
Daniel O’Grady
Data-Driven Map Generation

Database-Supported Video Game Engines:
Data-Driven Map Generation

Maps in Video Games
Marrying Database Systems and Video Games Engines

We demonstrate the similarities between problems handled in video game engines and
database systems. Video games deal with rapid computation over vast amounts of data
in many areas. We claim that tying in database systems can improve the performance of
those areas. To exemplify this, we demonstrate data-driven map generation.

Maps Can Not Be Random Spaces

Maps have to cater to the type of game and can not be fully random to be enjoyable. But
for each game, building blocks can be conceived of which a map can be comprised.

Part of a dungeon from Nintendo’s
game The Legend of Zelda: A Link to
the Past. The design is room based,
where rooms are connected to each
other through doors. Rooms are
enclosed spaces with functional and
decorative elements. Either whole
rooms could form building blocks to
create random dungeons, or smaller
elements, like the pathways on the lower
right room form building blocks, to
generate random rooms.

Manually crafted map from the game
engine OpenRA, courtesy of developer
SoScared. White space is walkable, blue
areas are bodies of water, yellow
patches are gold, and grey areas are
walls or pathways. Note how this design
is much more open than the above map
of a dungeon and offers plenty of space
to maneuver, as it is meant for Real
Time Strategy games.

Screenshot of a generated map using
our tool. The map generation is directly
embedded into the game engine through
a lightweight interface and produces
playable maps. Note how the map, like
the manually crafted one above,
features open spaces with walls around
and patches of water and resources.

Shaping Maps Through Data – Not Code
Growing the Map

The modules in the following example are composed of the tiles
water (≈), coast (∵), walkable (�), and walls (4).

...

...

...
... ...
... ...

... ...

...

...

...
... ...
... ...

... ...

...

...

...
... ...
... ...

... ...

...

...

...
... ...
... ...

... ...
∵

≈

�

∵ ∵

≈ ≈

4 ∵

...

...

...
... ...
... ...

... ...
...
...

...
... ...
... ...

... ...

...

...

...
... ...
... ...

... ...
...
...

...
... ...
... ...

... ...

. . .

∵

≈

�

∵ ∵

≈ ≈

4 ∵

. . .

. . .

. . .

. . .

.

.

banlieues()

banlieues()

banlieues()

banlieues()banlieues()banlieue()

banlieues()

banlieues()

banlieues()

banlieues() banlieues() banlieues()
1

∵

≈

�

∵ ∵

≈ ≈

4 ∵

≈

∵

∵
→

C
freq tile with
2 � �

1 4 4

3 ≈ ≈

3 ∵ ∵

1 ∵ ≈

≈
≈
≈
←

≈
≈

≈
≈ ≈
≈ ≈

≈ ≈

≈

∵

4
←

∵

≈

∵

∵ ∵

≈ ≈

4 ∵

edge()

edge()

edge()

X

X

X

X

X

2

3

3

4

M

Emap

Emods

Core Algorithm for an Outward Expanding Map

0 From a set of available modules M take one module as seed S. The seed can either
be randomly selected or passed as parameter. (This step is not pictured above.)

1 Select the outermost blocks of the map generated up to this point, using the user
defined function banlieues().

2 Select the outer edges Emap from those blocks, together with the direction they are
facing. Again, we are abstracting this process into a UDF edge().

3 Select the outer edges Emods from all modules inM, together with the direction they
are facing. We can use edge() for this, too.

4 Find edges in Emap and Emods such that they face opposite directions and can be
joined on the table of compatible tiles C. If one edge in Emap can be paired with
multiple edges in Emods, pick one at random. The column freq controls the
probability of a matching row in C to be used as glue in situations where we can
choose between multiple join partners.

5 Repeat steps 1 through 4 until a termination condition has been reached, the
default being having reached a certain map size.

Implementing the Algorithm in PostgreSQL Using WITH RECURSIVE

1 WITH RECURSIVE map(module,x,y) AS (
2 (SELECT S, 0, 0) 0
3 UNION ALL
4 (WITH
5 b AS (TABLE banlieues(map)), 1
6 Emap AS (TABLE edge(b)), 2
7 Emods AS (TABLE edge(M)) 3
8 SELECT DISTINCT ON (coords(Emods))
9 module(Emods), -- assume that module() is a function

10 -- which restores a module from an edge.
11 coords(Emods) -- assume that coords() is a function
12 -- which assigns coordinates to
13 -- the module within the map.
14 FROM
15 Emap
16 JOIN C 4
17 ON C.tile = Emap
18 JOIN Emods
19 ON C.with = Emods
20 WHERE
21 NOT(〈termination condition〉) 5
22 ORDER BY
23 freq_sort() -- assume that freq_sort() is a function that
24 -- randomly sorts elements, but factors in
25 -- the column freq.
26))
27 SELECT * FROM map;

Why Stop Here?
More (All!?) Parts of Game Engines Yearning for SQL

Not only map generation can benefit from borrowing from SQL! In future work we will
move more components of the game engine over to the database system.
More candidates that are typical components of a game engine are:

(1) Incremental simulation of physics, i.e. applying trajectory vectors to objects in bulka,
(2) collision detection,
(3) pathfinding,
(4) control of non-player characters (NPCs or “AI”),
(5) determining visual objects during rendering (culling),
(6) . . .

aWhite, W.; Demers, A.; Koch, C.; Gehrke, J.; Rajagopalan, R.: Scaling Games to Epic Proportions.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’07, ACM, Beijing, China, pp. 31–42, 2007.

Visit us at http://db.inf.uni-tuebingen.de

