THE BORDA SOCIAL CHOICE NOVIE RECOMMENDER

Application Overview

The demo application provides a visual comparison of different clustering techniques.

Benefits are:

- Movie recommendations which satisfy user preferences.
- Clustering of movies having similar features.
- Exploiting the Borda rule to avoid domain normalization in k-means++.
- Use quality measures to find suitable values for the desired number k of clusters.

Example

• Bob favors old-school movies of the late 70s to the early 90s, with a runtime between 90 and 130 minutes and a user-rating higher than 7.

Objective:

• Allocate movie 'Die Hard 2' (27) to one of k=3 clusters. • Use movies (1), (7) and (23) as initial centroids for clusters C₁, C₂ and C₃.

ID movie

rating time year games

The Borda Social Choice Voting Rule

• Borda is a voting rule which considers each dimension in a multi-dimensional scenario in an equal manner. • We use Borda in k-means++ for the allocation of objects to a cluster.

• This allows more influence of smaller domains, because every candidate receives equal weighted votes from each voter.

Definition (Borda Winner):

Given k candidates C_i and d voters V_j . A voter has to assign a vote $v_{im} \in \{0, ..., k - 1\}, m = 1, ..., k, to$ each candidate. All v_{im} are pairwise distinct. 1) Sum up the votes for each candidate:

	movie	rating	unic	year	gennes
1	Star Wars	8.8	125	1997	Action, Sci-Fi
7	Reservoir Dogs	8.4	99	1992	Crime, Drama, Thriller
23	Indiana Jones II	7.6	118	1984	Action, Adventure, Fantasy
27	Die Hard 2	7.1	124	1990	Action, Thriller Crime

Determine the Borda Winner:

• 'Die Hard 2' is allocated to the Borda Winner C₂. • Using the squared Euclidean distance, 'Die Hard 2' would be allocated to C_3 .

Dimension	C 1	C ₂	C ₃
rating	1.70 (0)	1.30 (1)	0.50 (2)
time	1.00 (2)	25.00 (0)	6.00 (1)
year	13.00 (0)	2.00 (2)	6.00 (1)
genre	0.25 (1)	0.50 (2)	0.20 (0)
Borda Sum	3	5	4
Euclidean dist.	13.15	25.12	8.50

Demo Architecture:

2) Determine the **Borda winner**:

 $bordaWinner = max\{bordaSum_{C_i} \mid i = 1, ..., k\}$

In a clustering scenario:

- The *candidates* are the available *clusters*.
- The *voters* are the *dimensions* of the *d*-dimensional object which should be allocated to a cluster.
- Votes are assigned to the distances between the object and the centroids of the clusters.
- Closest distance gets a maximum vote of k-1, the second closest *k*-2, ..., the largest distance gets a vote of 0. • Allocate the object to the Borda winner.

- Web application-based recommender system using user preferences.
- Uses the Internet Movie Database (IMDb). • Evaluation mode for user study.

TERRESTRIAL

AND THE LAST EPISODE VI A VENGEANCE MONKEYS CRUSADE RETURN OF THE JEDI

TEMPLE OF

DOOM

FUTURE PART II DAY Realese: 20 Jul 1988 Realese: 25 Jun 1982 Realese: 03 Jul 1 Realese: 22 Nov 1989 Realese: 12 Feb 1993

All contents of the OMDb API (http://www.omdbapi.com/) are licensed under CC BY CC BY-NC 4.0 NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/).

Johannes Kastner, Nemanja Ranitovic, Markus Endres

Chair for Databases and Information Systems University of Augsburg, Germany

www.PreferenceSQL.com info@PreferenceSQL.com