[Double] A)

2:   return(Matrix[Double] B)

3: {

4:   B = A; m = nrow(A); k = 1;

5:   while( k < m ) {

6:     B[(k+1):m,] = B[(k+1):m,] + B[1:(m-k),];

7:     k = 2 * k;

8:   }

9: }copy-on-write  O(n^2)

 Qualify for update in-place, 

but still too slow

 O(n log n)
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Data-Parallel 

Cumulative Aggregates
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DistCumAgg Framework

 Basic Idea: self-similar operator chain (forward, local, backward)

Data-Parallel Cumulative Aggregates

aggregates

aggregates of 

aggregates

block-local

cumagg



11

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald: 

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Basic Cumulative Aggregates

 Instantiating

Basic 

Cumulative

Aggregates

 Example

cumsum(X)

Data-Parallel Cumulative Aggregates

Operation Init fagg foff fcumagg

cumsum(X) 0 colSums(B) B1:=B1:+a cumsum(B)

cummin(X) ∞ colMins(B) B1:=min(B1:,a) cummin(B)

cummax(X) -∞ colMaxs(B) B1:=max(B1:,a) cummax(B)

cumprod(X) 1 colProds(B) B1:=B1:*a cumprod(B)

fused to avoid copy
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Complex Cumulative Aggregates

 Instantiating

Complex

Recurrences 

Equations

 Example

Data-Parallel Cumulative Aggregates

Z = cumsumprod(X) = cumsumprod(Y, W)

with Zi = Yi + Wi * Zi-1, Z0=0

cumsumprod(X)

Init fagg foff fcumagg

0 cbind(cumsumprod(B)n1, 

prod(B:2))

B11=B11+B12*a cumsumprod(B)

1 .2

1 .1

3 .0

2 .1

Exponential 

smoothing 
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System Integration
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Simplification Rewrites

 Example #1: Suffix Sums

 Problem: Distributed reverse causes data shuffling

 Compute via column aggregates and prefix sums

 Example #2: Extract Lower Triangular 

 Problem: Indexing cumbersome/slow; cumsum densifying

 Use dedicated operators 

System Integration

rev(cumsum(rev(X)))  X + colSums(X) – cumsum(X)

(broadcast) (partitioning-preserving)

=

1 0 0 0 0 0 0

1 1 0 0 0 0 0 

1 1 1 0 0 0 0

1 1 1 1 0 0 0 

1 1 1 1 1 0 0

1 1 1 1 1 1 0

1 1 1 1 1 1 1

X * cumsum(diag(matrix(1,nrow(X),1)))

 lower.tri(X)
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Execution Plan Generation

 Compilation Chain of Cumulative Aggregates

 Execution type selection based on memory estimates

 Physical operator config (broadcast, aggregation, in-place, #threads)

 Example

System Integration

High-Level 

Operator (HOP)

X

u(cumsum)

Low-Level 

Operators (LOPs)

X

cumagg

cumagg

u(cumsum) CP, 24,

in-place

SP, k+

SP, k+,  

broadcast

nrow(X) ≥ b

Runtime Plan

1: ...

2: SP ucumack+ _mVar1 _mVar2

3: CP ucumk+ _mVar2 _mVar3 24 T

4: CP rmvar _mVar2

5: SP bcumoffk+ _mVar1 _mVar3 

_mVar4 0 T

6: CP rmvar _mVar1 _mVar3

7: ...

in-place

#threads

broadcast
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Runtime Operators

 CP cumagg Operator:

 Local in-memory operator w/ copy-on-write or in-place

 Multi-threading via static range partitioning

 Spark Partial Cumulative Aggregate:

 Data-local block aggregation fagg into row of column aggregates

 Insert row into position of empty target block (sparse)

 Global merge of partial blocks

 Spark Cumulative Offset

 Join data and offsets (broadcast, co-partition, re-partition)

 Applies the offsets foff and performs block-local fcumagg

w/ zero-copy offset aggregation

System Integration
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Experimental Results
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Experimental Setting

 Cluster Setup

 2+10 node cluster, 2x Intel Xeon E5-2620, 24 vcores, 128GB RAM

 1Gb Ethernet, CentOS 7.2, OpenJDK 1.8, Haddop 2.7.3, Spark 2.3.1

 Yarn client mode, 40GB driver, 10 executors (19 cores, 60GB mem)

 Aggregate memory: 10 * 60GB * [0.5,0.6] = [300GB, 360GB]

 Baselines and Data

 Local: SystemML 1.2++, 

Julia 0.7 (08/2018), R 3.5 (04/2018)

 Distributed: SystemML 1.2++, 

C-based MPI impl. (OpenMPI 3.1.3)

 Double precision (FP64) synthetic data 

Experimental Results
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Local Baseline Comparisons

 Strawmen

Scripts

(w/ inplace)

 Built-in

cumsum

Experimental Results

cumsumN2 cumsumNlogN

competitive

single-node 

performance



20

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald: 

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Broadcasting and Blocksizes

 Setup: Mean runtime of rep=100 print(min(cumsum(X))), 

including I/O and Spark context creation (~15s) once

 Results

Experimental Results

160GB

19.6x

(17.3x @ 

default)

1K good compromise 

(8MB, block overheads)
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Scalability (from 4MB to 4TB)

 Setup: Mean runtime of rep=10 print(min(cumsum(X)))

 In the Paper

 Characterization of applicable operations;

other operations: cumsum in removeEmpty

 More baselines comparisons; weak and strong scaling results 

Experimental Results

#Cells System

ML

MPI

165M 0.97s 0.14s

500M 4.2s 0.26s

1.65G 5.3s 0.61s

5G 7.4s 1.96s

15.5G 13.9s 6.20s

50G 44.8s 19.8s

165G 1,531s N/A

500G 8,291s N/A
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Conclusions

 Summary

 DistCumAgg: Efficient, data-parallel cumulative aggregates (self-similar)

 End-to-end compiler and runtime integration in SystemML

 Physical operators for hybrid (local/distribute) plans

 Conclusions

 Practical ML systems need support for a broad spectrum of operations

 Efficient parallelization of presumably sequential operations over 

blocked matrix representations on top frameworks like Spark or Flink

 Future Work

 Integration with automatic sum-product rewrites

 Operators for HW accelerators (dense and sparse)

 Application to parallel time series analysis / forecasting


