~ MOTIVATION [1]

* Key requirements of Data Stream Processing are high
throughput and low latency
° e.d., sensor data processing, loT, data analytics
- Require efficient parallelization of algorithms
- Conventional techniques use blocking mechanisms
which limit the possible parallelization
* Primary objectives: 1. Lock-free design principles

3. Effect on performance in Data
Stream Processing

2. Data Structure Implementations

~ PIPEFABRIC [2]

- C++ framework for processing streams of tuples
* Provides a set of operators and utility classes:
— publish-subscribe framework
— operators for data stream processing (aggregates,
grouping, joins and complex event processing)
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— CONTRIBUTION

» Lock-free (Multi-)Hashmap design
* Improved performance for tuple exchange process and
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Symmetric Hash Join algorithm
* Benchmarks (Pipefabric)

— LOCK-FREE SYNCHRONIZATION

* Non-blocking synchronization

(CAS) or fetch and add (FAA)
- Guarantees that at least one thread is doing progress
» Results in practice with a higher degree of parallelism

* Achieved with atomic operations like compare and swap
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— TUPLE EXCHANGE

* Tuple exchange process between two threads
— based on single reader and single writer queue
— current implementation locks the entire queue for each
push/pop
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* Benchmark of different implementations with
performance libraries:

— BENCHMARKS

 Lock-free synchronization can improve the throughput
algorithms in Data Stream Processing
* The Pipefabric framework is used for benchmarks in

1.
2. Symmetric Hash Join with (Multi-)Hashmaps

\

order to compare the blocking and lock-free approaches
Tuple exchanging process with Reader-Write Queues
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~— SYMMETRIC HASH JOIN

» Used data structure: STL (Multi-)Hashmap
» supports multiple elements with the same key
- current implementation locks entire hashmap
- Lock-free implementations enable a higher scalability
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- Continuously generates results while tuples arrive from a stream

Execution time benchmark with different implementations:
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Symmetric Hash Join Algorithm
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