
1
SCIENCE

PASSION

TECHNOLOGY

Efficient Data-Parallel
Cumulative Aggregates
for Large-Scale Machine Learning

Matthias Boehm1, Alexandre V. Evfimievski2, Berthold Reinwald2

1 Graz University of Technology; Graz, Austria
2 IBM Research – Almaden; San Jose, CA, USA

2

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Motivation Large-Scale ML

 Large-Scale Machine Learning

 Variety of ML applications (supervised, semi-/unsupervised)

 Large data collection (labels: feedback, weak supervision)

 State-of-the-art ML Systems

 Batch algorithms Data-/task-parallel operations

 Mini-batch algorithms Parameter server

 Data-Parallel Distributed Operations

 Linear Algebra (matrix multiplication, element-wise operations,

structural and grouping aggregations, statistical functions)

 Meta learning (e.g., cross validation, ensembles, hyper-parameters)

 In practice: also reorganizations and cumulative aggregates

Introduction and Motivation

Data

ModelUsage

Feedback Loop

3

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Motivation Cumulative Aggregates

 Example

Prefix Sums

 Applications

 #1 Iterative survival analysis: Cox Regression / Kaplan-Meier

 #2 Spatial data processing via linear algebra, cumulative histograms

 #3 Data preprocessing: subsampling of rows / remove empty rows

 Parallelization

 Recursive formulation looks inherently sequential

 Classic example for parallelization via aggregation trees

(message passing or shared memory HPC systems)

 Question: Efficient, Data-Parallel Cumulative Aggregates?

(blocked matrices as unordered collections in Spark or Flink)

Introduction and Motivation

Z = cumsum(X)

with Zij = ∑ ���
�
��� = Xij + Z(i-1)j

1 2

1 1

3 4

2 1

1 2

2 3

5 7

7 8

1 1 3 2

2 5

7

rank

1

rank

2

20MPI:

4

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Outline

 SystemML Overview and Related Work

 Data-Parallel Cumulative Aggregates

 System Integration

 Experimental Results

5

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

SystemML Overview and

Related Work

6

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

High-Level SystemML Architecture

SystemML Overview and Related Work

[SIGMOD’15,’17,‘19]

[PVLDB’14,’16a,’16b,’18]

[ICDE’11,’12,’15]

[CIDR’17]

[VLDBJ’18]

[DEBull’14]

[PPoPP’15] Hadoop or Spark Cluster

(scale-out)

In-Memory Single Node

(scale-up)

Runtime

Compiler

Language

DML Scripts DML (Declarative Machine

Learning Language)

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,

Spark MLContext, Spark ML,

(20+ scalable algorithms)

In-Progress:

GPU

since 2014/16

05/2017 Apache Top-Level Project

11/2015 Apache Incubator Project

08/2015 Open Source Release

7

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Basic HOP and LOP DAG Compilation

SystemML Overview and Related Work

LinregDS (Direct Solve)

X = read($1);

y = read($2);

intercept = $3;

lambda = 0.001;

...

if(intercept == 1) {

ones = matrix(1, nrow(X), 1);

X = append(X, ones);

}

I = matrix(1, ncol(X), 1);

A = t(X) %*% X + diag(I)*lambda;

b = t(X) %*% y;

beta = solve(A, b);

...

write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:

• driver mem: 20 GB

• exec mem: 60 GB

dg(rand)

(103x1,103)

r(diag)

X

(108x103,1011)

y

(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)

b(solve)

writeScenario:
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:

• Size propagation / memory estimates

• Integrated CP / Spark runtime

 Distributed Matrices

• Fixed-size (squared) matrix blocks

• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB

800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in

MEM_DISK)

X1,1

X2,1

Xm,1

8

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Cumulative Aggregates in ML Systems
(Straw-man Scripts and Built-in Support)

 ML Systems

 Update in-place: R (ref count), SystemML (rewrites), Julia

 Builtins in R, Matlab, Julia, NumPy, SystemML (since 2014)

cumsum(), cummin(), cummax(), cumprod()

 SQL

 SELECT Rid, V, sum(V) OVER(ORDER BY Rid) AS cumsum FROM X

 Sequential and parallelized execution (e.g., [Leis et al, PVLDB’15])

SystemML Overview and Related Work

1: cumsumN2 = function(Matrix[Double] A)

2: return(Matrix[Double] B)

3: {

4: B = A; csums = matrix(0,1,ncol(A));

5: for(i in 1:nrow(A)) {

6: csums = csums + A[i,];

7: B[i,] = csums;

8: }

9: }

1: cumsumNlogN = function(Matrix[Double] A)

2: return(Matrix[Double] B)

3: {

4: B = A; m = nrow(A); k = 1;

5: while(k < m) {

6: B[(k+1):m,] = B[(k+1):m,] + B[1:(m-k),];

7: k = 2 * k;

8: }

9: }copy-on-write O(n^2)

 Qualify for update in-place,

but still too slow

 O(n log n)

9

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Data-Parallel

Cumulative Aggregates

10

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

DistCumAgg Framework

 Basic Idea: self-similar operator chain (forward, local, backward)

Data-Parallel Cumulative Aggregates

aggregates

aggregates of

aggregates

block-local

cumagg

11

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Basic Cumulative Aggregates

 Instantiating

Basic

Cumulative

Aggregates

 Example

cumsum(X)

