

18. BTW 2019

MSDATASTREAM

CONNECTING A BRUKER MASS SPECTROMETER TO THE INTERNET

Roman Zoun¹, Kay Schallert¹, David Broneske¹, Wolfram Fenske¹, Marcus Pinnecke¹, Robert Heyer¹, Sven Brehmer², Dirk Benndorf¹, Gunter Saake¹.

¹ Otto-von-Guericke University Magdeburg ² Bruker Daltonik GmbH

Introduction

• Mass spectrometry workflow is

Figure 1: Sequential mass spectrometry pipeline.

Send to Cloud Configuration add Folder Configuration Status Action Measurement 08 HUMAN_GUT_241 DEFAULT Start Stop

Figure 4: MSDataStream user interface

• Protein identification [2] in real time, see Figure 2

Cloud Backend Fast Data Architecture

- Fast Data architecture [3]
- Stream producer (Figure 5-1)
- Horizontally scalable scorer (Figure 5-2)
- Distributed structured protein knowledge base (Figure 5-3) • Smart validator of peptide-spectrummatches (Figure 5-4).

Figure 2: Principle of protein database search. (source: https://www.nature.com/articles/nbt0710-659)

MSDataSream

- Collaboration with Bruker Daltonik GmbH.
- MSDataStream reads single spectrum data during measurement
- Sending the data to the cloud
- Enables real time diagnostics on the cloud

Figure 5: Fast Data architecture

References

Figure 2: Architecture of MSDataStream

[1] "TANDEM: matching proteins with tandem mass spectra."; R. Craig, R. C. Beavis (2004); Bioinformatics, 20, pp 1466-1467;

[2] "Fast Data Architectures for Streaming Applications"; D. Wampler (2016); 1st ed. 1005 Gravenstein Highway North, Sebastopol, CA 95472.: Oreilly Media, sep.

