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Clerical Task Management

N: 1.2
NAT: 7.4
BD: 2.1

SSN: 13.3
Total: 16.2

Autolink

No link

Clerical

> 20.0

[10.0, 20.0]

< 10.0
N: John Doe

NAT: German

BD: 14.11.1986

SSN: 2329239

N: Jim Doe

NAT: German

BD: 14.10.1986

SSN: 2329239

Are they the same?
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„It‘s boring“

Data StewardBusiness Executive

„It‘s expensive“

Clerical Task Management
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Can we reduce 

the number 

of tasks with 

Machine Learning?
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• Learn from task resolution history to auto-classify future potential duplicates

• Resolution history stored in our clients databases

• Matching engine can create comparison data

Input for Machine Learning

MEMRECNO,MEMRECNO2,CAUDTIME,RULETYPE,XNM,AXP,SSN,DOB,SEX,FPF2,OVERALL_CMPSCORE
29955364,45928598,2015-01-02 08:07:44,S,+0.66,+0.13,+0.00,+4.47,+0.26,-3.00,2.5
33087603,45928598,2015-01-02 08:07:44,S,+0.66,+0.13,+0.00,+4.47,+0.26,-3.00,2.5
32192384,45928598,2015-01-02 08:07:44,S,+0.66,+3.20,+0.00,+4.47,+0.26,-3.00,5.5
30214332,46274721,2015-01-02 08:10:07,S,+8.27,+1.33,+0.00,+4.55,+0.26,-2.00,12.4
46274721,46331036,2015-01-02 08:10:07,S,+8.27,+4.71,+5.01,+4.55,+0.26,+0.00,22.8
30214332,46331062,2015-01-02 08:10:07,S,+8.27,+4.71,+0.00,+4.55,+0.26,-2.00,15.7
46220762,46315567,2015-01-02 09:35:55,D,+8.07,+4.71,+0.00,+4.45,+0.35,-6.00,11.5
25754083,46264503,2015-01-02 15:32:23,D,+2.28,+1.33,+0.00,+4.53,+0.35,-3.00,5.4
25754083,46262360,2015-01-02 15:32:23,S,+8.27,+1.33,+0.00,+4.53,+0.35,-2.00,12.4
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Implementation

• Runtime: Python 3.7
• ML Libraries: 

• Scikit Learn 0.20.0
• Xgboost 0.81
• Imbalanced-learn 0.4.3

Environment

• Ubuntu 18.04 Virtual Machine 
• CPU: 2.4 GHz with 8 cores
• Memory: 16GB

Data

• Healthcare Customer
• 1.3 million steward decisions

Evaluation Environment
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• Splitting data
• Used 80% of randomly 

selected data to train model
• Used remaining 20% to 

verify ML results

• Evaluated multiple 
classifiers

• Random forest showed best 
results w.r.t. quality of 
predictions and training 
speed

Exploration of different Machine Learning Algorithms
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Skewed Data

• The clerical data is often skewed

• 75% same, 25% different

• To compensate, we evaluated 
different sampling methods

• No oversampling yields best results 

overall.

• Random oversampling and SMOTE 

regular perform best among 

sampling algorithms and show better 
precision for majority class. 0.7
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• Zero values are categories

• To reduce the impact we added a additional columns

• No affect on tree-based classifiers

• Logistic regression benefits

Artificial Features
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Performance Comparison
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ROC Curve Comparison
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Comparing PME results with ML Recommendations

• Comparing matching score with ML 
confidence

• Matching Engine

• Clerical Tasks: 106,218
• False Positive Rate: 1.02%
• False Negative Rate: 0.98%

• Machine Learning

• Clerical Tasks: 34,792
• False Positive Rate: 0.93%
• False Negative Rate: 0.96%

ML Confidence
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Final Results

• Using Random Oversampling

• Using Artificial Features

• Results
• Accuracy = 0.94
• Precision = 0.98 (same), 0.80 (different)
• Recall = 0.94 (same), 0.91 (different)

We showed that the ML approach works better than a 
highly tuned Matching Engine.
Holding the false negative and positive rates at around 
1% we can reduce the number of clerical task by two 
thirds.
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Outlook
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Impact of Data Volume

Plot created by training with different data 
volumes on the same test data. We executed 
multiple runs and choose the median for 
plotting.

Logistic Regression

Flattens out at about 91.5%

Random Forest

Prediction quality keeps on improving. With 
1,000 resolved tasks accuracy is over 92%
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Active Learning Comparison

Clustering

Using k-means to identify first 10 tasks to 
process by data stewards.

Active Learning

Actively suggesting the next 10 tasks with 
most information gain to process by data 
stewards.
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