Data-Parallel Cumulative Aggregates

Operation Init fagg foff fcumagg

cumsum(X) 0 colSums(B) B1:=B1:+a cumsum(B)

cummin(X) ∞ colMins(B) B1:=min(B1:,a) cummin(B)

cummax(X) -∞ colMaxs(B) B1:=max(B1:,a) cummax(B)

cumprod(X) 1 colProds(B) B1:=B1:*a cumprod(B)

fused to avoid copy

12

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Complex Cumulative Aggregates

 Instantiating

Complex

Recurrences

Equations

 Example

Data-Parallel Cumulative Aggregates

Z = cumsumprod(X) = cumsumprod(Y, W)

with Zi = Yi + Wi * Zi-1, Z0=0

cumsumprod(X)

Init fagg foff fcumagg

0 cbind(cumsumprod(B)n1,

prod(B:2))

B11=B11+B12*a cumsumprod(B)

1 .2

1 .1

3 .0

2 .1

Exponential

smoothing

13

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

System Integration

14

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Simplification Rewrites

 Example #1: Suffix Sums

 Problem: Distributed reverse causes data shuffling

 Compute via column aggregates and prefix sums

 Example #2: Extract Lower Triangular

 Problem: Indexing cumbersome/slow; cumsum densifying

 Use dedicated operators

System Integration

rev(cumsum(rev(X))) X + colSums(X) – cumsum(X)

(broadcast) (partitioning-preserving)

=

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0

1 1 1 1 1 1 1

X * cumsum(diag(matrix(1,nrow(X),1)))

 lower.tri(X)

15

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Execution Plan Generation

 Compilation Chain of Cumulative Aggregates

 Execution type selection based on memory estimates

 Physical operator config (broadcast, aggregation, in-place, #threads)

 Example

System Integration

High-Level

Operator (HOP)

X

u(cumsum)

Low-Level

Operators (LOPs)

X

cumagg

cumagg

u(cumsum) CP, 24,

in-place

SP, k+

SP, k+,

broadcast

nrow(X) ≥ b

Runtime Plan

1: ...

2: SP ucumack+ _mVar1 _mVar2

3: CP ucumk+ _mVar2 _mVar3 24 T

4: CP rmvar _mVar2

5: SP bcumoffk+ _mVar1 _mVar3

_mVar4 0 T

6: CP rmvar _mVar1 _mVar3

7: ...

in-place

#threads

broadcast

16

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Runtime Operators

 CP cumagg Operator:

 Local in-memory operator w/ copy-on-write or in-place

 Multi-threading via static range partitioning

 Spark Partial Cumulative Aggregate:

 Data-local block aggregation fagg into row of column aggregates

 Insert row into position of empty target block (sparse)

 Global merge of partial blocks

 Spark Cumulative Offset

 Join data and offsets (broadcast, co-partition, re-partition)

 Applies the offsets foff and performs block-local fcumagg

w/ zero-copy offset aggregation

System Integration

17

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Experimental Results

18

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Experimental Setting

 Cluster Setup

 2+10 node cluster, 2x Intel Xeon E5-2620, 24 vcores, 128GB RAM

 1Gb Ethernet, CentOS 7.2, OpenJDK 1.8, Haddop 2.7.3, Spark 2.3.1

 Yarn client mode, 40GB driver, 10 executors (19 cores, 60GB mem)

 Aggregate memory: 10 * 60GB * [0.5,0.6] = [300GB, 360GB]

 Baselines and Data

 Local: SystemML 1.2++,

Julia 0.7 (08/2018), R 3.5 (04/2018)

 Distributed: SystemML 1.2++,

C-based MPI impl. (OpenMPI 3.1.3)

 Double precision (FP64) synthetic data

Experimental Results

19

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Local Baseline Comparisons

 Strawmen

Scripts

(w/ inplace)

 Built-in

cumsum

Experimental Results

cumsumN2 cumsumNlogN

competitive

single-node

performance

20

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Broadcasting and Blocksizes

 Setup: Mean runtime of rep=100 print(min(cumsum(X))),

including I/O and Spark context creation (~15s) once

 Results

Experimental Results

160GB

19.6x

(17.3x @

default)

1K good compromise

(8MB, block overheads)

21

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Scalability (from 4MB to 4TB)

 Setup: Mean runtime of rep=10 print(min(cumsum(X)))

 In the Paper

 Characterization of applicable operations;

other operations: cumsum in removeEmpty

 More baselines comparisons; weak and strong scaling results

Experimental Results

#Cells System

ML

MPI

165M 0.97s 0.14s

500M 4.2s 0.26s

1.65G 5.3s 0.61s

5G 7.4s 1.96s

15.5G 13.9s 6.20s

50G 44.8s 19.8s

165G 1,531s N/A

500G 8,291s N/A

22

Matthias Boehm, Alexandre V. Evfimievski, and Berthold Reinwald:

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning, BTW 2019

Conclusions

 Summary

 DistCumAgg: Efficient, data-parallel cumulative aggregates (self-similar)

 End-to-end compiler and runtime integration in SystemML

 Physical operators for hybrid (local/distribute) plans

 Conclusions

 Practical ML systems need support for a broad spectrum of operations

 Efficient parallelization of presumably sequential operations over

blocked matrix representations on top frameworks like Spark or Flink

 Future Work

 Integration with automatic sum-product rewrites

 Operators for HW accelerators (dense and sparse)

 Application to parallel time series analysis / forecasting

