~ MOTIVATION [1]

* Key requirements of Data Stream Processing are high
throughput and low latency
° e.d., sensor data processing, loT, data analytics
- Require efficient parallelization of algorithms
- Conventional techniques use blocking mechanisms
which limit the possible parallelization
* Primary objectives: 1. Lock-free design principles

3. Effect on performance in Data
Stream Processing

2. Data Structure Implementations

~ PIPEFABRIC [2]

- C++ framework for processing streams of tuples
* Provides a set of operators and utility classes:
— publish-subscribe framework
— operators for data stream processing (aggregates,
grouping, joins and complex event processing)

\

— CONTRIBUTION

» Lock-free (Multi-)Hashmap design
* Improved performance for tuple exchange process and

Yy ¥

Symmetric Hash Join algorithm
* Benchmarks (Pipefabric)

— LOCK-FREE SYNCHRONIZATION

* Non-blocking synchronization

(CAS) or fetch and add (FAA)
- Guarantees that at least one thread is doing progress
» Results in practice with a higher degree of parallelism

* Achieved with atomic operations like compare and swap

\

— TUPLE EXCHANGE

* Tuple exchange process between two threads
— based on single reader and single writer queue
— current implementation locks the entire queue for each
push/pop

vV v

* Benchmark of different implementations with
performance libraries:

— BENCHMARKS

 Lock-free synchronization can improve the throughput
algorithms in Data Stream Processing
* The Pipefabric framework is used for benchmarks in

1.
2. Symmetric Hash Join with (Multi-)Hashmaps

\

order to compare the blocking and lock-free approaches
Tuple exchanging process with Reader-Write Queues

~\

Pipefabric Mutex

of

Intel TBB unbounded
Intel TBB bounded

Boost unbounded

Boost bounded

Folly unbounded
Folly bounded

vy v

1000

2000 3000 4000 5000 6000

Execution Time (ms)

7000 8000 9000 10000

~— SYMMETRIC HASH JOIN

» Used data structure: STL (Multi-)Hashmap
» supports multiple elements with the same key
- current implementation locks entire hashmap
- Lock-free implementations enable a higher scalability

350 @ STL/unordered_multimap (mutex)

=@ | ock-free/Linked List
#= Lock-free/Skip List
&= Intel TBB/unordered_multimap

w

-

300

N
(&)
(@)

N
o
o

150

Execution Time (ms)

100

50

96
Number of Threads

- Continuously generates results while tuples arrive from a stream

Execution time benchmark with different implementations:

112 128 144 160 176 192 208 224 240 256

Symmetric Hash Join Algorithm

«.»Data Stream 1 Window OP

Left

Hash Table 1
Probe Probe Matc!'ned
Entries
...... nght 1
» Data Stream 2 Hash Table
Hash Join

f Lock-free Multi-Hashmap

List array

H List O > Value 0
O o 0
{ List 1 /\ Value 1 Value 2
1 > 4 R 0 — 1
5 List 2 Value 3
2 » 5 > 11 0

[1] Alexander Baumstark. Lock-free Data Structures for Data Stream
Processing. Bachelor's Thesis, TU Ilmenau, Aug. 17, 2018.
[2] https://github.com/dbis-ilm/pipefabric

Technische Universitat Imenau

Alexander Baumstark
contact: alexander.baumstark@tu-ilmenau.de

TECHNISCHE UNIVERSITAT
ILMENAU

