
• Continuously generates results while tuples arrive from a stream
• Used data structure: STL (Multi-)Hashmap

• supports multiple elements with the same key
• current implementation locks entire hashmap

• Lock-free implementations enable a higher scalability

Execution time benchmark with different implementations:

Lock-free Data StructureS
for Data Stream ProceSSing

Alexander Baumstark

Alexander Baumstark
contact: alexander.baumstark@tu-ilmenau.de

Technische Universität Ilmenau

• Key requirements of Data Stream Processing are high
throughput and low latency
• e.g., sensor data processing, IoT, data analytics

• Require efficient parallelization of algorithms
• Conventional techniques use blocking mechanisms

which limit the possible parallelization
• Primary objectives: 1. Lock-free design principles

2. Data Structure Implementations
3. Effect on performance in Data
Stream Processing

techniSche univerSitÄt
Ilmenau

[1] Alexander Baumstark. Lock-free Data Structures for Data Stream
 Processing. Bachelor‘s Thesis, TU Ilmenau, Aug. 17, 2018.
[2] https://github.com/dbis-ilm/pipefabric

motIvatIon [1]

• Non-blocking synchronization
• Achieved with atomic operations like compare and swap

(CAS) or fetch and add (FAA)
• Guarantees that at least one thread is doing progress
• Results in practice with a higher degree of parallelism

lock-Free SynchronIzatIon

• Lock-free synchronization can improve the throughput of
algorithms in Data Stream Processing

• The Pipefabric framework is used for benchmarks in
order to compare the blocking and lock-free approaches

1. Tuple exchanging process with Reader-Write Queues
2. Symmetric Hash Join with (Multi-)Hashmaps

BenchmarkS

• C++ framework for processing streams of tuples
• Provides a set of operators and utility classes:

 – publish-subscribe framework
 – operators for data stream processing (aggregates,
grouping, joins and complex event processing)

PIPeFaBrIc [2]

• Lock-free (Multi-)Hashmap design
• Improved performance for tuple exchange process and

Symmetric Hash Join algorithm
• Benchmarks (Pipefabric)

contrIButIon

• Tuple exchange process between two threads
 – based on single reader and single writer queue
 – current implementation locks the entire queue for each
push/pop

• Benchmark of different implementations with
performance libraries:

tuPle exchange

SymmetrIc haSh JoIn

Lock-free Multi-Hashmap

Symmetric Hash Join Algorithm

